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ABSTRACT
Sensor networks are a fast-evolving technology used for a variety
of applications, ranging from environmental monitoring to cyber-
physical systems (CPS) and IoT, including applications designed to
support smart cities. The widespread use of sensor networks rises
new challenges to data management and storage. The development
of data storage systems is a hard task due to the speci�c nature of
wireless sensor networks (WSNs) and the lack of a common gen-
eral purpose development framework. Software component models
provide an appropriate level of system abstraction, reducing the
development complexity and improving productivity. In this paper
we propose RCBM, a Reusable Component-based Model for wire-
less sensor network storage simulation. RCBM promotes software
reuse from existing components to improve the e�ciency of system
development and evaluation. RCBM has been implemented on the
NS2 simulator and experimental results show that RCBM is more
�exible than previous component-based models for WSNs. Due
to its general-purpose approach, RCBM can be applied to develop
simulation code for a wide range of WSN storage models, reducing
the development e�ort.
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1 INTRODUCTION
Wireless sensor networks (WSNs) have evolved from small scale
deployments to a wide range of large-scale networks. They have
become the technological infrastructure for supporting a variety of
applications that demand sensing data, from environmental moni-
toring to cyber-physical systems (CPS) and IoT, designed to support
smart cities [15, 18]. Due to the heterogeneous nature of environ-
mental information found at several urban areas, sensing such
environments requires the deployment of dense WSNs [22]. As a
consequence, the increase on the volume of sensing data requires
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autonomous and scalable WSNs, rising new challenges to data
management and storage models development.

Distributed data repositories and clustering are common approa-
ches to tackle the scalability of data storage problem. Although
recent e�orts have been made to build e�cient data storage sys-
tems, the speci�c nature of WSNs and the lack of a common gen-
eral purpose development framework make the design of these
applications a hard task [21]. In general, systems are implemented
from scratch, to meet the requirements of speci�c domains, or inte-
grated in complex applications, which make separation of concepts
and code reuse very limited [19]. High-level application model-
ing allows developers of WSN systems, such as in-network query
processing[5, 13], to abstract from lower-level details, reducing the
development complexity and improving the productivity.

System software modeling approaches have provided an appro-
priate level of abstraction in the development of distributed sys-
tems. In the context of WSN storage systems, software component
models allow developers to build the system from reusable exist-
ing components based on functional speci�cations i.e. interfaces
and interaction patterns techniques [8]. Some component models,
such as OSGi and OpenCOM, describe the interfaces in terms of
a set of operations (functions). Other models follow a port-based
approach interface, providing the components with entries for re-
ceiving and sending data. Common interaction approaches used for
remote component communication include pipe and �lter, request-
response, publish-subscribe and broadcast. Component modeling
has been used in di�erent application domains, such as automo-
tive software [17], CPS [20], WSNs simulation [7] and IoT [25]. In
WSNs simulation environments, component-based models are a
promising approach to manage large-scale application scenarios.

Inspired by these challenges, some works have emerged in order
to improve system development productivity and code reuse. Most
of them stress the importance of identifying common concepts on
the target application, such as data processing, network [26, 27], and
IoT [24]. To the best of our knowledge, the only component-based
model speci�c for WSN in-network storage has been proposed by
CBCWSN [2].

In this paper we propose the Reusable Component-Based Model
for WSN Storage Simulation (RCBM). RCBM focuses on storage-
level entities, de�ning a set of common concepts and functionalities
that represent various instances of WSN storage systems. RCBM
allows developers to reuse components across system implemen-
tations, reducing the complexity to design and implement new
systems. It di�ers from CBCWSN on how the components interact



with each other. While CBCWSN has a rigid �ow of execution,
RCBM adopts a �exible execution model, based on a coordinator,
which is responsible for message exchanges. This model is in ac-
cordance with network simulator NS2, on which RCBM has been
implemented. We have conducted three case studies, implementing
the LCA [4], LEACH [16] and MAX-MIN[3] systems with RCBM.
The results show that for these models RCBM provided at least 66%
of code reuse. Our studies show that for MAX-MIN, the reuse with
RCBM reaches 66% of the code, while with CBCWSN it is as low as
23%.

