
An Autonomic in-Network Query Processing for
Urban Sensor Networks

Marcos A. Carrero∗, Rone I. da Silva†, Aldri L. dos Santos∗, and Carmem S. Hara∗
∗DINF – Universidade Federal do Paraná – UFPR – Paraná, Brazil

†DTECH – Universidade Federal de São João del-Rei – UFSJ – Minas Gerais, Brazil
Email: {macarrero, aldri, carmem}@inf.ufpr.br, rone@ufsj.edu.br

Abstract—The sensing of urban environments usually takes
into account the deployment of a large number of devices to
measure their environmental attributes, such as temperature,
pressure, humidity, luminosity and pollution. In such applications,
nearby sensors usually produce similar readings due to their
spatial and temporal correlation. In the era of big data, manage-
ment of collected data requires autonomous and scalable Wireless
Sensor Network (WSN) structures. In this paper, we propose
an in-network data storage model, called AQPM, that provides
efficient processing of both spatial and value-based queries. AQPM
is autonomous and scalable. That is, it does not rely on any central
entity for neither managing data storage on sensor devices nor
for processing queries. Scalability is achieved by grouping sensors
with similar readings into clusters, while efficient query processing
relies on the concept of repositories. Repositories are sensors that
store readings of a set of clusters, and are the only ones that
have to be contacted for answering queries. AQPM has been
implemented on NS2 simulator and experimental results show
that it is more effective than existing approaches.

I. INTRODUCTION

Wireless sensor networks (WSNs) have provided an in-
frastructure for leveraging a wide range of applications to
various fields of interest, such as environmental monitoring,
military surveillance and health care [1]. Sensor nodes usually
have limited capabilities including low bandwidth, and limited
storage, energy and processing power. In the context of urban
monitoring, due to the city’s irregular topography, variations
of pollutant concentration differ even on opposite sides of
the street [2]. Thus, monitoring such complex environments
requires deployment of dense WSNs [3] [4]. Moreover, sensor
devices may store the monitored data enabling applications to
execute queries in the network, without relying on a central
server. In particular, for large-scale WSNs, keeping the whole
data centralized for further processing increase communication
costs [5] and is less scalable than decentralized approaches [6].

Query dissemination is a hard task due to high commu-
nication and energy costs. However, they can be reduced
by exploring some characteristics found in WSNs, such as
the spatial and temporal correlations among readings [7]–[9].
Spatial correlation refers to the similarity among data collected
by nearby devices, whereas temporal correlation refers to the
similarity among consecutive readings from each sensor node
[10]. Given that in some applications readings among nearby
sensors show redundant data, scalability can be reached by
arranging in groups sensors with similar readings [11].

In addition to explore spatio-temporal similarity, a suitable
data storage strategy can be a key feature for reducing energy

consumption and minimizing query processing delay [12]. In
general, sensor readings can be locally stored in the sensor
itself, in an external database or in distributed repositories
within the network. Although the best strategy depends on the
application context it has been noticed that the repository ap-
proach offers an interesting tradeoff between query and storage
costs [13]. In such approach, communication costs depends
on repositories placement, aiming at minimizing update and
query processing delays.

Inspired by these challenges some works have emerged
in order to address the query processing task. The majority
of current clustering algorithms, such as SIDS [14], consider
only one-dimension sensor reading, such as temperature or
humidity. Among those that consider readings similarity of
multidimensional data, we can cite DCSSC [7] and DCASC
[15]. They all group sensors into clusters with a designated
sensor for storing the group members’ readings, denoted as
cluster-head (CH). A node that plays the role of CH is
responsible for storing the relevant data about the entire cluster.
DCSSC and DCASC rely only on CHs for answering query re-
quests. That is, they do not support the concept of a repository
to reduce the number of cluster-heads to be contacted during
query dissemination, and thus query processing may be costly.
Another limitation of DCSSC is that queries are issued only
from one specific external entry point. SIDS does support the
concept of repositories. Nevertheless, it is not an autonomous
model, relying on an external entity to coordinate the sensors
clustering process.

