
MORPHING SPARSELY POPULATED DATA

Susan Davidson , Carmem Hara, Anthony Kosky and Chris
Overton

University of Pennsylvania, Department of Genetics and Department of Computer
and Information Science

INTRODUCTION

The Human Genome Project, and the field of molecular biology, involves a proliferation of different
data sources, including both archival (GenBank, GDB) and local notebook databases, and also various
software systems and tools (BLAST, FASTA). These data sources frequently use incompatible
structures to represent the same or overlapping data, and further may be implemented in a variety of
data-models and database management systems (DBMSs), including object-oriented systems (ACEDB,
OPM, Object Store), flat-relational databases (SYBASE), and data exchange formats stored as
structured text files (ASN.1). It is frequently necessary to transform data between these incompatible
data sources and data-models. For example data stored in an archival database or generated by and
stored in a local database at one HGP site may have an impact on the experiments being carried out at
another site, and therefore needs to be stored in the local laboratory notebook database at the second site.
Further useful tools, such as data browsing or analysis tools, may be implemented for a particular
DBMS or database schema, and it is desirable to move data from another database into this system so as
to apply these tools. Also constantly changing experimental and analysis techniques result in rapidly
evolving database schemas, and it is necessary to transform data in order to reflect these schema
evolutions.

In this abstract, we describe a prototype system called Morphase (an enzyme for data morphing) for
facilitating such transformations, and discuss problems that arise when dealing with sparsely populated
data such as that found in ACE and ASN.1.

MORPHASE

To ease the specification and implementation of data transformations between various data sources, we
have been developing a prototype system called Morphase. Transformations between a source and target
database are specified in Morphase using a high-level declarative language WOL (Well-principled
Object Language), which is based on Horn clause logic [1]. Transformation specifications are then
translated into an underlying database programming language, CPL (Collection Programming Language
[2, 3]), for implementation. The data-types supported by WOL include arbitrarily nested records, sets,
variants, and more recently lists, thus capturing the types common to most data formats.

The CPL language interfaces to a wide variety of data sources, and has been designed to be easily
extensible with drivers for new data sources as they arise. In particular, drivers to connect CPL to
ASN.1, ACEDB and SYBASE have been developed; other drivers, for example to OPM, are currently
being developed. The drivers are used to query as well as update data servers which are instances of
their type, e.g. the Sybase driver is used for our local Sybase database, Chr22DB. To perform a query,

the driver forwards it to the data server after its translation in the server language; the resulting data is
then translated into CPL format and sent back to CPL. For updates, the driver transforms CPL format
into server insert code and perform updates at the data server.

Constraints on data at both the data sources and target databases are important at several stages in
Morphase. After the transformation is specified, they are used to complete the specification and produce
normal form rules. Constraints that are most important in this process are keys and inclusion
dependencies, such as those that arise through inheritance hierarchies. Inclusion dependencies are also
used to structure the insert code in the driver and avoid aborts. Since schemas typically have many
constraints and they are tedious to write in WOL, we are also developing tools that are used by
Morphase to automatically extract constraints from meta-data stored in various data sources. This
dramatically simplifies the task of writing the transformation programs since it allows the user to focus
on the logical content of the transformation.

Initial work on WOL was reported in MIMBD ’94, and a description of using WOL to transform data
from a nested relational format into flat-relational format can be found in [4]. In the past year, the
Morphase tool-set has been developed around the WOL prototype, and a number of important
extensions for dealing with format data and object-oriented data have been made including: 1. Support
for object-identities, which are referenced and created using surrogate keys; and 2. Support for lists,
which frequently occur in structured text files (such as ASN.1) and tree-structured databases (such as
ACEDB).

