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Abstract. This paper deals with the problem of updating an RDF
database, expected to satisfy user-defined constraints as well as RDF
intrinsic semantic constraints. As updates may violate these constraints,
side-effects are generated in order to preserve consistency. We investigate
the use of nulls (blank nodes) as placeholders for unknown required data
as a technique to provide this consistency and to reduce the number of
side-effects. Experimental results validate our goals.

Keywords: RDF · RDFS · constraints · updates

1 Introduction
Due to the increasing number of distributed RDF datasets and their dynamic
nature, the development of techniques for ensuring their consistency becomes a
fundamental data quality issue. However, when analyzing the database and the
web semantics worlds, a dichotomy on the notion of consistency can be observed.
The web semantics world adopts the open world assumption (OWA) and onto-
logical constraints are, in fact, inference rules. The database world usually adopts
the closed world assumption (CWA) and constraints impose data restrictions.
Let us consider the rule r : Researcher(X) → Professor(X) and a database
storing the fact that Bob is a researcher (D = {Reseacher(Bob)}). When r is an
inference rule, D is consistent because Professor(Bob) is inferred from D and r.
However, if r is a constraint, D is inconsistent because the fact Professor(Bob)
is not true in D (here, facts which are not stored in the database are consid-
ered false). Although inference rules and constraints can co-exist ([11,17]) their
mechanisms are usually defined separately.
This paper adopts the database point of view and deals with the problem

of updating an RDF database. Traditionally, whenever a database is updated,
if constraint violations are detected, either the update is refused or compensa-
tion actions, which we call side-effects, must be executed in order to guarantee
their satisfaction. Our work tackles the problem of “active rules” for RDF and
computes the side-effects required by update operations. The originality of our
approach is in the use of blank nodes as free nulls in the computation of side-
effects. Although blank nodes have different capabilities [4], in this paper, we are
only interested in their standard interpretation as existential variables (which
can be replaced by free labeled nulls). To avoid confusion, we will refer to them



as null nodes (or just nulls), used as placeholders for unknown required data.
Notice however that in our approach user’s update requirements have no nulls:
nulls can only be generated automatically during side-effect computation.

(a) (b)

r_1:PI(X_1,X_2,coordinates)      CI(X_1,Researcher)
r_2:CI(X_1,Researcher)      PI(X_1,X_2,isMember)
r_3:PI(X_1,X_2,coordinates)      PI(X_1,X_2,isMember)
r_4:CI(X_1,Researcher)       CI(X_1,Professor)
r_5:CI(X_1,Professor)        ¬CI(X_1,Student)
r_6:CI(X_1,Professor)       PI(X_1,X_2,teaches)
r_7:PI(X_1,X_2,grantFrom)       CI(X_1,Researcher)

CI(Bob, Researcher) 
CI(Bob, Professor)
PI(Bob, Jupiter, isMember) 
PI(Bob, DB, teaches) 
PI(Bob, CNPq,grantFrom)
CI(Ann, Student)
PI(Tom, Java, teaches)

Fig. 1. Database Instance D (a) and Constraints C (b) for Example 1

We work with
a logical for-
malism using
special pred-
icates to de-
scribe RDF data.
For instance,
we write: (i)
CI(Bob, Professor)
to express that Bob is an instance of the class Professor and (ii)
PI(Bob,DB, teaches) to indicate an instance of property teaches, assuming
that Professor and Courses are, respectively, the property’s domain and range.
In this context, the following example illustrates our challenges and gives an
overview of our approach.

Example 1. Let C (Figure 1) be a set of constraints defined on an academic
application. Constraints state that only a researcher may coordinate a project
(r1) and that he must also be a member of this project (r3). All researchers are
required to be a member of at least one project (r2). Researchers are professors
(r4), professors cannot be students (r5) and are required to teach at least one
course (r6). Finally, people receiving research grants should be researchers (r7).
Constraints are defined as rules, where the left-hand side is called the body of
the rule, and the right-hand side is its head. In this example we consider this
set of constraints and analyze how a database instance is updated according
to successive update requirements which may generate side-effects w.r.t. C.
Consider the database instance in Figure 1, which is consistent w.r.t. C.
The insertion of the fact CI(Ann, Professor) cannot be executed by simply

adding this new fact in D because it provokes the violation of r5 and r6. The fol-
lowing side effects should be considered: (i) rule r5 generates ¬CI(Ann, Student),
which corresponds to the deletion of CI(Ann, Student), and (ii) rule r6 produces
PI(Ann,N1, teaches) where N1 a new fresh null, indicating that Ann teaches a
course, although it is not yet known which one. The new updated database is:
D1 = (D∪{CI(Ann, Professor), P I(Ann, N1, teaches)})\{CI(Ann, Student)}. No-
tice that D1 contains a null value produced during the side effect computation.
Now, consider the deletion of f = PI(Bob, Jupiter, isMember) from D1. To

avoid the violation of r2 we cannot just eliminate f from D1. The usual solution
(also proposed by [8]) is to delete all facts generating f , in order to obtain
Dtrad = D1 \ {PI(Bob, Jupiter, isMember), CI(Bob,Researcher), P I(Bob,CNPq,

grantFrom)}. Such a solution seems too radical. Rule r2 says that if someone is a
researcher, there should exist a project having this person as a member. Deleting
f only indicates that Bob is not a member of project Jupiter any more (he is
perhaps a member of an another project which we do not know yet). Therefore, in
this situation, our proposal is to replace PI(Bob, Jupiter, isMember) by PI(Bob,