The remainder of this paper is organized as follows. Section 2
discusses the related work. Section 3 presents RCBM. The case
studies are detailed in Section 4. Our experimental study is reported
in Section 5, and we conclude in Section 6.

2 RELATEDWORK
The use of software components to facilitate the implementation
of families of systems that share a common structure is a recurring
idea in computer science. The idea of building systems by using
o�-the-shelf control and data objects is at the core of many modern
programming concepts and paradigms [14] and even broad areas
inside software engineering such as Software Product Lines [6],
Aspect-Oriented Software Development [12] or Service-Oriented
Architectures [11].

Owing to the nature of distributed systems and networks, there
is a large number of successful attempts to use components in
distributed applications development. A seminal work in this area
is [23], where a Software Component Architecture is more formally
de�ned and some applications and examples are given. The use of
components is usually associated to the existence of a library of
component templates containing (possibly incomplete) code. The
contents of the library can be transformed into components, by the
addition of user-de�ned portions of code, such as data declarations
and commands.

Network simulation tools are useful to test and compare systems
before real-world deployment, providing insights about systems
behavior. In WSNs simulation environments, components models
are a promising approach to manage the increase demanding for
scalability and autonomy requirements. The RCBM modular design,
inspired in the object-oriented programming encapsulation and
design patterns principles for creating reusable components, can
be implemented in any of well known simulators, such as NS2, NS3
and OMNeT++.

SenNet [26], MDDWSN [27], CBCWSN [2] and IoTSuite [24]
apply separation of design concepts, focusing on a speci�c aspect
of the system under construction. MDDWSN and SenNet propose
a software development process to address data processing-related
and network-related concepts. These tools, however, do not support
the concept of distributed data repositories and are implemented
under TinyOS operating system, which limits their applicability
to small WSN networks. IoTSuite, on the other hand, proposes
a common understanding of concepts that constitute the IoT. It
provides a centralized storage-related concept, which increases
communication overhead and is less scalable than decentralized
approaches. CBCWSN identi�ed the key components to be reused
in the majority of clustering algorithms for WSNs. However, as

opposed to RCBM, CBCWSN adopts a prede�ned �ow of execution.
As a result, it is harder to extend CBCWSN to other storage models
that do not adhere to its interaction pattern.

3 THE DATA STORAGE COMPONENT MODEL
There is a plethora of storage models for wireless sensor networks
proposed in the literature [10]. Although they di�er on the target
application and details to tailor the model to speci�cities of the ap-
plication, some concepts (or entities) are common to a vast majority
of them. In this section, we propose the Reusable Component-Based
Model for WSN Storage Simulation (RCBM). It is a general storage
metamodel for WSNs, described by entities, properties, and func-
tions. The model is devised to include a library of “instances” of
the metamodel. As a result, new models that are speci�c to certain
applications can be created by developing a few functions instead
of considering the problem of storing sensing data as a whole. In
this way, RCBM promotes code reusability and supports the agile
development of new models.

In order to determine the common entities among existing mod-
els, we �rst identi�ed three storage classes, based on the location
where sensing data are stored. The classes, as shown in Figure 1(a)
are: Local, referring to models that store data locally in the sensors’
�ash memory; External, consisting of models that store all data
collected by sensor devices at an external storage; and Repositories,
which include models where some sensors are responsible for col-
lecting the data of a set of sensors. In each of the classes it is possible
to identify common components to create an RCBM metamodel. In
dense WSNs, keeping the data grouped into repositories reduces
the number of data transmissions for querying the data [9], an im-
portant requirement to reach scalability. Among the storage models
described in our taxonomy, the repositories class has attracted a lot
of attention, given that it is more scalable than other approaches.
Thus, this work focuses on developing components to models in
the repositories class, which is the most appropriate for large-scale
networks. It is important to point out that the proposed component-
based approach can be extended to consider other storage classes,
as long as their entities are properly modeled.

In RCBM, each entity is associated with a set of components
that implement common functionalities. For models in the repos-
itory class, these entities include: (i) sensor devices; (ii) clusters,
which consist of a set of sensors; and (iii) cluster-heads (CHs) that
are sensors responsible for storing the information of all cluster
members. These entities de�ne a hierarchical storage model, where
each cluster designates a sensor as cluster-head for storing the
readings of its group members. This approach share some common
tasks, as described in [2]. The �rst one is related to the cluster-head
election strategy, that can be a random choice or based on a sensor
attribute. The second task refers to cluster membership; that is,
how nodes that were not elected as cluster-heads decide to which
cluster they should join. Common criteria include random choice,
location-based and attribute-based decisions.