In this paper we propose the Autonomic Query Processing
Model for Sensor Networks (AQPM). The system works as
follows. At the lowest level, each sensor node keeps locally
the gathered data. In addition, nodes with high correlation are
organized in clusters. At the cluster level, a node named as
cluster-head (CH) is elected to be the group representative. At
the repository level, specific nodes serving as data repository
store data transmitted from the cluster level. The goal of the
repository is to reduce the number of CHs contacted during
query processing by concentrating information of clusters
with intersecting boundaries in a single location. Our model
supports both spatial queries, for obtaining readings on a given
geographical location, and value-based queries, for retrieving
the location of sensors with readings in a given range. To
the best of our knowledge, it is the first autonomic model
that combines spatial similarity of readings with repository
placement for reducing the network communication during the
query processing in the context of urban WSNs. The system
evaluation was conducted by simulations taking into account

an urban scenario. Results shows that AQPM can effectively
support autonomic query processing, as well as reducing the
communication overhead.

The remainder of this paper is organized as follows.
Section II presents related work. Section III describes our
proposal and Section IV reports the performance evaluation.
We conclude in Section V highlighting future works.

II. RELATED WORK

Recent research efforts have been made to deliver efficient
in-network query processing in WSNs. Data storage and clus-
tering are common approaches used in the development of
efficient query processing applications. Scoop [16] and GHT
[17] are systems that follow repository-based approaches for
storing sensing data. Scoop maps ranges of collected data
to sensor devices. However, unlike our work, Scoop is not
scalable and requires a base station to operate the network;
that is, it is not an autonomous system. GHT, on the other
hand, uses a hashing function to map attribute names to
a geographical location. Queries and updates in GHT may
need to contact storage sensors that may be located far from
the collecting devices; thus, these operations can be costly.
Additionally, none of them support both spatial and value-
based queries. Models that tackle the scalability problem
with similarity-based clustering techniques include CAG [18],
DCSSC [7] and SIDS [14]. However, none of them is fully-
autonomous.

IBIS [19] proposes an efficient mechanism for processing
spatial queries that reduces the energy consumption based on
finding itineraries for irregular regions of interest. It creates
a route for forwarding the request among sensors and for
determining where the sensed data should be aggregated.
However, IBIS does not take into consideration data similarity
and clustering.

To the best of our knowledge none of the existing sensor
models provides an in-network query processing model that
meets the requirements found in urban WSNs. This model
should be able to combine data similarity, node clustering
strategies and data repositories, in order to support a dense
and large-scale WSN autonomously.

III. THE AQPM MODEL

We introduce AQPM (Autonomous Query Processing
Model), a hierarchical and distributed in-network model for
efficiently answering spatial and value-based queries. AQPM
organizes sensors in clusters by exploiting the spatial data
similarity of their readings. Once clusters are defined, some
sensors selected as data repositories store information of a
set of distinct clusters. Intuitively, given that cluster heads
represent sensing data for every cluster member, a repository
can act as a datacenter to answer queries referring to any of the
clusters that compose it. In the following sections, we present
the network model, the concept of spatial correlation, and the
query processing algorithm.

A. The network Model

A wireless sensor network (WSN) is represented as a
graph G = (V,L), where V = {s1, . . . , sn} is a set of

sensors spread over a monitored area and L is a set of links
such that (si, sj) is in L if si and sj are within the radio
communication range of each other. We say that the distance
between si and sj is one-hop and that si and sj are neighbors.
Communication between two arbitrary sensors requires the
existence of links {(s1, s2), (s2, s3), . . . (sn−1, sn)} such that
s1 is the sensor that originates the message and sn is the
message final destination. That is, WSNs are based on multi-
hop communication. In our model, we assume that sensors
are static and aware about their location, and thus have a
fixed geographic coordinate (position(si)). We can thus rely
on a geographic routing protocol for determining paths that
establish communication between sensors. We also assume that
each sensor is responsible for monitoring a multidimensional
measurement from the environment. We denote the current
readings of a sensor s as a tuple X = (x1, x2, . . . , xn),
where each xi corresponds to one type of reading such as
temperature, humidity, luminosity and air pollution.