N3, isMember) where N3 is a fresh null, a placeholder indicating that, for the
moment, we do not know on which project Bob is working. The new updated
database is D2 = (D1 \ {PI(Bob, Jupiter, isMember)}) ∪ PI(Bob,N3, isMember).
Notice that in this way we limit cascading deletions.
The latter reasoning is not appropriate for every situation. As a last example,

consider the deletion of CI(Bob, Professor). Rule r4 states that all researchers
must be professors. Clearly, if Bob is not a professor, he cannot be accepted as a
researcher. Also if he is not a researcher, he cannot receive a research grant (r7).
In this case, replacing Bob by a null in CI(Bob, Professor) is meaningless. To
perform this update, cascading deletes are necessary. The new database is: D3 =

D2 \ {CI(Bob, Professor), CI(Bob,Researcher), P I(Bob,CNPq, grantFrom)}. No-
tice that PI(Bob,N3, isMember) is still in D3. Indeed, a rule such as r2 does
not impose members (of a project) to be researchers. �
An important aspect of our update proposal is to use nulls when a deletion

concerns instantiations of existential variables in the head of a constraint. To
the best of our knowledge this is the first work that proposes an automated
mechanism to introduce null nodes in RDF datasets to limit cascade updates.
We deal with two kinds of constraints separately: application constraints (C),

imposed by a user to personalize his context or to establish the particularity of
his application and the RDF intrinsic semantic constraints (A). Algorithms to
compute side-effects from A and C are developed as distinct steps. Our goal is
to compute C’s side effects without consulting the database. The computation
of A’s side-effects, however, requires knowledge of the underlying data.
The rest of the paper is organized as follows. Section 2 defines our data model,

constraints and update operations. Section 3 considers the computation of side-
effects. Section 4 reports our experimental results. Related work and final re-
marks (Sections 5 and 6) conclude the paper.

2 RDF Constraints and Updates

Let AC = {a, b, . . . , a1, a2, . . .}, be a countably infinite set of constants, AN =
{N1, N2, . . .}, a countably infinite set of nulls and var = {X1, X2, . . . , Y1, . . .}
be an infinite set of variables ranging over elements in AC ∪ AN . We use X
as an abbreviation for X1 . . . Xk where k ≥ 0. A term is a constant, a null or
a variable. Extending the logical formalism of [8] to deal with nulls, we clas-
sify predicates into two sets: (i) SchPred = {Cl, Pr, CSub, Psub,Dom,Rng},
used to define the database schema, standing respectively for classes, proper-
ties, sub-classes, sub-properties, property domain and range, and (ii) InstPred
= {CI, PI, Ind,BN}, used to define the database instance, standing respec-
tively for class and property instances, individuals and blank nodes (or nulls).
An atom has the form P (u), where P is a predicate, and u is a list of terms.
When all the terms of an atom are in AC ∪AN , we have an instantiated atom.
When they are all in AC , we have a fact. Figure 2 illustrates our model. Fig-
ure 2(a) shows an RDF instance and schema as a graph, and Figure 2(b) a subset
of its representation as positive atoms. Figure 2(c), reproduced from [8], shows
the correspondence between triples in RDF/S and facts.
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Fig. 2. (a) RDF instance and schema. (b) Dataset defined as a set of facts. (c) Corre-
spondence of RDF/S triples and facts [8]

Definition 1 (Database). An RDF database is a triple ∆ = (D,DSch, Σ)
where D is the database instance (a set of instantiated atoms with predicates
in InstPred), DSch is the database schema (a set of facts with predicates in
SchPred) and Σ = (A, C) is a set of constraints, where A is a set of RDF
semantic constraints and C is a set of application constraints. �

2.1 Constraints

A constraint is a logical rule r whose left-hand side is denoted as body(r), while
the right-hand side is denoted as head(r). Application constraints personalize the
context on which an RDF database is treated while RDF constraints ensures the
intrinsic RDF/S semantics.

Definition 2 (Application Constraints). Let c1, c2 be class labels, and
p1, p2 be property labels in AC . Application rules in C have the forms pre-
sented in Table 1. Moreover, the following restrictions are imposed on C: (1) for
constraints r1 of Type 2 there exists no constraint r2 ∈ C such that head(r1) and
body(r2) are unifiable; (2) for constraints r1 of Type 3 there exists no constraint
r2 ∈ C such that body(r1) and head(r2) are unifiable. �

Our constraints are special cases of tuple generating dependencies (TGDs).
We refer to [14] to recall that TGDs are database dependencies represented
by the logical formula ∀X φ(X) → ∃Y ψ(X,Y); where φ and ψ are conjunc-
tions of atoms, all with variables among those in X– every variable in X ap-
pears in φ(X) but not necessarily in ψ(X,Y). Although we restrict ourselves
to the so-called linear LAV (local-as-a-view) TGDs [1] i.e., to rule’s body and
head with a single atom, our constraints allow a negative atom in their heads.
Restrictions imposed to our constraint rules aim at avoiding null propagation
and at guaranteeing deterministic updates. In this context, side-effects genera-
tion does not deal with the well-known chase problems (considered, for instance,
in [6]). For instance, consider r2 of Example 1 and r′2 : PI(X1, X2, isMember)→
PI(X2, X3, postulate4Grants). In such a context, the insertion of CI(Bob,Re-
searcher) would generate PI(Bob,N1, isMember) and PI(N1, N2, postulate4-
Grants). Our constraints bypass controversial aspects related to the generation



of nulls from nulls in an update context by avoiding their propagation (i.e.,
refusing a set C where both rules, such as r2 and r′2, exist).

