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Abstract—Applications for Wireless sensor networks (WSN)
usually take into consideration the specificity of the environment
in which they are deployed in order to save the sensors’ limited
resources. In particular, the sensing task in urban environments
requires hundreds and even thousands of sensors to be spread
over the monitored area. Moreover, in environmental monitoring
applications, sensors that are closely located usually provide
similar readings. That is, spatial proximity is related to data
similarity. In this paper we propose SIDS (Spatial Indexing Based
on Data Similarity for Sensor Networks), a data model that
explores this characteristic in order to provide scalability and
efficient query processing on urban WSNs. Scalability is achieved
by grouping sensors with similar readings, while efficiency
for processing queries relies on two strategies: the concept of
repositories, which consist of sensors that act as datacenters, and
an indexing structure designed for speeding up both spatial and
value-based queries. We have implemented the proposed model
and results from simulations on a variety of scenarios show that
SIDS provides scalability and it outperforms CAG and Peer-tree,
which are models that have been proposed for processing data
and spatial queries, respectively.

I. INTRODUCTION

Wireless sensor networks (WSNs) are composed of small

devices with low processing power and data storage. In gen-

eral, sensor devices present limited energy and communicate

with each other by short-range radios [1]. WSNs have been

employed for monitoring and controlling real world data in

several indoor and outdoor environments [2]. Systems to

support WSNs have been an area of intense investigation in

the past years, from low-level protocols [3], [4] to application-

level databases [5], [6].

The sensing task usually requires hundreds and even thou-

sands of sensors to be spread over the monitored area. In order

to fully explore the sensors’ limited resources, applications

for WSNs usually take into consideration the specificity of

the environment in which they are deployed. In this paper,

we consider environmental monitoring of a scalar field, such

as temperature, humidity, and intensity of light, in urban

environments. They are characterized by extreme temperature

variation due to heat islands that result from the reduction of

green areas, traffic, and pollution. Further, network coverage

deserves special attention given that communication may be

hindered by obstacles created by buildings and interference

from other devices that communicate via radio waves [7].

As opposed to other WSN applications such as wildlife

monitoring, energy saving is not as critical in urban scenarios

given that energy can be obtained from alternative sources

like lampposts and ambient energy harvesting [8]. Thus, in

this paper we consider that sensor devices are supported by

power scavenging units.

Due to the large number of sensors that may be involved

in urban sensor applications, an important requirement of

a data model to support data acquisition in this context is

scalability. A common approach for reaching this goal is to

group sensors into clusters, and electing one or more of them

to serve as cluster-heads (CHs). CHs are then responsible for

storing information of all its members and answering query

requests. In certain applications, exploring spatial similarity of

data results on a reduction of the number of clusters required to

cover the network. This approach is followed by several works,

like DACH [9], CAG [10] and DEDAC [11]. However, none

of them propose an indexing mechanism to reduce the number

of cluster-heads to be contacted during query dissemination to

only the ones holding relevant information. The goal of an

index is to prune the search space, reducing the number of

messages on the network, and thus providing search results

faster and with lower cost. Among data models that provide

an indexing mechanism are GHT [3] and Peer-tree [12].

In this paper we propose a model and indexing structure

for urban WSNs called SIDS (Spatial Indexing Based on Data

Similarity for Sensor Networks). SIDS explores both data sim-

ilarity for clustering sensors, and an indexing mechanism for

speeding up in-network query processing. We also introduce

the notion of repositories, which are regions in the monitored

area that concentrate information. They can be viewed as

datacenters in WSNs. Both model and index structure are

inspired by an urban environmental sensing scenario, where

sensors closely located are likely to present similar readings.

In this context, sensor readings change gradually, and thus they

can be characterized as read-intensive applications. The index

structure supports both spatial queries, for obtaining readings

on a given geographical location, and value-based queries, for

retrieving the location of sensors with readings in a given

range. To the best of our knowledge, it is the first model

that combines spatial similarity of readings with an indexing

structure for speeding up both types of queries in the context

of urban WSNs.

We have conducted a performance evaluation, based on

simulations, comparing SIDS with two other models: CAG,978-1-4673-0269-2/12/$31.00 c© 2012 IEEE



which has been proposed to support value-based queries, and

Peer-tree, which supports spatial queries. Our results show the

efficacy of our approach. For processing spatial queries, SIDS

performs better than Peer-tree. For value-based queries, the

cost for processing a single query on CAG is better than for

SIDS. However, when the query set is of size at least two than

SIDS outperforms CAG. We have also conducted simulations

for evaluating the scalability of the proposed model.

The paper is organized as follows. Section II presents

related work. Section III describes the SIDS model and index

structure. Section IV presents a performance evaluation, and

we conclude in Section V highlighting future works.