As an example, consider a WSN deployed over an urban
area collecting several environmental features. Figure 1(a)
shows sensors densely placed over regions of the city, such as
parks, gardens, streets and avenues. In AQPM, spatially close
sensors are grouped into clusters based on measuring their
spatial correlation, as shown in Figure 1(b). Every cluster has
one sensor that serves as cluster-head (CH). Moreover, clusters
are defined on contiguous spatial areas. Consequently, data
sampled within each cluster have very high spatial correlation
among its members. Thus, based on these observations, in our
model we consider that only CH information is relevant for
answering queries, instead of collecting and aggregating at the
CH data sensed by cluster members. Thus, AQPM clustering
approach reduces the intracluster communication overhead,
saving network resources.

The developed CH selection is inspired by the spa-
tial correlation clustering algorithm proposed in [15]. Let
X = (x1, x2, . . . , xn) be the readings of sensor si, Y =
(y1, y2, . . . , yn) the readings of sensor sj and N(i) the set
of neighbors within one-hop of sensor si. The algorithm uses
a weight-based clustering approach, which is divided in four
steps. In the first step, the Euclidean distance between two
sensor measurements, dij , is computed as follows.

dij =
√
|x1 − y1|2 + |x2 − y2|2 + . . . + |xn − yn|2 (1)

Based on all neighbors of a sensor si, its mean value di
and average absolute deviation D(dij) are computed by the
following equations.

di =
1

|N(i)|
∑

j∈N(i)

dij (2)

D(dij) =
1

|N(i)|
∑

j∈N(i)

(dij − di)
2 (3)

Then in the last step, the spatial correlated weight w(si)
(0 ≤ w(si) ≤ 1) of node si is given by

w(si) =

 ∑
j∈N(i)

|dij − di|

2

|N(i)|2D(dij)
=

 ∑
j∈N(i)

|dij − di|

2

|N(i)|
∑

j∈N(i)

(dij − di)
2

(4)

(b)

Fig. 1. An overview of AQPM scenario, proposed model and data storage model.

According to the equation above, each sensor calculates its
weight w(si) that determines the degree of correlation among
measurements of si and its neighbors N(i). A value close to
1 indicates that readings of si and nearby sensors are highly
correlated. Indeed, in our model, a sensor is selected as CH if
its correlated weight is above a user-defined threshold.

AQPM is a three-tier hierarchical model that consists of
a sensor-level s, a cluster-level h to which s belongs to
(CH(s)) and a repository level that stores information on h
(R(h)). Observe that the same sensor can assume different
roles simultaneously. That is, in addition to the role of a cluster
member, it can be a cluster head and/or a repository. We say
that a sensor is an isolated cluster head if it is a CH with
only itself as a member. We now briefly describe the proposed
AQPM’s algorithms for clustering and repository placement.

In the clustering algorithm, each sensor s requests its
neighbors to send their readings in order to calculate its
spatial correlated weight (w(s)). Then, it announces itself
as leader (CH) if w(s) is above the user-defined threshold
and broadcasts the decision to its neighbors. Nodes with low
weight maintain a set structure candidateCHs for storing each
announced leader. Later, these nodes (called members) join
the cluster with the most similar readings among all CHs
stored in candidateCHs and sends an ACK message to the
chosen CH with its coordinate. Thus, each CH maintains the
geographical position of its cluster members, and can compute
its minimum bounding rectangle (MBR). If a CH does not
receive any ACK, it updates its role as an isolated cluster head.
To illustrate, consider scenario in Figure 1(b). Each cluster has
one leader and sensors become a member of the leader with
highest spatially correlated readings.