In a component-based design, components are reusable units, and
the development of components is kept separate from the system
development [8]. This idea is illustrated in Figure 1, showing that
existing components can be combined and restructured in order to
develop new models, depicted in the �gure as model instances.
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Figure 1: Component-based Development Process for WSNs Storage Models.
Besides the Application components, that are directly related

to WSN storage models, in RCBM we have two other types of
components: Coordination and Library. The �rst one is responsible
for coordinating the execution �ow and interaction between WSN
components. The second type provides additional functionality,
common to several models. Thus, three types of components can
be distinguished in RCBM:

• Application Components refer to entities that compose the
storage model. Each of them provides a set of functions
that are invoked by other components and the coordinator
in order to compose the overall system functionality.

• A Coordinator Component controls the execution �ow of
the system.

• Library Components implement functions that are orthog-
onal to storage models, but provide a toolbox that is use-
ful for developing application components. Examples of
library components include aggregation and timer func-
tions.

Syntactically, each component is de�ned by two documents:
component template and component implementation. Component
templates consist of a set of operation descriptions and their in-
put/output parameters, thus, de�ning the interface of the compo-
nent. Particular implementations may be de�ned for each template.
Separation of interface and implementation is of major importance
in order to create a pluggable set of components, which can pro-
mote reusability in several ways. It allows library components to be
used in the development of any application component. Moreover,
the coordinator can be reused to apply the same execution �ow
to di�erent implementations of application components. In addi-
tion, the same application components can be reused in a di�erent
execution �ow by a new implementation of the coordinator.

3.1 The RCBM Platform
RCBM is designed to promote reusability by considering an archi-
tecture composed of three layers: the speci�cation layer, the imple-
mentation layer, and the communication platform. The architecture
of RCBM is depicted in Figure 2. The speci�cation layer consists of
components that can be used “as-is” (such as library components)
as well as the templates (interfaces) of the application and coor-
dinator components. The implementation layer consists of actual
code for the application and coordinator components, in order to
develop storage model instances. The separation between speci�ca-
tion and implementation facilitates the development, promoting the

composition of new components with previously developed ones.
The communication platform provides the basic infrastructure for
implementing communication among components.

In the development process, the programmer starts with a set
of function libraries and component templates that can be used to
build the desired model. During the implementation, which com-
prises the combination of pluggable pieces and the coordinator,
templates are transformed into components, by the addition of
user-de�ned portions of code (component implementations). The
application components associate functionalities to WSN entities,
such as clusters and CHs, while the coordinator controls the exe-
cution �ow among them. At the lower level, the communication
platform provides the simulation runtime support. Furthermore,
RCBM provides a code skeleton that integrates the coordinator
with the communication platform. Thus, the user does not have to
take care of communication platform details.

In the following sections we present details of library compo-
nents, application templates and application components.

Figure 2: RCBM Architecture.



3.2 Library Components
Library components are not directly related to application entities,
but provide useful functions that can be used in the development
of other components. In this section, we present two of them: ag-
gregate functions and timer components.

Aggregate functions are executed on a set of values, in order
to obtain a single, representative one such as the maximum value
(MAX), minimum value (MIN), average (AVG), summation (SUM),
and set cardinality (COUNT). Aggregate functions are useful in a
number of operations for WSNs. As an example, in cluster-based
storage models, cluster-heads (CHs) are the only sensors contacted
to process in-network queries. Usually, CHs do not report the indi-
vidual readings of all cluster members, but provide a single repre-
sentative value, which can be obtained by an aggregate function.
The goal of this approach is to minimize the volume of tra�c and
number of transmissions in the network. Listing 1 illustrates the
aggregate functions component speci�cation that de�nes the MIN,
MAX, AVG and SUM aggregation operations.

1 c l a s s Library_Aggregation {
2 public :
3 template <typename K , typename V>
4 map<K, V> MIN ( map<K, V> ) ;
5

6 template <typename K , typename V>
7 map<K, V> MAX( map<K, V> ) ;
8

9 template <typename K , typename V>
10 V AVG( map<K, V> ) ;
11

12 template <typename K , typename V>
13 V SUM( map<K, V> ) ;
14 }

Listing 1: The library component aggregation template.