Type 1: CI(X1, c1)→ CI(X1, c2) or
CI(X1, c1)→ ¬CI(X1, c2) or
PI(X1, X2, p1)→ PI(X1, X2, p2) or
PI(X1, X2, p1)→ ¬PI(X1, X2, p2)

Type 2: CI(X1, c1)→ PI(X1, X2, p1) or
CI(X1, c1)→ ¬PI(X1, X2, p1) or
CI(X2, c1)→ PI(X1, X2, p1) or
CI(X2, c1)→ ¬PI(X1, X2, p1)

Type 3: PI(X1, X2, p1)→ CI(X1, c1) or
PI(X1, X2, p1)→ ¬CI(X1, c1)
PI(X1, X2, p1)→ CI(X2, c1) or
PI(X1, X2, p1)→ ¬CI(X2, c1)

Table 1. Types of application constraints.

Our choice in separating
application constraints from
RDF/S semantic constraints
allows us to impose the
above restrictions to C with-
out interfering with the well-
known RDF/S constraints.
With such restrictions we are
able to build a simple and ef-
ficient algorithm to compute
C’s side-effects without deal-
ing with some tricky aspects
of the chase and without con-
sulting the database instance.

2.2 Updates

An update set is a set of operations where each operation is a positive or negative
instantiated atom corresponding, respectively, to insertions and deletions which
are performed in just one transaction. Only instance-level updates (i.e., involving
predicates in InstPred) are treated by our approach.

Upd set U set U
s
 set

Consistency of the 
user’s update
(Definition 7)

Consistency of the 
set of side-effects

(Definition 8)

Consistency of the 
application constraints

(Definition 6)

RDF semantic 
constraints

(Tables 3 and 4)

D D’C A ∪ D

Side-effect  
Computation

Database 
Updating

Consistency of the 
set of side-effects

(Definition 8)

Fig. 3. Computing update side effects: consistency requirements at each step.

We distinguish three update steps, summarized in Figure 3. Each step refers
to a distinct update set respecting specific consistency requirements. To update
a database instance D, a user gives as input his update requests in the set upd
where only facts are allowed. Facts in upd may trigger constraints in C allowing
the computation of the set U . Finally, by using the RDF constraints in A and
information in D, the set US is generated. The updated database D′ is obtained
by applying updates in US on D.
Before considering the computation of U and US , we establish our update

semantics by showing how the updates in US are applied to D.
Given an update set, a positive atom denotes an insertion while a negative one

denotes a deletion. When dealing with a non-null database instance, the seman-
tics of these basic operations is straightforward. Given update sets {CI(a, c)}
and {¬CI(a, c)} on D, the resulting databases are, respectively, (D∪{CI(a, c)})
and (D \ {CI(a)}). The possibility of having nulls in the database, introduced
during side-effect computation, imposes a new update semantics, defined in Ta-
ble 2. Operations not listed in the table have no direct effect on the database. For



Table 2. Semantics of update operations on a database instance D.

[[CI(a, c)]]D = {CI(a, c)} [[¬CI(a, c)]]D = {¬CI(a, c)}
[[¬Ind(a)]]D = {¬Ind(a)}∪

{¬PI(X, a, p) | PI(X, a, p) ∈ D}∪ [[Ind(a)]]D = {Ind(a)}
{¬PI(a,X, p) | PI(a,X, p) ∈ D}

[[BN(N1)]]D = {BN(N1)} [[¬BN(N1)]]D = {¬BN(N1)}
[[PI(a, b, p)]]D = {PI(a, b, p)}∪

{¬PI(N1, b, p),¬BN(N1) | PI(N1, b, p) ∈ D}∪ [[¬PI(a, b, p)]]D = {¬PI(a, b, p)}
{¬PI(a,N1, p),¬BN(N1) | PI(a,N1, p) ∈ D}

[[PI(N1, b, p)]]D = if there exists X such that PI(X, b, p) ∈ D then {} [[¬PI(N1, b, p)]]D = {¬PI(X, b, p) |
else {PI(N1, b, p), BN(N1)} PI(X, b, p) ∈ D}

[[PI(a,N1, p)]]D = if there exists X such that PI(a,X, p) ∈ D then {} [[¬PI(a,N1, p)]]D = {¬PI(a,X, p) |
else {PI(a,N1, p), BN(N1)} PI(a,X, p) ∈ D}

each operation, we show what should be added (positive atoms) and removed
(negative atoms) from a database D. Intuitively, nulls are inserted in D only
if there exists no other resource in D that plays the same role. Insertion and
removal of property instances are particularly impacted. An insertion of a prop-
erty p without nulls ([[PI(a, b, p)]]D) replaces one that involves nulls that may
already exist in the database. This is in accordance to our semantics for nulls as
placeholders of unknown required data. Thus, an insertion of a property involv-
ing a resource a and a null N1 ([[PI(a,N1, p)]]D or [[PI(N1, a, p)]]D) only affects
the database if a is not involved with any other resource or null by property
p. Since inserted nulls are interpreted as existential variables, nulls in removal
operations (negative atoms) are interpreted as universally quantified variables.
Thus, [[¬PI(a,N1, p)]]D results in deleting from the database all properties p of
resource a. We denote by D

⊎
US the result of applying an update set US on

database D. Based on the semantics of these operations, we can define the notion
of subsumption between update operations.