Given that sensors have been grouped based on their spatial
data similarity, we are now ready to define our repository
placement algorithm. A repository aims at minimizing the
number of hops during query processing by storing information
of nearby CHs, such that only repositories may have to be
contacted in order to answer queries. Thus, we select as
repositories sensors in a border region that can concentrate
the maximum number of clusters in their neighborhood. The
algorithm works as follows. First, a sensor broadcasts a
repository-announcement if the number of neighbor nodes in
distinct clusters exceeds an user-defined threshold. Sensors that
play the role of cluster-heads or repositories that receive an
announcement message maintain a set structure knownRepo

for storing each announced repository and re-broadcast this
message if the distance to the new repository is smaller than
the distance to all others. It guarantees a stop criteria for
the repository-announcement broadcast. Later, each CH joins
the closest repository candidate and sends an ACK informing
its readings and cluster members positions. Repositories store
these information and calculate their MBR, which is then send
to its neighbor repositories recorded in knownRepo. At the
end of this process, each repository contains information of
its neighbor repositories and their MBR, besides the cluster
readings. As an example, consider the scenario in Figure 1(c).
Repository R3 is in a shared border region, composed of
clusters C4, C5, C9 and C10.

B. Query Processing

AQPM in-networking query processing mechanism sup-
ports both spatial and value-based queries, which can be
injected at any node in the WSN, without relying on a single
entry point. A single query parameter defining the range of the
query is given as input. For value-based queries, the range is an
interval, and the result consists of the sensors in the monitored
area with values within the range. For spatial queries, the range
is a rectangular region, and the result consists of the readings
of sensors located in the area of interest. Recall that AQPM
considers that CHs readings are representative of readings of
all sensors in a cluster and that repositories serve as data
storage for nearby CHs. Thus, processing queries consist of
finding within the repositories the set of sensors and their
associated information that match the query criteria and then
return the information to the entry point. The routing protocol
used to forward query messages and retrieve query answers
relies on the GPSR protocol [20]. Algorithm 1 details the query
processing strategy.

The query processing algorithm explores AQPM’s hierar-
chical model. First, each query is assigned a unique identifier
qryId. The algorithm collects the results sent from different
repositories in a variable qryRes[qryId] (l.1-3). An entry
point sensor receives a query and forwards spatial queries
to the region of interest, and value-based queries to its CH
(l.5-7). Spatial queries follows AQPM hierarchy only after
the first sensor in the region is reached (l.16-24). In the
region, the query is forwarded to a cluster-head, and then
to its corresponding repository (l.19-24). Procedure RECEIV-
ING(’COLLECT’)) is executed by every repository in the
query range for collecting readings. First, data from clusters

Algorithm 1 Query Processing
1: procedure SEARCH(range, type) by si
2: qryId← new(id)
3: qryRes[qryId]← {}
4: if type = SPATIAL then
5: send (’SPATIAL’, qryId, si, range, {}) in range direction
6: else
7: send (’VALUE’, qryId, si, range, {}) to CH(si)

8: WAIT(Ω time units) for response
9: output qryRes[qryId]

10: procedure RECEIVING(‘RESULT’, qryId, entryP , res) by si
11: if si = entryP then
12: qryRes[qryId]← qryRes[qryId] ∪ res
13: else
14: forward (‘RESULT’, qryId, entryP , res) to entryP

15: procedure RECEIVING(‘SPATIAL’, qryId, entryP , range, res) by si
16: if position(si) not in range then
17: forward (‘SPATIAL’, qryId, entryP , range, res, reached) in

range direction
18: else
19: if si is a repository then
20: execute (’COLLECT’, qryId, entryP , range, res)
21: else if si is a cluster-head then
22: forward (‘SPATIAL’, qryId, entryP , range, res) to R(si)
23: else
24: forward (‘SPATIAL’, qryId, entryP , range, res) to CH(si)