Notice that function declarations use C++ template syntax, and
thus they can handle di�erent types of data. In our approach, all
aggregate functions operate on a set of key-value pairs “map<K,
V>”. This representation is quite general. For instance, suppose that
a CH receives the reading 10.2 from a cluster member s2. Then,
this information can be represented as the key-value pair (s2, 10.2),
where s2 is the key K , that is, the sensor unique identi�er, and
10.2 is its associated value V . Given a set of key-value pairs of
cluster members readings, {(s2, 10.2), (s3, 10.5), (s4, 10.7)}, the CH
can obtain their average applying the AVG function, which returns
the value 10.47. MIN and MAX functions return a key-value pair
instead of a value. The result for MIN is (s2, 10.2), while the result
for MAX is (s4, 10.7).

1 c l a s s Timer : public TimerHandler {
2 public :
3 v i r tua l void expire ( Event ∗ e ) ;
4 template < c l a s s T> void initTimer ( T ) ;
5 template < c l a s s T> void restartTimer ( T ) ;
6 }

Listing 2: The library component timer template.

Another useful component for WSNs is the timer. It provides
functions for synchronization purposes, including message trans-
missions and sensoring data tasks. Listing 2 illustrates the Timer
component template speci�cation.

The timer library provides functions to initialize the timer “init-
Timer(T)”, restart the timer “restartTimer(T)”, and expire atT delay
seconds. When the timer expires, function “expire(Event *e)” is
automatically invoked. As a consequence, the user does not need
to check manually for the timer’s expiration.

3.3 The Application Components Template
In contrast to library components, application components are re-
lated to functionalities of entities in the WSN. Moreover, library
functions provide useful operations that programmers can use with-
out knowing any of the internal details. On the other hand, di�er-
ent WSN storage models may involve speci�c steps, and thus the
programmer has to modify or implement some of the application
components, associated with entities of the model. Since our focus
is on models in the repository class, these entities are: the sensor
device, clusters, and CHs. Due to space limitations, only some of
the components are discussed.

For sensor devices, the main characteristic presented in au-
tonomous and scalable systems relies on following a distributed
solution instead of a centralized approach. In distributed architec-
tures, sensors have only a local knowledge about the network. For
example, some solutions require that each sensor si maintains infor-
mation about its neighbors N (i), such as, their identi�er, geographic
coordinates, remaining energy, CH election announcements and
join cluster announcements. Listing 3 illustrates the Sensor com-
ponent speci�cation that provides some of the functionalities for
sensor devices.

1 c l a s s Sensor {
2 public :
3 template <typename K , typename V>
4 void setNeighborReadings ( map<K, V> ) ;
5

6 template <typename K , typename V>
7 map<K, V> getNeighborReadings ( ) ;
8

9 template <typename K , typename V>
10 map<K, V> getCandidateCHs ( ) ;
11 }

Listing 3: The sensor component template.

1 c l a s s CH_Election {
2 public :
3 template <typename K , typename V>
4 void selectCH ( map<K, V> ) ;

Listing 4: The CH_Election component template.

For the cluster entity, we can identify two main phases in cluster-
ing algorithms: CH election and cluster formation. Thus, we have
two application components: CH_Election and Cluster_Formation,
which are illustrated in Listings 4 and 5, respectively. CH election
algorithms strategies can be classi�ed into three categories: pre-
set, random and attribute-based [1]. The template provided by the



CH_Election component is generic enough to implement all of
these CH selection criteria.

The CH_Election component de�nes the function “selectCH(map<K,
V>)” that users must implement according to the target model. Note
that the function operates on a set of key-value pairs (map<K, V>).
As an example, consider the probabilistic model where a sensor
becomes a CH with probability p. Intuitively, each sensor si ex-
ecutes selectCH (si ,pi ), where K = si and V = pi . The template
provides useful information to programmers, along with the argu-
ment speci�cation. The programmer has to extend the CH_Election
component template to implement the CH selection task required
by the storage model.

1 c l a s s Cluster_Formation {
2 public :
3 template <typename K , typename V>
4 void join ( map<K, V> ) ;

Listing 5: The Cluster_Formation component template.