EXPERIENCES WITH TRANSFORMATIONS

We have been testing our formalism by applying it to a variety of different transformation problems
involving ACEDB and ASN.1. Some of these transformations have already been hand-coded without
our tools, and the comparison between the approaches has given us several insights. The first
observation is that data in both ACE and ASN.1 yield a large number of variant types when translated
into our data model. This is due to the fact that these formats are sparsely populated, that is they have
"been developed for scientific research projects where many data are very incomplete" [5]. While a
relational representation of the same data would use null values, in these formats the tagged field is
simply missing. The second observation is that transformations involving variants that are hand coded
typically experience an explosion in the size of programs that is exponential in the number of variants in
the databases involved. WOL, on the other hand, allows clauses to express partial information about
records, thus avoiding the explosion when specifying the transformation. However, to implement the
transformation the specification is translated into a normal form, which again produces an exponential
number of clauses in the number of variants in the databases involved. In order to avoid this exponential
blow up, we found it necessary to introduce intermediate representations of data and implement
transformations in two stages rather than one, which was our initial goal.

AN EXAMPLE

To illustrate this problem, consider the following translation from a simple ACE database to a nested
relational structure. Since examples from molecular biology tend to be highly complex, and require a lot
of explanation, we will instead use a simple ’T-shirts’ example adapted from the ACEDB design guide,
[6]. Our ACEDB database consists of two classes representing t-shirts and events, either being borrowed
or damaged, in the history of a t-shirt.

?TShirt Characteristics Background Colour UNIQUE Black
 Purple
 Pink
 Design UNIQUE Pattern UNIQUE Floral
 Abstract
 Plain
 Graphics Front UNIQUE Text
 Back UNIQUE Text
 Size UNIQUE Int
 History UNIQUE ?Event XREF TShirt REPEAT

?Event TShirt UNIQUE ?TShirt XREF History
 Type UNIQUE Damaged Damage_date UNIQUE Int
 Description UNIQUE Text
 Borrowed Borrowed_date UNIQUE Int
 Person UNIQUE Text

The combination of UNIQUE and REPEAT operators in the history attribute mean that history is
represented as a list of events.

We might wish to exchange data between this database and a nested relational database with the schema:

TShirt(Id: int,
 Color: string,
 Design: string,
 Borrowed-history: [(Date: int, Person: string)],
 Damage-history: [(Date: int, Description: string)])

Here "(....)" denotes records and "[...]" denotes lists. In order to specify a transformation from the ACE
representation to the nested relational representation, we write the following WOL clauses:

(Id = MkTS(Y.Key), Color = "black") in Tgt.TShirt <==
 Y in Src.?TShirt,
 Y.Characteristics.Background.Colour = choice(Black, ())

(Id = MkTS(Y.Key), Color = "pink") in Tgt.TShirt <==
 Y in Src.?TShirt,
 Y.Characteristics.Background.Colour = choice(Pink, ())

(Id = MkTS(Y.Key), Design = "floral pattern") in Tgt.TShirt <==
 Y in Src.?TShirt,
 Y.Characteristics.Background.Design = choice(Pattern, choice(Floral,())

...... similar clauses for other colours and and patterns

(Id= MkTS(Y.key), (Date= D, Person= P) in Borrowed-history) in Tgt.TShirt <==
 Y in Src.?TShirt, X in Y.History,
 X.Type = choice(Borrowed, (Borrowed_date = D, Person = P))

(Id=MkTS(Y.key),(Date =D, Description= T) in Damage-history) in Tgt.TShirt <==
 Y in Src.?TShirt, X in Y.History,
 X.Type = choice(Damaged, (Damage_date = D, Description = T))

The first clause says that for every object Y in the source class ?TShirt, such that the Background.Colour
attribute of Y is set to Black, there is a corresponding object in the target database table TShirt with its

Id attribute set to MkTS(Y.Key) and its Color attribute set to the string "black". The Key attribute of
ACE object Y refers to the "hidden" field that is required for every class in ACE. The term
MkTS(Y.Key) is an example of the use of a Skolem function, and creates an object-identifier for each
value it receives. If the function MkTS is applied to the same value twice then it returns the same object
identifier, but if it is applied to a new value then it creates a new object-identifier corresponding to that
value.