Definition 3 (Update Subsumption). Operation op1 is subsumed by op2,
denoted as op1 � op2 if for any database D, ([[op1]]D∪ [[op2]]D) = [[op2]]D. That is,
the effect on the database of executing op1 and op2 is the same as executing only
op2. Given a set of update operations upd, we denote by clean(upd) a subset of
upd with no subsumed operations. �

As examples, PI(Bob,N1, coordinates) � PI(Bob, Proj DB, coordinates) and
¬PI(Bob, ProjDB, coordinates) � ¬PI(Bob,N1, coordinates).Thenceforth, we only
consider update sets containing non-subsumed operations.

3 Computing Side Effects

We develop algorithms for computing side-effects which only affect the database
instance. They have the following guidelines: (i) from an input set of updates upd
we use constraints to generate a new list of updates that should be performed to
guarantee constraint validation; (ii) null nodes are generated during the inference
process that computes side effects i.e., the inference can be stopped by the use
of nulls; (iii) side effects from application constraints are computed without
consulting the database; and (iv) side effects from RDF semantic constraints
are computed in a subsequent step and may require inspection of the database.



3.1 Side Effects based on Application Constraints

Firstly, let us introduce some notations. Let I be an update set, then: (1) I =
I+∪I− where I+ is the set of positive atoms and I− is the set of negative atoms
and (2) I = •(I) ∪ ◦(I) where •(I) is a set of ground atoms (without nulls) and
◦(I) is a set of atoms having nulls. Clearly we can write I+ = •(I+)∪◦(I+) and
I− = •(I−) ∪ ◦(I−). We recall that a homomorphism from the set of atoms A1

to the set of atoms A2, both over the same predicate P , is a a function (or a
substitution) h from the terms of A1 to the terms of A2 such that: (i) if t ∈ AC ,
then h(t) = t, and (ii) if P (t1, ..., tn) ∈ A1, then P (h(t1), ..., h(tn)) ∈ A2. If h is
a homomorphism, P (h(t1), ..., h(tn)) is simply denoted by h(P (t1, ..., tn)). The
notion of homomorphism naturally extends to conjunctions of atoms.
Now, given I and C we introduce three operators used for computing side-

effects. The first operator (T ) computes the side-effects traversing the rule for-
ward, from the body to the head while the second (ϑ) moves backwards, from
the head to the body.
Definition 4 (Operators T and ϑ). Let TC and ϑC be operators over a set
of application constraints C and an update set I. When the set C is understood,
we write T (respectively, ϑ) instead of TC (respectively, ϑC) .
T (I) = I ∪ {l | ∃c ∈ C∧ there is a homomorphism h such that h(body(c)) ∈ I
∧ l = ĥ(head(c)) where ĥ ⊇ h is an extension of h such that when c is of Type 2
and Y is the set of terms in head(c) and not in body(c), then for every yi ∈ Y ,
if yi ∈ var, then ĥ(yi) = Ni where Ni ∈ AN is a fresh null. }
ϑ(I) = I∪{l | ∃c ∈ C ∧ there is a homomorphism h such that h(head(c)) ∈ I
∧ l = ĥ(body(c) where ĥ ⊇ h is an extension of h such that when c is of Type 3
and Y is the set of terms in body(c) and not in head(c), then for every yi ∈ Y ,
if yi ∈ var, then ĥ(yi) = Ni where Ni ∈ AN is a fresh null node. } �

Operators T and ϑ are monotonic and have a least fixed point. We denote by
T ∗(I) and by ϑ∗(I), the least fixed point of T and ϑ, respectively, with respect
to a set of ground atoms I. Since constraints in C have only positive bodies, we
have T ∗(I−) = I− and T ∗(I−)− = ϑ∗(I−)− = I−.

Example 2. Consider C of Example 1. Let I = { PI(John, projDB, coordinates)}.
Applying Definition 4, we obtain T ∗(I) = { PI(John, projDB, coordinates),
CI(John, Researcher), PI(John, N1, isMember), PI(John, projDB, isMember),
CI (John, Professor), PI(John, N2, teaches), ¬CI(John, Student)}. Now let I =

{ PI(John, projDB, isMember)}. Applying Definition 4, we obtain ϑ∗(I) = {
PI(John, projDB, isMember), CI(John, Researcher), PI(John, projDB, coordi-
nates), PI(John, N1, coordinates), PI(John, N2, grantFor)}. �

We denote by ϑ|ty1,3
the application of the operator ϑ restricted to con-

straints of Types 1 and 3 and we introduce a third operator, η, that only ap-
plies to rules of Type 2. As seen in Example 1 (instance D2), a special treat-
ment is proposed when dealing with instantiations of existential variables on
a constraint’s head. As defined below, η(PI(Bob, Jupiter, isMember)) contains
PI(Bob, N1, isMember).