Once CHs are elected, they announce the decision to the network.
A node decides to join a cluster based on a classi�cation criterion.
The Cluster_Formation component contains the “join(map<K, V>)”
function, which takes as input a set of key-value pairs (map<K, V>)
of CH announcements. Suppose that the join criterion is that every
sensor joins the cluster which has a CH with the smallest identi�er
(ID). Then, in each sensor the function “join” takes as input the set
of its candidate cluster-heads, for example {(sj , 3), (sk , 5)}, where
sj , sk are sensors with IDs 3 and 5, respectively. The implementation
of the function should choose to join the cluster with CH sj , given
that it has the lowest ID among the CH candidates.

The communication among components in the system is de�ned
by the Coordinator component. It is responsible for the overall
execution �ow. Listing 6 illustrates the simpli�ed coordinator com-
ponent template declaration. Recall that our focus is on simulation
environment tools. In RCBM, every program has a function “start-
Simulation()”, which is called when the simulation starts. During
the execution of the simulation, communication between remote
components (and sensors) is achieved through asynchronous mes-
sage passing. Thus, functions “sendPkt” and “recv” de�ned in the
coordinator component provide such functionality.

1 c l a s s Coordinator {
2 public :
3 void startSimulation ( ) ;
4 v i r tua l void recv ( Packet * , Handler * ) ;
5 void sendPkt ( MsgID , WSN_Components_Message * ) ;
6 }

Listing 6: The Coordinator component template.

4 RCBM IMPLEMENTATION LAYER
This section presents implementation details showing how RCBM
was used to develop two storage models in the repositories class:
LCA and LEACH. These case studies show that reusing library
components and templates improve the development productivity.

4.1 LCA Components Implementation
LCA (Linked Cluster Algorithm) [4] is a hierarchical storage model
intended to be used for small networks. The criterion for clustering
is based on the unique identi�er (ID) associated with each sensor
node. During the CH election phase, LCA elects as CH a node with
the lowest ID among its neighbors that not received a CH announce-
ment. After the election phase, remaining sensors join the cluster
of the closest CH. Our component model can be used to implement
LCA by extending the “CH_Election” and “Cluster_Formation” tem-
plates.

The CH_Election Component. Listing 7 illustrates the simpli-
�ed implementation of the “selectCH” function for LCA.

1 template < c l a s s K , c l a s s V>
2 void CH_Election : : selectCH ( map<K, V> Neighbors ) {
3 in t minNeighbors = compLib−>MIN ( Neighbors ) ;
4

5 i f ( getSensorId ( ) < minNeighbors ) {
6 role = CH;
7 WSN_Components_Message param ( ) ;
8 param.setId ( getSensorId ( ) ) ;
9 param.setDestination ( Broadcast ) ;

10 sendPkt (CH_ANNOUNCE, &param ) ;
11 }
12 e l se
13 role = CM;
14 }

Listing 7: The CH_Election component implementation.

The developer has to provide the implementation of the “se-
lectCH” function according to the model criterion. The “selectCH”
function operates on a set of key-value pairs “Neighbors”, that is,
the si ’s neighbors that have not been assigned to a CH (l.2). Initially,
MIN(Neighbors) (l. 3) library function computes the minimum ID
among si ’s neighbors. A sensor is selected as CH when its ID, given
by “getSensorId()”, is less than the calculated “minNeighbors” (l. 5).
It then broadcasts its role as CH to the network (l. 7-10). Otherwise,
the sensor role is set as a cluster member (CM) (l. 13).

The Cluster_Formation Component. In the next step, nodes
that were not selected as CHs must join a cluster, as illustrated
in Listing 8. A node chooses as CH the sensor with the minimum
ID among its neighbors that are CHs (l.3). Then, it sends an ACK
message to the chosen one (l.5-9).

1 template < c l a s s K , c l a s s V>
2 void Cluster_Formation : : join(map<K, V> knownCHs) {
3 in t minCH = MIN ( knownCHs ) ;
4

5 WSN_Components_Message param ( ) ;
6 param.setId ( getSensorId ( ) ) ;
7 param.setDestination ( minCH ) ;
8

9 sendPkt (ACK_CH_ANNOUNCE, &param ) ;
10 }

Listing 8: Cluster_Formation component implementation.