II. RELATED WORK

Data gathering from WSNs, which in the past was based

on simple commands, has shifted to more complex languages

for query processing. Existing data models for WSNs can

be classified as being based on database, data similarity, or

spatial proximity. Among database models, we can mention

two: Cougar [5] and TinyDB [6]. Both provide a relational

view of sensor readings, which are stored at the sensors that

collect them. This limits their applicability to small to medium

size WSNs. In order to reduce the number of sensors to

be contacted for data acquisition, several data models for

clustering sensors based on readings similarity have been

proposed, such as CAG, DEDAC, and DACH. CAG [10]

clusters sensors while disseminating a query. This approach

provides high data accuracy and decreases the volume of data

sent back to the base station, since only one message per

cluster is transmitted. However, the time spent for clustering

at each new query may be costly. DEDAC [11] was proposed

for reducing this cost by storing cluster members information

at cluster-heads. However, the model does not support any

indexing mechanism, such as the one proposed by DACH [9].

Techniques for cluster-head election have been proposed in

the literature, based on several criteria, such as rotation among

cluster members [13], residual energy [11], and proximity to

other nodes [14]. Spatial proximity has also been used as a

criterion for indexing mechanisms for WSNs, such as GHT,

CBI, Peer-Tree, and DQT. GHT [3] has been proposed for

efficiently answering value-based queries. It is based on a

hash function that maps attribute names to a coordinate in the

monitoring area. Then the sensor closest to this coordinate is

responsible for storing all readings of the given attribute. CBI

[15] considers a graph view of the WSN and builds an indexing

structure based on the dominating set of the graph. Sensors

in the dominating set are considered cluster-heads that store

information on all sensors connected to them. An indexing

structure is defined on these CHs for processing value-based

queries. Both Peer-tree [12] and DQT [16] propose in-network

clustering formation and consider that a query can be injected

to the network at any node. That is, they do not rely on the

processing power of a base station. Peer-tree targets spatial

queries by constructing an index similar to R-trees [17]. On

the other hand, DQT partitions the WSN into grid cells, which

are in turn indexed by a tree structure.

SIDS, the model we propose in this paper, borrows the

idea of clustering sensors based on the similarity of their

readings from CAG. This approach ensures high accuracy of

query results without contacting all sensor devices involved,

but only their CHs. Moreover, giving that in urban scenarios

readings have spatial similarity, this clustering strategy yields

a smaller number of clusters than the grid model adopted by

DQT. Similar to some of the models described, SIDS adopts

a tree-based indexing structure in which each node keeps

the value intervals of their children. However, in order to be

used for processing spatial queries, the tree hierarchy in SIDS

is determined by the spatial correlation among clusters. The

concept of repositories as datacenters, which we believe is

novel in the context of WSNs, has the same goal as GHT, but

their location and the set of data they hold are determined

by the clusters’ reading and location. In short, SIDS is a

WSN data acquisition model that takes into consideration

some ideas from previous works while extending them for

urban monitoring scenarios.

III. SIDS DATA MODEL

A wireless sensor network (WSN) is represented as a graph

G = (V, L), where V = {s1, . . . , sn} is a set of sensors

spread over a monitored area M and L is a set of links

such that (si, sj) is in L if si and sj are within the radio

communication range of each other. We say that the distance

between si and sj is one-hop and that si and sj are neighbors.
Communication between two arbitrary sensors requires the

existence of links {(s1, s2), (s2, s3), . . . (sn−1, sn)} such that

s1 is the sensor that originates the message and sn is the

message final destination. That is, WSNs are based on multi-

hop communication, and rely on a routing protocol for deter-

mining paths that establish communication between sensors.

In our model, we assume that sensors are static, and thus have

a fixed geographic coordinate. To simplify our discussion, we

also assume that each sensor is responsible for monitoring a

single measurement from the environment.

Spatially close sensors are grouped into clusters based on a

characteristic reading (Cr) and a user-defined threshold τ .
That is, sensors in a cluster c have readings between the

minimum and maximum cluster limits, given by Cr (c)×(1−τ)
and Cr (c)×(1+τ), respectively. Moreover, clusters are defined

on contiguous spatial areas. That is, for every sensor si in a

cluster c, there exists a sensor sj ∈ c such that sj is at most

one-hop distant from si.
Every cluster have one or more sensors that serve as cluster-

heads (CHs), at which data from all sensors that belong to the

cluster are stored. In our model, CHs are devices in border

regions of a cluster and are one-hop distant from at least one

neighbor CH. As an example, sensors s3 and s72 are CHs for

the cluster identified by G in Figure 1. The number of CHs

for each cluster is determined by our concept of repository.