Definition 5 (Operator η). Operator η (or ηC) is applied only on Type 2 rules.
For each rule c of Type 2, let us denote by (i) X the set of terms appearing in
both body(c) and head(c) and (ii) Y the set of terms appearing in head(c) but
not in body(c). Let I be a set of facts.
η(I) = {l | ∃c ∈ C such that c is of Type 2 ∧ there is an homomorphism h such
that h(head(c)) ∈ I∧ there is an homomorphism h2 such that l = h2(head(c))
with h2(X) = h(X) ∧ for every yi ∈ Y if yi ∈ var then h2(yi) = Ni, where Ni

is a fresh null node. } �

Consistency. We now turn to the problem of defining different notions of con-
sistency employed on each step of our method (as illustrated in Figure 3). Firstly,
since rules in C may have positive or negative literals in their heads, it is impor-
tant to determine when a set C is a consistent set of update rules (algorithms of
this kind can be found in [11]).
Definition 6 (Consistent set of application constraints). A set C of appli-
cation constraints is consistent if for every fact f , (T ∗(f))+∩¬.(T ∗(f))− = ∅. �
Now let us establish the consistency definition for the user’s update requests.

Definition 7 (Consistency of the user’s update requests). Given an up-
date set I, we say that I is a consistent set of user’s update requests if there are
no two atoms l1 ∈ I and l2 ∈ I for which there exists a homomorphism from
AN → (AN ∪AC) such that h(l1) = ¬h(l2). �
The consistency introduced in Definition 7 is imposed to the set upd (Figure 3)

and also to its immediate consequences obtained by traversing rules forward
(operator T ). However, the notion of a consistent set of side-effects, such as U ,
which considers traversing backwards (operator ϑ and η) is more relaxed than
the notion stated in Definition 7. Indeed, the consistency of sets U (obtained by
Algorithm 1, which computes the side-effects imposed by application constraints)
and US (obtained by Algorithm 2, which computes the side-effects imposed by
RDF semantic constraints) follows the definition below.
Definition 8 (Consistency of the set of side-effects). Given an update
set I, we say that I is a consistent set of side-effects if for each positive atom
l0 ∈ I there is no negative atom ¬.l1 ∈ I such that l0 = h(l1) where h is a
homomorphism from AN → (AN ∪AC). �

As an example, let us consider the following sets: I1 = {¬.P I(Bob,DB, teaches),
P I(Bob,N1, teaches)}; I2 = {PI(Bob,DB, teaches), ¬.P I(Bob,N1, teaches)}; I3 =

{PI(Bob,N1, teaches), ¬.P I(Bob,N1, teaches)} and I4 = {PI(Bob, DB, teaches),
¬.P I(Bob,DB, teaches)}. According to Definition 7 all of them are examples of
inconsistent update sets. However, according to Definition 8 set I1 is consis-
tent, while sets I2, I3 and I4 are inconsistent. Indeed, I2, I3, and I4 are direct
consequences from the semantics of the operations. The discussion of I1 con-
sistency is more subtle. First, consider Definition 7, which must be satisfied
after traversing rules forward. Observe that if PI(Bob, N1, teaches) is in I1 it
must be the case that there exists a rule imposing the insertion, such as rule r6
in Example 1. Thus, the update set must contain an operation that triggered
the insertion of PI(Bob, N1, teaches), such as CI(Bob, Professor). On the



other hand, ¬.P I(Bob, DB, teaches) is also in I1. In the traditional (cascading)
semantics, this update would required the deletion of CI(Bob, Professor), ac-
cording to r6. But this is inconsistent with the fact that triggered the insertion
of PI(Bob, N1, teaches). Intuitively, it is not clear what the user’s intentions
are. Since Definition 7 concerns the consistency of the user update requests, we
consider this demand inconsistent. Inconsistent sets of user’s update requests are
rejected. The process of computing side-effects continues for consistent update
sets, traversing rules backwards (operators ϑ and η). Definition 8 applies to the
result of this process. Consider again rule r6 of Example 1 and a single user up-
date request ¬.P I(Bob, DB, teaches). The application of operator η generates
as side-effect PI(Bob, N1, teaches) as a technique to stop cascading updates.
Thus, according to Definition 8, set I1 is consistent because it started with a
consistent set of user’s update requests (and thus without the aforementioned
ambiguity) and the existence of both ¬.P I(Bob, DB, teaches) and PI(Bob, N1,
teaches) must be the result of applying the η operator.
Algorithm. We now introduce Algorithm 1 to compute side effects imposed by
application constraints. In this algorithm, Line 1 applies operator T over an up-
date set upd and obtains a set of positive and negative atoms which are the side
effects imposed by C moving forward. Once update requests are cleaned, con-
sistency is verified (Line 2). Notice that at this step we still require consistency
w.r.t. Definition 7. However, for the result set U consistency requirements is
relaxed (Definition 8). We handle positive and negative atoms separately. When
rules of Type 2 (Definition 2) are used by T , fresh null nodes appear and thus
the result in T ∗(upd) is a set of atoms, not necessarily grounded.

Algorithm 1: Side effects due to C
Input: A set of (positive or negative) facts upd and a consistent set of constraints C
Output: The set U of side effects of upd w.r.t. C.
1: Compute T ∗(upd) := clean(T ∗(upd)), where T ∗(upd) = T ∗(upd)+ ∪ T ∗(upd)−
2: if T ∗(upd) is consistent w.r.t. Definition 7 then
3: Inv := ∅; U := ∅;
4: for all f ∈ ◦(T ∗(upd)−) or f ∈ T ∗(upd)+ do
5: Inv := Inv ∪ ϑ∗(¬f)
6: for all f ∈ •(T ∗(upd)−) do
7: Inv := Inv ∪ ϑ∗|ty1,3

(¬f); ◦(U+) := η(¬f);
8: U+ = U+ ∪ T ∗(upd)+; U− = T ∗(upd)− ∪ ¬.Inv+;
9: return U
10: else
11: Error Exception: update requests are not consistent

Example 3. Analyzing T ∗(upd) of Example 2 we notice that: (i) cleaning T ∗(upd)
implies annulling the update request PI(John,N1, isMember), since it is sub-
sumed by PI(John, projDB, isMember) and (ii) if CI(John, Student) is in the
database, it must be removed. Now, each positive atom obtained in Line 1 of
Algorithm 1 represents a required insertion and thus, cannot be false in the
database. Operator ϑ is used to find atoms which generate ¬f (the inverse of f).