25: procedure RECEIVING(‘COLLECT’, qryId, entryP, range, res) by Rep
26: if Rep has already processed qryId then
27: drop message; return;
28: res← GetDataThatOverlapsRange()
29: send (‘RESULT’, qryId, entryP , res) to entryP
30: for all repository r in knownRepo(Rep) do
31: if MBR(r) overlaps range then
32: send (‘COLLECT’, qryId, entryP , range, res) to r

33: procedure RECEIVING(‘VALUE’, qryId, entryP , range, res) by si
34: if si has already processed qryId then
35: drop message; return;
36: if si is a repository then
37: res← GetDataThatIntersectRange()
38: send (‘RESULT’, qryId, entryP , res) to entryP
39: send (‘VALUE’, qryId, entryP, range, res) to knownRepo(si)
40: else if si is a cluster-head then
41: forward (‘VALUE’, qryId, entryP, range, res) to R(si)
42: else
43: forward (‘VALUE’, qryId, entryP, range, res) to CH(si)

in the repository that overlaps the query region are obtained
by function GetDataThatOverlapsRange, and sent back to the
entry point in a RESULT message (l.28-29). Then, a COLLECT
message is sent to neighbor repositories which also overlaps
the query region (l.30-32). Regarding value-based queries
(procedure RECEIVING(’VALUE’)) (l.33), query results are
gathered from repositories by checking whether the stored
values intersect the query range, which are then sent back to
the entryPoint (l.36-38). As opposed to spatial queries, value-
based queries should be forwarded to all repositories in order to
collect the query result (l.39). The forwarding strategy follows
the AQPM hierarchy model (l.40-43).

As an example of a spatial query, consider the scenario
in Figure 2, where repositories R3 and R4 are composed
of cluster {C4, C5, C9, C10}, and {C6, C7, C11}, respectively.
The region of interest consists of the rectangle Q around
repository R4, which overlaps clusters C6, C7, C10 and C11.
Suppose the query is injected in the WSN at a sensor se in C8.
The query execution starts by forwarding the message from the
entry point to the query region Q. Suppose the first sensor in
Q to be reached is a sensor sq in C10. After reaching sq , the

Fig. 2. Repository placement and query processing

message is forward to its CH, and then to its repository R3.
Values from cluster C10 are collected from R3 and sent back
to the entry point se. Among R3’s neighbor repositories only
R4 overlaps Q. Thus the COLLECT message is sent to R4,
from which the values from the remaining clusters that overlap
Q are collected and sent back to se.

IV. EVALUATION

In this section, we present the performance evaluation of
AQPM. We have conducted simulations in order to validate the
model and for determining its query efficiency. We consider
the following metrics: processing time, energy consumption
and error rate. In order to determine AQPM efficiency, we have
considered the effect of our similarity-based clustering strategy
on determining the number of CHs and repositories. We have
also conducted simulations to compare the cost of processing
spatial queries on AQPM and IBIS [19]. Both systems have
been implemented on NS2 network simulator version 2.34.

A. Simulation Settings

We have generated synthetic scenarios in which 140 sen-
sors were statically placed on a 1400×1000 square meter
monitored area. The distance between sensor nodes were
around 90 meters, with symmetric links, and MAC protocol
(802.11). The radio range of every sensor on the field was
set to 100 meters. Nodes were equipped with GPS devices
allowing them to be aware of their geographical position
over the monitored area. The simulation duration time is 40
minutes. For running the simulation, first the algorithms for
clustering and repository selection were executed. Then, a
query were injected at node 28 to get the average value of five
measurements types collected by sensors located at a rectangle
delimited by v1(300, 50) upper-left corner and v2(950, 500)
bottom-right corner, as illustrated in Figure 3. All the results
presented in this section correspond to the average of 35
simulations, with a confidence interval of 95%.