The Coordinator Component. The coordinator is responsible
to glue components together, coordinating the interactions among
them. The main tasks involve control of the input/output message



bu�er and coordination of the execution �ow. Listing 9 depicts the
implementation of the main functions.

1 void Coordinator : : startSimulation ( double T ) {
2 setCurrentRound ( SELECT_CH ) ;
3 initTimer ( T ) ;
4 }
5

6 void Coordinator : : recv(Packet* pkt, Handler *) {
7 switch ( param.getMsgId ( ) ) {
8 case (CH_ANNOUNCE ) :
9 manageCHAnnounce(&param ) ; break ;

10 case (ACK_CH_ANNOUNCE ) :
11 manageACKCHAnnounce(&param ) ; break ;
12 }
13

14 void Coordinator : : sendPkt(MsgID ID, MsgParam* P) {
15 switch ( ID ) {
16 case (CH_ANNOUNCE ) :
17 case (ACK_CH_ANNOUNCE ) :
18 send ( P−>getPkt ( ) , 0 ) ; break ;
19 }
20

21 void Timer : : expire(Event*) {
22 i f ( getCurrentRound ( ) == SELECT_CH ) {
23 param=getCHParams ( ) ;
24 compCHElection−>selectCH(&param ) ;
25 setCurrentRound ( JOIN_CLUSTER ) ;
26 } e l se i f ( getCurrentRound ( ) == JOIN_CLUSTER ) {
27 param=getJoinParams ( ) ;
28 compClusterFormation−>join(&param ) ;
29 setCurrentRound ( FINISH ) ;
30 }
31 }

Listing 9: Coordination component implementation.

In LCA, data transmissions follow a round-robin schedule, from
the lowest ID to the highest ID. Thus, each node con�gures its time
schedule and the current round at the beginning of LCA simulation
(lines 2-3). When the timer expires (line 21), each node executes the
tasks for the current round. During the �rst round, each node calls
the “selectCH()” function, which implements the election strategy,
and waits for some time units to start the next round (lines 23-
25). When the timer expires, each node decides to join the cluster,
executing the “join” function of component Cluster_Formation
(lines 27-29).

4.2 LEACH Components Implementation
LEACH (Low-Energy Adaptive Clustering Hierarchy) [16] is a prob-
abilistic model that forms one-hop clusters. LEACH assumes that all
nodes are within the communication range of each other. Sensors
elect themselves as cluster-heads with a probability p. The remain-
ing sensors join the cluster of the CH that requires the lowest energy
consumption to communicate.

The CH_Election Component. Listing 10 depicts the simpli-
�ed implementation of the “CH_Election” Component.

1 template <typename T>
2 void CH_Election : : selectCH(map<K, V> P) {
3 double r = ( ( double ) rand ( ) / (RAND_MAX ) ) ;
4 prob = getProbability ( P ) ;

5 double threshold = prob / ((1.0 - prob) * fmod(1.0, (1 / prob))) ;
6

7 WSN_Components_Message param ( ) ;
8 param.setId(getSensorId()) ;
9

10 i f ( r < threshold )
11 sendPkt (CH_ANNOUNCE, &param ) ;
12 }

Listing 10: CH_Election component implementation.

The CH component implements function “selectCH” that takes
a probability P as an input parameter (line 2). First, each node
selects a random �oating point number between 0 and 1 (line 3) and
calculates a threshold based on the given probability (line 5). A node
selects itself as a CH when the calculated number is less than the
threshold, and broadcasts the decision to the network (lines 10-11).

The Cluster_Formation Component. In the next step, nodes
that were not selected as CHs must join a cluster. Each node chooses
as its CH the sensor that requires the minimum communication
energy, based on the received signal strength (RSS) of the CH adver-
tisements. Listing 11 illustrates the simpli�ed Cluster_Formation
component implementation.

1 void Cluster_Formation : : Join(map<K, V> knownRSS) {
2 double maxRSS = MAX( knownRSS ) ;
3

4 WSN_Components_Message param ( ) ;
5 param.setId(getSensorId()) ;
6 param.setDestination(maxRSS) ;
7 i f ( role == CM)
8 sendPkt (ACK_CH_ANNOUNCE, &param ) ;
9 }

Listing 11: Cluster_Formation component implementation.