Given f1 : ¬PI(John, projDB, isMember), the result of ϑ∗(¬f1) is depicted in Ex-
ample 2 and contains f2 : PI(John, projDB, coordinates), obtained when moving
backwards on r3. Observe that f1 is in T ∗(upd)− and f2 is inserted in Inv (Line
7). Subsequently, in Line 8, ¬f2 is inserted in the resulting update set U−. The
same treatment is given for positive atoms in T ∗(upd)+, and negative atoms with
null nodes (◦(T ∗(upd)−)) (Lines 4 and 5). Notice that f3 : CI(John,Researcher)

is also in ϑ(¬f1) by rule r2. However, r2 is of Type 2. In this case, the algo-
rithm does not include f3 in Inv (since the ϑ operator is restricted to rules
of Types 1 and 3), but applies the η operator (Line 7) on f1 and includes
f4 : PI(John,N1, isMember) in Inv. As consistency requirements at this step
are different from those in Definition 7, both f1 and f4 are accepted in the
resulting set U and we stop the backward chaining. �

Proposition 1. Let upd be a consistent set of user’s update requests (Defini-
tion 7) and C a consistent set of constraints (Definition 6). The update set U
obtained by Algorithm 1 satisfies the following properties: (1) upd ⊆ U ; (2) U is
consistent w.r.t. Definition 8; (3) U satisfies C and (4) for each atom l ∈ (U\upd)
the set U \ {l} does not satisfy C. �

3.2 Side Effects based on RDF Semantic Constraints

An RDF database should respect the intrinsic RDF semantic constraints in A.
Thus, following the same reasoning used for constraints in C, our approach pro-
poses to generate additional updates in order to maintain consistency w.r.t. A.
Constraints in A are those presented in Tables 3 and 4. Table 3 borrows from [8]
a subset of the RDF semantic constraints, and Table 4 presents the rules that
have been modified and added in order to consider the existence of nulls.
In Table 4, we consider that null nodes are distinct from predicates, entities

and classes (rules b1-b3) and that they can be the subject or object of a property
(rules b4-b5). They are also used to stop the propagation of properties required
by particular classes. This is done by allowing properties to connect to null nodes
even when the type of the subject and the object are defined (rules b6 and b7).
The following example illustrates this point.

Example 4. In Example 1 we assume the existence of a class Person which is the
domain of property isMember. The insertion of PI(N1, projDB, isMember) sat-
isfies the RDF semantic constraints without any additional side-effects. This
is because rule b6 allows a null node to be the subject of isMember even
when the schema defines that Dom(isMember, Person). However, in [8], b6 is
defined as PI(x, y, z) ∧ Dom(z, w) → CI(x,w). In order to satisfy this constraint,
CI(N1, P erson) should be inserted as side-effect. As a consequence, the null node
becomes “typed” and all properties for Person would be required for N1, possibly
generating several additional null nodes. �

The above example shows that, similarly to the restrictions introduced to
constraints in C, the goal of the adapted rules b1-b7 is to avoid null propagation.



Table 3. Subset of rules from [8]

m1: Cl(x) ∧ Pr(y) → (x 6= y)
m2: Cl(x) → Csub(x, rdfs:Resource)
m3: Ind(x) → CI(x, rdfs:Resource)
m4: Csub(x,y) ∧ Csub(y,z) → Csub(x,z)
m5: Pr(x) → Dom(x,y) ∧ Rng(x,z)
m6: CI(x,y) → Ind(x)
m7: CI(x,y) → Cl(y) ∨ (y=rdfs:Resource)
m8: PI(x,y,z) → Pr(z)
m9: CI(x,y) ∧ Csub(y,z) → CI(x,z)

Table 4. Rules that involve blank nodes

b1: Pr(x) ∧ BN(y) → (x 6= y)
b2: Ind(x) ∧ BN(y) → (x 6= y)
b3: Cl(x) ∧ BN(y) → (x 6= y)
b4: PI(x,y,z) → Ind(x) ∨ BN(x)
b5: PI(x,y,z) → Ind(y) ∨ Lit(y) ∨ BN(y)
b6: PI (x,y,z) ∧ Dom(z,w)→ CI(x,w) ∨ BN(x)
b7: PI(x,y,z) ∧ Rng(z,w) → CI(y,w) ∨ (Lit(y)
∧ (w=rdfs:Literal)) ∨ BN(y)