We have conducted two experiments. In the first, we ana-
lyzed the AQPM model by determining the number of reposi-
tories, cluster heads and isolated cluster heads generated by our
clustering and repository selection algorithms. For each simu-
lation, we have generated new readings for the monitored area.
In the second experiment, AQPM was compared to IBIS. We
considered three cost metrics: energy consumption (Joules),

14

10

5

13

12

11

9

8

7

6

4

3

2

1

1 15

2

43 57 71 85 99 113 127

16 30

31173

4

5

6

7

8

9

10

11

12

13

0

1 2 3 4 5 6 7 8 9 100

14

18

19

20

21

22

23

24

25

26

27

28

29

32

33

34

35

36

37

38

39

40

41

42

44

45

46

47

48

49

50

51

52

53

54

55

56

58

59

60

61

62

63

64

65

66

67

68

69

70

72

73

74

75

76

77

78

79

80

81

82

83

84

86

87

88

89

90

91

92

93

94

95

96

97

98

100

101

102

103

104

105

106

107

108

109

110

111

112

114

115

116

117

118

119

120

121

122

123

124

125

126

128

129

130

131

132

133

134

135

136

137

138

139

140

Fig. 3. Simulation scenario Fig. 4. Variations in the degree of correlation Fig. 5. Maximum variation of data readings

processing time (seconds) and query results error rate. The
energy consumed by the network to transmit a packet (EPT)
consists of the energy for transmitting a packet (ETX), plus
the sum of the energy consumed in the reception by each of the
n neighbors (

∑n
x=1 ERE). This consumption can be modeled

by the equation: E(i→j)PT = E(i)TR +
∑n

x=1 E(x)RE .

AQPM proposes a storage model and query mechanism for
applications in which sensor readings have spatial similarity.
Thus, we generated the sensors’ readings as follows. The
monitored area was divided in four asymmetric regions, as
illustrated in Figure 3. Each sensor collected data of five
distinct measurement types, such as temperature and humidity.
We considered that all readings were within [0, 10] interval.
Initially, four data sets were created, each set consisting of 5
values generated randomly. Each set were associated with one
region and their values correspond to their value seeds. That is,
the sensor readings in the same region are values with random
variation of no more than a percentage V from the seed value.
Thus, the maximum difference between the readings inside the
same region were V%.

B. Node Clustering and Data Repositories

In this experiment, the goal was to determine the number of
repositories, cluster-heads, and isolated cluster-heads generated
by AQPM. As shown in Figure 4, the similarity threshold used
to choose cluster heads ranged from 0.8 to 0.99, V was set to
10% and the threshold to select repositories in all simulations
were set to 4.

The experiments showed that the percentage of repositories
remained stable in all settings. The repository selection takes
into account the proximity of nearby CHs. Therefore, the
variation of similarity for choosing CHs, as shown in Figure
4, has low impact in the number of repositories in the network.
This result shows that the AQPM’s strategy of concentrating
readings in repositories rather than keeping them only in the
CHs indeed meets its purpose. Since only repositories have
to be contacted for answering queries, this strategy potentially
leads to low communication costs for query processing, even
on large monitored areas. As shown in the graph, by increasing
the similarity threshold for choosing CHs, the number of
isolated CHs grows, and the number of CHs is reduced. This
result were as expected, since the variance V within nodes in

the same quadrant were randomly chosen and thus the number
of neighbor nodes with higher similarity than the threshold
is lower, generating more isolated CHs. In real scenarios,
however, with higher similarity among neighboring sensors,
the number of isolated CHs is most probably lower. Figure
5 shows that the percentage V for generating the data set
does not have a big impact on the number of clusters and
repositories. In these experiments, the threshold for choosing
CHs was set to 0.88.

C. Query Processing

This simulation has been conducted in order to compare the
cost of processing spatial queries on AQPM and on IBIS. IBIS
defines an itinerary within the query’s area of interest so that all
sensors contained in this region are neighbors of the itinerary.
It is worth noticing that IBIS modifies its query execution plan
only when there are changes in the network topology. Since
in our experiments the network topology remains unchanged,
IBIS behavior was constant in all scenarios. We have chosen to
compare AQPM with IBIS because among the existing works
for processing spatial queries we have analyzed, IBIS is the
one that reported the best performance.