During the cluster formation phase, sensor si executes the “Join”
function, taking as input a key-value pair “knownRSS”, that rep-
resents a set of CHs announcements received by si . First, each
node computes the maximum received signal strength (RSS) from
“knownRSS”. The largest RSS is the CH that requires the minimum
amount of energy to communicate with. Thus, si sets as CH the
sensor with the maximum RSS recorded by (knownRSS) (line 2) and
sends an ACK message (lines 4-8). The LEACH and LCA coordinator
components share many similarities. Thus, due to space limitations,
the details of the LEACH coordinator will be omitted. The two case
studies presented in this section show that the model instances
share the same components templates. This approach promotes
reusability, and the programmer develops a few lines of code with
the speci�cities of each model.

We have also implemented a third model, MAX-MIN [3], which
is used in our experimental study1.

5 EXPERIMENTAL STUDY
This section shows an empirical performance evaluation of RCBM.
We have applied our approach to support the implementation of
LCA, LEACH and MAX-MIN protocols on NS2 network simulator
version 2.35. LCA and MAX-MIN clustering algorithms follow an
attribute-based clustering criterion. LEACH follows a probabilistic
1The implementation is available at http://www.inf.ufpr.br/macarrero/Q2SWinet.

http://www.inf.ufpr.br/macarrero/Q2SWinet


model. We have conducted two experiments. In the �rst one, we
analyzed the amount of code reuse across the systems and compare
these results with the amount reported by the CBCWSN system,
reported in [2]. In the second experiment, we validate the correct-
ness of our MAX-MIN implementation by applying it to the same
evaluation scenario and parameters reported in [3]. MAX-MIN is
an attribute-based model that di�ers from the ones reported in
Section 4 because cluster members can be multiple hops away from
the cluster-head. Moreover, the clustering algorithm involves two
communication steps among sensor nodes before the election of
CHs. More speci�cally, the algorithm has four logical steps: (i) prop-
agation of larger node IDs, (ii) propagation of smaller node IDs,
(iii) determination of CHs, and (iv) linking of clusters. Although
the execution �ow of the MAX-MIN algorithm di�ers from LCA
and LEACH, some of the steps closely resemble the steps in these
algorithms. The separation of the coordinator from the application
components proposed by RCBM allowed us to explore this simi-
larity for code reuse. The results of our experiments are presented
next.

5.1 Code Reuse
The goal of this experiment is to determine the impact of code
reuse on the overall system implementation. We have evaluated
RCBM component model over LCA, LEACH and MAX-MIN systems
and compare the results with those reported by CBCWSN [2]. We
used a synthetic scenario with 140 sensors statically placed on a
1400×1000 square meter monitored area. The distance between
sensor nodes were around 90 meters, with symmetric links, and
using MAC protocol (802.11). The radio range of every sensor on the
�eld was set to 100 meters. Nodes were equipped with GPS devices
allowing them to be aware of their geographical position over the
monitored area. The simulation duration time was 40 minutes. The
simulation parameters are presented in Table 1.

Table 1: Simulation parameters.

Parameter synthetic scenario
Network devices 140 sensors
Monitored area 1400mX 1000m
Sensor communication range 100 meters
Simulation duration 40 minutes

Table 2: Proportion of reused code in each system model.

System Component Lines of Reused Di� (%)
Model Model Code Code

MAX-MIN RCBM 725 480 66 %
CBCWSN [2] 1140 259 23 %

LCA RCBM 556 481 86 %
CBCWSN [2] 671 655 98 %

LEACH RCBM 488 366 75 %
CBCWSN [2] 681 661 97 %

Table 2 lists the total number of lines of code, reused lines of
code and the di�erence in percentage of RCBM and CBCWSN
models. In both cases, the lines of code were obtained from well-
formatted, human-readable programs. While RCBM and CBCWSN
design principles result on some common components (such as
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Figure 3: Impact of network density on the number of CHs.