A repository is a group of at least two CHs on a border

region, each of them belonging to different clusters, and one-

hop distant from each other. Intuitively, given that CHs contain

sensing data for every cluster member, a repository can act as



Fig. 1. Sensor Field

datacenters to answer queries referring to any of the clusters

that compose it. As an example, in Figure 1, repository R5

is composed of CHs s3, s4, s5, and s6, while repository R2 is

composed of CHs s41 and s91.

The number of CHs and repositories is minimum in the

following sense: every CH must belong to a repository, and

there exist no two repositories that refer to the exact same

set of clusters. In the example of Figure 1, there are seven

repositories, each of them with CHs from different sets of

clusters, such as R1 for clusters {E,G}, R2 for clusters

{E,F}, R5 for clusters {A,D,E,G}, and so on. Observe that

sensors s16 and s33 could have been chosen as CHs, since they

are sensors in border regions. However, this would violate our

minimality rule by defining two repositories for the same set

of clusters {E,F}. Thus, only repository R2, composed of

CHs s91 (for E) and s41 (for F ) is defined. Our approach for

choosing R2 = {s41, s91} over {s16, s33} is the following:

repositories, and consequently CHs, are placed as close to the

center of the sensing field M as possible. Intuitively, since we

consider that queries can be injected to the WSN at any sensor

node (and not at a centralized access point), it is likely that

messages towards the center of the field reach the query target

in smaller number of hops.

Although we do not consider a single access point for

query injection, we assume the existence of a commodity

computer for coordinating the sensors’ clustering process at

the beginning of the WSN operation. Although not detailed

in this paper, the maintenance of the clustering model and

indexing structure, presented in the next section, can be

executed in the network without relying on the base station.

A. Indexing Structure

Given that sensors have been grouped based on their spatial

locality and data similarity, we are now ready to define our

indexing structure. The index has been designed for speeding

up one-shot spatial and value-based queries. In our model,

both sensing data and the index structure are stored in the

sensor network. That is, once the index structure has been

built, search queries can be processed in the WSN, without

forwarding all sensing data to the base station.

Fig. 2. SIDS index structure for sensor field in Figure 1.

The index has been motivated by an urban sensing scenario

in which “heat islands”, or small regions inside larger areas,

have distinct characteristics compared to their surroundings.

We thus propose a tree structure in which the hierarchy of

nodes is determined by the spatial containment relation among

clusters. That is, for each cluster c, we determine its minimum

bounding box (mbb(c)), which corresponds to the smallest

rectangle within which all sensors in c lie. The tree hierarchy

is then built by setting a cluster ci as a child of cluster cj if

mbb(cj) is the “smallest” region that contains mbb(ci). That
is, the outer object contains the inner object and does not touch

the boundaries of the inner object. The complete coverage

of one area by another characterizes “islands” of sensing

data, as opposed to adjacent areas with distinct readings. As

an example, in Figure 1, cluster A is the smallest one that

completely covers clusters B and C. On the other hand,

although mbb(D) and mbb(E) do intersect, they are not

related by an “island” relationship, but are adjacent areas with

distinct readings.

Figure 2 shows the cluster hierarchy of the example depicted

in Figure 1. Each cluster corresponds to a node in the tree such

that parent-child links correspond to “island” relationships.

Moreover, there exists a distinct root node which points to

all top-level clusters on the sensing area. In Figure 1 this root

node is depicted as repository vr, showing its placement at the

sensor closest to the center of the monitored area. Next, we

describe the placement of other elements of the data model

and indexing structure.

B. Storage Model

Consider a cluster c, consisted of a set of sensors S
and with a set of CHs H . Each sensor s ∈ S stores the

following information, which we denote as sensorData(s):

its geographical position, current reading, the minimum and

maximum cluster limits and a list of CHs in H ordered by

their distance from s. By ordering the elements in H , a sensor

is able to forward a query message to its closest CH, while

informing all of them of its reading updates. The limit values

play an important role in the maintenance of the clustering

model. That is, whenever a sensor obtains a new reading, it

may locally check whether it must leave its current cluster and

look for a new one in its neighborhood.

In addition to these information, a sensor h ∈ H that plays

the role of a CH stores information both on the clustering



(clusterData(h)) and on the indexing structure (indexData(h)).

Among clusterData(h), the following is stored at h: the

cluster’s limit values, its minimum bounding box (mbb), set of

CHs for cluster c, set of cluster members, and set of CHs (of

distinct clusters) in the same repository to which h belongs.

Now let n be the node in the indexing tree T that corresponds

to cluster c. The indexData(h) stored at h includes the CH

sensor of its parent that is located closest to h. In addition, for

each child n′ of n in T , indexData(h) includes the following:

a set of CHs for n′, associated with their repositories, the

number of CHs in the same repository that correspond to

its descendents, the minimum and maximum readings of all

sensors in the subtree rooted at n′, and its mbb.