As illustrated in Figure 6(a) and Figure 6(b), AQPM
showed better performance than IBIS with respect to energy
consumption and response time for processing a query request.
In these experiments we considered V = 10%. AQPM low
energy consumption results from the fact that requests are dis-
seminated only to repositories containing sensors that overlap
the query region. Moreover, AQPM shows better performance
regarding response time, due to the fact that IBIS creates mul-
tiple delays during query dissemination, which does not occur
with AQPM. However, AQPM does not return exact results,
since it considers that the CH readings are representative for
the entire cluster. IBIS, on the other hand, gets the readings
directly from the sensor devices of the region of interest. The
difference between the exact average value of the readings and
the value output by AQPM is presented in Figure 6(c). The
mean error is around 6% in all scenarios. On the other hand
the trade-off between energy versus accuracy is known in the
literature [21]. It is worth noticing that this error would be
much lower if we had considered a single measurement type,
instead of five. This is because for determining the degree of
similarity among cluster members, all five measurements are

(a) Energy consumption for query processing (b) Response time for query processing (c) Error rate for query processing

Fig. 6. Cost of Query Processing between AQPM and IBIS

considered. The similarity accuracy is much higher with small
number of measurement types.

In addition to the presented metrics, it is important to
analyze the cost of node clustering and repositories selec-
tion. In the experiments with AQPM, this cost was around
0.35 Joules. IBIS energy consumption is lower than AQPM,
about 0.054 Joules, for flooding the network. However, this
difference is compensated for processing further requests, since
AQPM consumes less energy to process queries.

All results show that AQPM meets the requirements of
scalability and autonomy to support the storage of data
sensing on urban WSNs, as well as an effective query pro-
cessing mechanism. In the future, we plan to to analyze and
extend the model with alternative approaches for minimizing
the relative query result error.

V. CONCLUSION

This paper proposed AQPM, an autonomic and scalable
storage model, for supporting query processing of sensing data
on urban WSNs. AQPM has been inspired on characteristics
usually found in urban sensing applications, such as correlated
spatial data and readings that change gradually over time.
Moreover, AQPM focuses on improving the query processing
by storing sensing data on data repositories in the network. We
have run experiments, based on simulations, showing that our
data placement strategy can significantly reduce the number of
messages required for query processing.

In the future, we intend to analyze the impact of the
dynamics aspects of sensor readings on the AQPM data model
maintenance. The expected functionality is an autonomous
reclustering mechanism that can be executed whenever read-
ings updates exceed cluster value limits.

Acknowledgments. This work was partially supported by the follow-
ing Brazilian Agencies: CNPq, CAPES, and Fundação Araucária.

REFERENCES

[1] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network
survey,” Computer networks, vol. 52, no. 12, pp. 2292–2330, 2008.

[2] B. Resch, M. Mittlboeck, F. Girardin, R. Britter, and C. Ratti, “Live
geography–embedded sensing for standarised urban environmental
monitoring,” 2009.

[3] C. L. Muller, L. Chapman, C. Grimmond, D. T. Young, and X. Cai,
“Sensors and the city: a review of urban meteorological networks,”
International Journal of Climatology, vol. 33, no. 7, pp. 1585–1600,
2013.

[4] N. Thepvilojanapong, T. Ono, and Y. Tobe, “A deployment of fine-
grained sensor network and empirical analysis of urban temperature,”
Sensors, vol. 10, no. 3, pp. 2217–2241, 2010.

[5] Z. Can and M. Demirbas, “A survey on in-network querying and
tracking services for wireless sensor networks,” Ad Hoc Networks,
vol. 11, no. 1, pp. 596–610, 2013.

[6] A. Coman, J. Sander, and M. A. Nascimento, “Adaptive processing
of historical spatial range queries in peer-to-peer sensor networks,”
Distributed and Parallel Databases, vol. 22, no. 2-3, pp. 133–163, 2007.