CH election and cluster formation), RCBM components are more
�exible because they do not assume any �xed execution �ow or
criteria. Instead, simple coordination operations are kept up to the
developer. As a result, a larger number of models and designs can
bene�t from the reusability of code promoted by RCBM. This is
shown by our experimental results. MAX-MIN adopts a distinct
sequence of logical steps when compared with the LCA and LEACH
approaches, which, in turn, have some similarities to each other.
Our results show that RCBM has better code reuse capabilities than
CBCWSN for the MAX-MIN implementation, while keeping good
reusability numbers for the LCA and LEACH systems. These results
follow from the fact that RCBM provides a �exible component
library and execution control �ow. In RCBM, we provide a generic
code skeleton, which the developer has to �ll the gaps in speci�c
places of the code. Vast portions are reused from library components
and the user has to code few lines mainly in the “selectCH” and
“joinCluster” function skeletons.

CBCWSN follows a di�erent approach. It does not provide a
generic code skeleton with gaps. Instead, the developer starts with
a prede�ned set of components implementation that share many
similarities with LCA and LEACH. Thus, it is harder to extend
CBCWSN to other storage models. As reported in Table 2, CBCWSN
reduces signi�cantly the e�ort to implement LCA and LEACH.
However, CBCWSN’s prede�ned set of components have signi�cant
di�erences compared to the MAX-MIN system design, leading to a
higher development overhead.

5.2 Correctness of the Implementation
In this experiment, the goal is to validate the system developed with
the RCBM component model. In other words, we would like to check
whether the code generated using our approach presents anomalies
or if the resulting implementation has the same behavior as the
ones previously reported in the literature. To do so, we analyzed
the number of cluster heads generated with our implementation
of the MAX-MIN and LCA model and compare the results with
those reported by the original MAX-MIN paper [3]. The simulation
considered a 200X200 square meters monitored region, varying
the network density. We considered networks with 100, 200, 400
and 600 sensors, and for each density we generated �ve di�erent
snapshots scenarios. The radio range of every sensor on the �eld
was set to 20 meters and the maximum number of wireless hops
between a node and its cluster-head was set to 2. The simulation
settings parameters are shown in Table 3.



Table 3: Simulation parameters.

Parameter Value
Network devices 100, 200, 400 and 600 sensors
Monitored area 200mX 200m
Sensor communication range 20 meters
d-hop clusters 2

Figure 3 shows the impact of network density on the number of
cluster-heads. Note that the experimental results reported in [3],
presents a graph comparing MAX-MIN, LCA2, LCA and DEGREE
systems. LCA2 is a modi�ed version of the original LCA, described
in Section 4.1, that generates 2-hops clusters. In our experiments we
have compared MAX-MIN with LCA2, applying the same modi�ca-
tion to our LCA implementation to properly compare the results.
We noticed that due to the RCBM component model code reuse, we
have successfully concluded the implementation, simulation and
validation of LCA2 in 2 days, with minor changes in our LCA code
reported in Section 4.1. The achieved results, considering MAX-MIN
and LCA2, were consistent with the ones reported by the original
work [3]. The original values are not plotted in the graph because
the actual values are not reported in [3]. However the graph and
values of the 2 systems we obtained are almost identical to the
original ones.

6 CONCLUSION
In this paper we proposed a Reusable Component-based Model
(RCBM) to support and facilitate the development of simulation
programs for WSN storage models. RCBM addresses storage-level
entities that share concepts and functionalities, which represent
various instances of WSN storage systems. These shared function-
alities are the components of the system. RCBM considers three
types of components: library components, application components,
and the coordinator. Library components provide a toolbox, that
can be used to implement application components, associated with
WSN entities. The coordinator is responsible for the execution �ow.
Components implementations �ll the gaps of a program skeleton
provided by RCBM. The skeleton takes into consideration some
speci�cities of the network simulator. In our current implementa-
tion, we use the NS2 simulator.

As case studies we developed LCA, LEACH and MAX-MIN mod-
els following our proposed approach. Our experiments showed
that RCBM provides good reuse capabilities when compared with
CBCWSN [2]. The achieved results also show that the code gen-
erated for the MAX-MIN and LCA models is compatible in terms
of the number of cluster heads with the original MAX-MIN im-
plementation [3]. Furthermore, we showed that RCBM promotes
code reuse and agile development during the development of the
modi�ed LCA model. These experiments showed that our proposal
generates sound implementations. RCBM can be seen as a �rst step
towards a WSN programming environment, in which components
code can be generated from higher-level composition primitives.
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