Algorithm 2: Side effects due to A
Input: A set of updates U , a database instance D, application constraints C
Output: The set US of side effects of U w.r.t. (A ∪ C).
1: US := ∅;
2: repeat
3: if ChangeSchema(U,D) or U is not consistent w.r.t. Definition 8 then
4: Error Exception;
5: U0 := U ;
6: US := {[[op]]D∪US | op ∈ U ∧ op has a predicate in InstPred};
7: UBN := {op | op ∈ US ∧ op = ¬PI(u)∧ u contains null N1 ∧¬BN(N1) ∈ US};
8: US := US − {[[op]]D∪US | op ∈ UBN};
9: U := U ∪ {l | l = ResultTrigRule(r, op,D

⊎
US) such that r ∈ A ∧ op ∈ U0

is an insertion or a deletion without nulls };
10: for all deletions of the form ¬CI(a, c) in U0 do
11: U := U ∪ {l | l is of the form PI(N1, b, p) (or PI(b,N1, p)), s.t. there exists

PI(a, b, p) (PI(b, a, p), respect.) in (D
⊎
US) whose deletion violates r ∈ C};

12: until U = U0;
13: return US ;

Algorithm 2 computes US , an extension of U which includes: (1) the interpre-
tation of each update on D, according to Table 2 and (2) side-effects obtained
by applying A on U , on the basis of DSch. The complete algorithm is in [18].
Line 3 rejects update sets that contain schema changes or that are inconsistent

w.r.t. Definition 8. As an example, the insertion of CI(CNPq, RInst), where
RInst is a non existent class, triggers m7 and produces the insertion of this class
in the schema (Cl(RInst))). Since we do not support schema changes, the entire
update set is rejected by Algorithm 2. Consider now a consistent update set
U = {CI(Bob, Student), ¬PI(Bob,N1, hasSalary), ¬CI(Bob, Person)}. Assuming
that Student is a subclass of Person, rule m9 imposes the insertion of CI(Bob,
Person) in U , which becomes inconsistent, and thus rejected by the algorithm.
As in Algorithm 1, insertions (positive atoms) activate rules forward and

their instantiated heads are added to U while deletions (negative atoms) trig-
ger them backwards, inserting the inverse of their instantiated bodies to U . On
line 9, the set U is completed in this way by function ResultTrigRule. Consider
C of Example 1 and database instance {CI(Bob, Professor), CI(DB,Course),
PI(Bob,DB, teaches)}. The update upd = {¬CI(DB, course)} does not produce
any application-level side-effects. However, b7 imposes the deletion of PI(Bob,DB,
teaches). Such a deletion violates r6 (line 11). Thus, our algorithm adds PI(Bob,N1,



teaches) to U . Note that this operation will effectively insert a null if DB was the
only course taught by Bob, according the the semantics of [[PI(Bob,N1, teaches)]]

as defined in Table 2.

Proposition 2. Let ∆ = (D,DSch, Σ) be a consistent database w.r.t. Σ =
(C,A). Given an update set upd, let US be the set of side-effects computed ac-
cording to Algorithms 1 and 2. Let USch

S be the subset of US with facts in Sch-
Pred. If US is consistent (Definition 8) and USch

S ⊆ DSch then the result of
D

⊎
US is a new database instance D′ which satisfies the following properties:

(i) upd+ ⊆ D′ and upd− 6⊆ D′ and (ii) D′ is satisfies C and A. �

Complexity. In Algorithm 1 the computation of the fix-point of T corresponds
to the immediate consequence operator used in Datalog, since only positive rules
may iterate. It is known that the number of iterations is bounded by the number
of rules plus one (O|C|). As in our approach instantiation of application con-
straints is bounded by O(|C|×|upd|), the size of U is O(|C|2×|upd|). Cleaning U
is O(|C|2×|upd|)2. Algorithm 2 nowadays works on a simple file, a non-optimized
version where the most expensive task is limited by O(|U |2 × |D|2) (where |D|
is the database instance size). Thus, its complexity is O(|C|4 × |upd|2 × |D|2).

4 Experimental Study
We have implemented the BNS system, based on Algorithms 1 and 2, using the
Standard ML of New Jersey compiler. In this section, BNS is compared with
the FKAC system. FKAC is an implementation of the approach proposed in [8].
Among the related work, it is the most similar to our proposal. To provide a fair
comparison, the FKAC approach has been modified in the following aspects: (i)
We do not allow it to compute schema changes. As the original system selects
the smallest side-effect set among all possible ones, this modification reduces
considerably the search space and thus the execution time for side-effects com-
putation. (ii) We do not allow it to compute deletions as insertion side-effects.
Deleting atoms with a null value is much more expensive than inserting them,
since the removal requires a database traversal to determine all possible null
instantiations while the insertion needs just one instantiation. Thus, these im-
plementation choices are advantageous for the FKAC system.
An important difference between FKAC and BNS concerns the capability of

storing null values. As the FKAC system does not accept nulls, when an inser-
tion imposes the existence of an unknown required data, an arbitrary instan-
tiation is performed. This instantiation is not a user’s choice, and thus cannot
be considered as semantically meaningful. For instance, consider the insertion of
CI(Bob,Researcher) in the context of Example 1. Rule r2 requires Bob to be a
member of some project. If the range of isMember is the class Project, one of
the possible side-effects proposed by the FKAC system is to choose an arbitrary
instance of Project, say Jupiter, and insert PI(Bob, Jupiter, isMember).
Worst still, when in a later time, the user associates Bob to a real project,

the previous arbitrary fact is not removed. Contrary to that, BNS stores null
values, provided that it is not subsumed by an existing fact in the database. An
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Fig. 4. Results for BSBM and LUBM Benchmarks
atom with a null value can then be replaced by facts introduced by the user in
later time. Since BNS never introduces arbitrary facts in the database we can
say that its strategy is semantically more meaningful.
In our experiment, we first generate U using Algorithm 1 with C. Then, before