[7] T. D. Le, N. D. Pham, and H. Choo, “Towards a distributed clustering
scheme based on spatial correlation in wsns,” in Wireless Communica-
tions and Mobile Computing Conference, 2008. IWCMC’08. Interna-
tional. IEEE, 2008, pp. 529–534.

[8] B. Cheng, Z. Xu, C. Chen, and X. Guan, “Spatial correlated data
collection in wireless sensor networks with multiple sinks,” in Com-
puter Communications Workshops (INFOCOM WKSHPS), 2011 IEEE
Conference on. IEEE, 2011, pp. 578–583.

[9] F. Gielow, G. Jakllari, M. Nogueira, and A. Santos, “Data similarity
aware dynamic node clustering in wireless sensor networks,” Ad Hoc
Networks, vol. 24, pp. 29–45, 2015.

[10] M. C. Vuran, Ö. B. Akan, and I. F. Akyildiz, “Spatio-temporal correla-
tion: theory and applications for wireless sensor networks,” Computer
Networks, vol. 45, no. 3, pp. 245–259, 2004.

[11] C.-C. Hung, W.-C. Peng, and W.-C. Lee, “Energy-aware set-covering
approaches for approximate data collection in wireless sensor net-
works,” Knowledge and Data Engineering, IEEE Transactions on,
vol. 24, no. 11, pp. 1993–2007, 2012.

[12] Z. Yu, B. Xiao, and S. Zhou, “Achieving optimal data storage position
in wireless sensor networks,” Computer Communications, vol. 33, no. 1,
pp. 92–102, 2010.

[13] L. Xie, S. Lu, Y. Cao, and D. Chen, “Towards energy-efficient storage
placement in large scale sensor networks,” Frontiers of Computer
Science, vol. 8, no. 3, pp. 409–425, 2014.

[14] S. S. Furlaneto, A. Dos Santos, and C. S. Hara, “An efficient data
acquisition model for urban sensor networks,” in Network Operations
and Management Symposium (NOMS), 2012 IEEE. IEEE, 2012, pp.
113–120.

[15] Y. Ma, Y. Guo, X. Tian, and M. Ghanem, “Distributed clustering-based
aggregation algorithm for spatial correlated sensor networks,” Sensors
Journal, IEEE, vol. 11, no. 3, pp. 641–648, 2011.

[16] T. M. Gil and S. Madden, “Scoop: An adaptive indexing scheme for
stored data in sensor networks,” in Proceedings of the 23rd International
Conference on Data Engineering, ICDE 2007, The Marmara Hotel,
Istanbul, Turkey, April 15-20, 2007, R. Chirkova, A. Dogac, M. T. Özsu,
and T. K. Sellis, Eds. IEEE, 2007, pp. 1345–1349.

[17] S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, and D. Estrin, “Data-
centric storage in sensornets,” ACM SIGCOMM Computer Communi-
cation Review, vol. 33, no. 1, pp. 137–142, 2003.

[18] S. Yoon and C. Shahabi, “The clustered aggregation (cag) technique
leveraging spatial and temporal correlations in wireless sensor net-
works,” ACM Transactions on Sensor Networks (TOSN), vol. 3, no. 1,
p. 3, 2007.

[19] R. I. da Silva, D. F. Macedo, and J. M. S. Nogueira, “Contornos irregu-
lares no processamento de requisições espaciais para redes de sensores
sem fio,” in XXIX Simpósio Brasileiro de Redes de Computadores e
Sistemas Distribuídos, 2011.

[20] B. Karp and H.-T. Kung, “Gpsr: Greedy perimeter stateless routing
for wireless networks,” in Proceedings of the 6th annual international
conference on Mobile computing and networking. ACM, 2000, pp.
243–254.

[21] A. Boulis, S. Ganeriwal, and M. B. Srivastava, “Aggregation in sensor
networks: an energy–accuracy trade-off,” Ad hoc networks, vol. 1, no. 2,
pp. 317–331, 2003.