Note that the history attribute of the source ?TShirt class is a list which is being split into two lists,
Damage-history and Borrowed-history, in the target database. An atom of the form "X in Y.history"
assigns a precedence to an occurrence of X representing its position in the list Y.History, so that the
relative order of events in the history list is preserved in the Damage-history and Borrowed-history lists
of the target database. However the reverse transformation, from the nested relational database to the
ACEDB database, presents a problem: though it is possible to instantiate the history attribute of a
?TShirt with a list formed by appending the translations of the Damage-history and Borrowed-history
lists, it is not possible to restore the original interleaving of these entries without using some additional
information. In this respect, information is being lost by the transformation.

The clauses of the WOL transformation program are then transformed into clauses in a normal form, in
which a complete entry in the target database is described in terms of the source databases. While the
number of clauses in the WOL transformation specification are linear in the number of variants in the
source database, the number of normal form clauses will be exponential: one for each possible set of
choices (black/plain/front-graphics-only, black/plain/back-graphics-only,...,
purple/floral-pattern/back-and-front-graphics, purple/abstract-pattern/back-and-front-graphics, and so
on). Though this might be manageable with simple structures like the one in this example, it turns out to
be a serious problem when dealing with realistic examples in data-models such as ACEDB or ASN.1,
where variants and optional attributes are common. We can avoid this exponential blowup by
introducing an intermediate representation of data, with separate structures corresponding to each
variant. For the above example, the intermediate representation would have four separate tables, each
with an Id attribute and one of the attributes Color, Design, Borrowed-history or Damage-history. The
transformation then proceeds in two stages: first populating the intermediate relations, and then joining
them on the Id attributes to form the final target relation.

It is also possible to construct a reverse transformation from the nested relational to the ACEDB
database. Such a transformation will show up certain incompatibilities in the information capacities of
the two databases. We already noted that information about the interleaving of damaged and borrowed
events in the history of a ?TShirt is lost. In other respects the nested relational database is much more
expressive than the ACEDB version. For example a t-shirt in the ACEDB database can have one of three
colours: black, purple or pink. The colour attribute of a TShirt in the relational database can however be
any string, such as "red", "green" or "chartreuse". In order for the transformations to be information
preserving it is necessary ensure additional constraints, such as that the colour of a t-shirt is classified as
either "black", "purple" or "pink".

CONCLUSIONS

The need for database transformations occurs frequently when dealing with Human Genome Project or
other molecular biology databases. Implementing such transformations by hand on a case by case basis
is time consuming and error prone. Consequently there is a need for a method of specifying and
implementing such transformations in a uniform way, allowing transformations to be specified across a

wide variety of different data-models, and to be formally analyzed and verified.

Our initial prototype implementation of Morphase dealt with the special case of transformations to flat
relational target databases, and is being used in test case studies at the Human Genome Center for
Chromosome 22 at the University of Pennsylvania. Work on an extended version of Morphase for
implementing transformations between more general databases is underway.

ACKNOWLEDGMENTS

This research was supported in part by DOE DE-FG02-94-ER-61923 Sub 1, NSF BIR94-02292 PRIME,
ARO AASERT DAAH04-93-G0129, and a scholarship from CNPq - Brasilia/Brazil.

REFERENCES

[1] Anthony Kosky, "Types with Extents: On transforming and querying self-referential
data-structures", PhD Thesis Proposal, Dept. of Computer and Information Science, University of
Pennsylvania. 1995.
[2] P. Buneman, L. Libkin, D. Suciu, V. Tannen and L. Wong, "Comprehension Syntax".
SIGMOD Record, Vol 23. March 1994.
[3] P. Buneman, S. B. Davidson, K. Hart, C. Overton and L. Wong, "A Data Transformation
System for Biological Data Sources," Technical report MS-CIS-95-10, Dept. of Computer and
Information Science, University of Pennsylvania. March 1995.
[4] S. B. Davidson and A. S. Kosky and B. Eckman, "Facilitating Transformations in a Human
Genome Project Database", Proc. of CIKM, December 1994.
[5] J. Thierry-Mieg and R. Durbin, "Syntactic Definitions for the ACEDB Data Base Manager."
Technical report, MRC Laboratory for Molecular Biology, Cambridge. 1992.
[6] Sam Cartinhour, "Exploring Models Design and Structure".