forwarding U to the FKAC system, we replace or expand atoms involving nulls.
We use Berlin [5](BSBM) and LUBM [10], two benchmarks frequently adopted

in RDF experiments. A dataset with 500 products were generated using Berlin
(220,000 triples, 900,000 facts in our model). Based on the benchmark specifi-
cation, we have identified 19 application constraints, which were also translated
to our model ([18]). For LUBM, a dataset with 198,668 triples (1,784,296 facts)
were generated. We have identified 10 application constraints in the benchmark
specification. As the motivation for introducing nulls in side-effect operations is
to limit cascade updates, we compare BNS and FKAC systems w.r.t. the size of
the update set. That is, given an input update set upd, randomly generated, we
compare the final size of US . We consider sets upd of increasing sizes, and with
three different compositions: only insertion operations, only deletion operations,
and mixed sets with insertion/deletion percentage of 70/30, 50/50, and 30/70.
Figure 4 presents the results for the LUBM and Berlin benchmarks. The bars

show the final update size (which in Algorithm 2 are denoted as US), while the
lines present the percentage of operations in this set that effectively modify the
database, by inserting or removing facts (following Definition 3). Figure 4(a)
show that when considering only insertion operations, the number of side-effects
in the BNS system is larger than in the FKAC system. This is caused by the
way we handle insertions with nulls in both systems. For instance, in FKAC,
the insertion PI(a,N1, p) is a single operation which replaces N1 by an existing
instance in the database. However, in BNS, besides the insertion with N1, we
also create as side-effects: CI(N1, rdfs : resource) and BN(N1). In the graph,
for 40 insertions in LUBM, 16 operations with nulls have been created as side-
effects, resulting in a set US with 32 more updates for BNS than for FKAC. This
number corresponds to the two additional atoms for each null created by BNS.
With respect to the percentage of side-effects that affect the database, the

lines for both systems follow the same pattern. Indeed, the number of SchPred
predicates (which have no effect on the database) in the resulting US is similar
for both systems. Additionally, as Berlin datasets are more densely populate
the percentage of effective operations in the BNS system is smaller. To see why,
consider again the operation PI(a,N1, p). According to Table 2, this operation



has no effect if a is already linked to some other instance (or null node) through
p. Thus, more densely populated databases tend to create fewer nulls.
BNS system avoids deletion propagation, as shown in Figure 4(b). As the

FKAC system generates only facts to be deleted by finding the nulls’ instanti-
ations, its percentage of effectively executed updates is always close to 100%.
For BNS, on the other hand, a deletion may require the insertion of a null value
and this null value may require a not allowed schema change. Thus updates may
be rejected more often. Consider for example the LUBM benchmark with 20
deletions. The number of updates with side-effects is 155 for FKAC system and
103 for the BNS system. While FKAC performs 100% of the operations, BNS
performs only 83%. The results with sets of mixed operations show that even
when 70% of the operations are insertions, the reduction on the number of side-
effects resulting from the deletions, by limiting cascading updates, overcomes
the overhead of creating null nodes. Thus, our approach is effective on reducing
the size of the update set, while generating semantically meaningful operations
as side-effects. Making an analogy with the semantics of deletion operations in
the relational model, the FKAC approach is similar to the ’on delete cascade’
while we adopt the ’on delete set null’ semantics.

5 Related Work
The co-existence of constraints, as in a CWA, with inferences, as in a OWA,
has recently inspired some works on RDF data management. In [7] and in Star-
dog [17], a new knowledge graph platform, coincide in their capability of con-
sidering both types of rules, reliving the proposal in [11]. Technologies such as
ShEx [16] and SHACL [13], deal with the validation of the shape of an RDF
graph. Although their focus in on schema and ours is on integrity constraints, a
study on their interaction with our work deserves further investigation. However,
none of them deals with consistency maintenance due to updates. Mechanisms
to control frequent updates on RDF are desirable [15], but the update and con-
sistency maintenance approaches in [8,15] do not consider nulls. As stated in [4],
the standard semantics for blank nodes comes from first order logic and inter-
prets them as existential variables. However, blank nodes are now treated in
different ways, implying different semantics (such as [9]). This paper focus on
its standard semantics and to avoid confusion, we denote them as nulls. Our
update approach falls into the category Semmat

2 of [2]. Adapting the exception
viewpoint in [11] to our current work is a future perspective which approaches
our work to [3]. Even if we consider updates as changes in the world; and not as
a revision in our world’s knowledge ([12]), it is possible to relate results of our
method to the core principles of belief revision.

6 Conclusion
We present algorithms to determine the set of side-effects, consisting of additional
updates required to keep the database consistent in the presence of application
and RDF semantic constraints. Our approach differs from previous works be-
cause side-effects may introduce nulls in order to reduce cascade updates. Our
experimental study shows that, although insertions tend to generate a larger



set of updates (justified by null nodes definitions), deletions tend to generate
a smaller set of updates, since null nodes interrupt cascade deletions. Future
work perspectives include a more expressive class of application constraints,
while keeping the ability to deterministically compute the set of side-effects and
experiments with a larger number of updates and datasets.
Acknowledgements: This work is partially funded by APR-IA Girafon and PEPS-
INS2I Multipoint.
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