Observe that in the proposed index structure, information on

all sensors that compose a cluster are kept at the CH. In some

cases, the volume of data can be large, and CHs may only

keep a view of the base data, which can be on the form of a

histogram, or an aggregate value. Reducing the storage volume

of raw sensing data has been an area of intense investigation

in the past years [18], [19], [4], but this subject is outside the

scope of this paper. It is important to point out, though, that

any of the existing approaches can be used in conjunction with

our indexing structure.

It is worth noticing that given the distributed and failure-

prone nature of WSNs, our approach defines two levels of

replication. The first consists of the replication of cluster’s

information at every sensor that play the role of a CH. The

second consists of the replication of a subset of clusterData

at the parent CH. Both have been designed to minimize the

number of inter-sensor communication for processing both

spatial and data queries as described in Section III-C. In

addition, our replication and storage models may constitute

the basis for fault-tolerant clustering with incremental updates.

Although one can advocate that the cost of replication is too

high to be practical in the context of WSNs, we argue that

this is not the case for urban sensing environments, which are

read-intensive, and where sensing data are likely to remain

stable for periods of time.

C. Query Processing

In this section, we present a search algorithm based on our

index structure. Recall that value-based queries are defined as

queries that return the set of sensors (and their associated in-

formation) with readings in a given interval. Similarly, spatial

queries return the set of sensors in a given geographical area.

Based on this observation, SIDS has been designed to support

both types of queries by placing CHs on border regions such

that repositories may hold information on as many sensors in

the result set as possible.

The search algorithm explores this idea when choosing a

repository to forward a query in a top-down traversal of the

tree. That is, suppose that the algorithm is visiting a cluster-

head and the query must be forwarded to a subset D of its

children. Given that a cluster does not have a single CH, but

a set of them, we choose the ones that are located in the

same repository. As a result, a single message can be sent

Algorithm search(queryId , entryPoint , upDown, cSet , searchRange)
Input: a searchRange sent to a sensor entryPoint
Output: set of sensors’ locality (or readings) in searchRange

1. if s is not a CH
2. then send to closest CH c of s:
3. search( queryId, entryPoint, up, cSet, searchRange);
4. resultSet ← responses from c; return resultSet;
5. let s be a CH for cluster c in repository r;
6. if s has already executed queryId or c ∈ cSet

7. then discard query; return;
8. (* forwards query upwards*)
9. if s is not the index root node vr and upDown = up

10. then send to parent of s:
11. search( queryId, s, up, cSet, searchRange);

12. (* collects cluster members in searchRange *)

13. resultSet ← {};
14. if mbb (or subtree’s readings) of cluster c intersects searchRange
15. then resultSet ← resultSet ∪ sensors in c with position (or reading)

in searchRange;

16. (* forwards query to CHs in the same repository (rSet)*)

17. for each CH h in the same repository as s
18. do if h is CH for cluster c′ and c′ 6∈ cset
19. then send to h:
20. search( queryId, s, down, cSet∪rSet, searchRange);
21. cSet ← cSet ∪ rSet ;

22. (* finds children with sensors in searchRange *)

23. childCluster ← {};
24. for each cluster c′ that is child of c
25. do if mbb (or subtree readings) of c′ intersects with searchRange

26. then childCluster ← childCluster ∪{c′};
27. childCluster ← childCluster \ cSet;

28. (* finds repositories with largest number of CHs *)

29. destRep ← {};
30. while childCluster 6= {}
31. do for each repository r′

32. do rep[r′] ← set of clusters c′ in childCluster such that r′

contains a CH for c′;
33. destRep← destRep ∪{r′}, where r′ is the repository with rep[r′]

with the largest cardinality or largest number of descendent CHs;
34. childCluster ← childCluster \ rep[destRep];
35. for each repository r′ in destRep

36. do send to r′: search(queryId, s, down, cSet, searchRange);
37. resultSet←responses from parent, clusters in the repository and children;
38. send to entryPoint: resultSet;

Fig. 3. Algorithm for data and spatial search

to the repository, which can then forward it to the CHs that

compose it. An algorithm that implements this idea is given in

Figure 3. Observe that Algorithm search supports both types

of queries. For spatial queries, parameter searchRange refers

to a geographical region, while for value-based queries, it is

a value interval.

The search algorithm considers that the query can be

injected to the WSN from any sensor on the field, which

in the algorithm is denoted as entryPoint. If entryPoint is

not a CH, but a member of cluster c, then it forwards the

query to its closest CH (Lines 1-4). If entryPoint is a CH

then the query is forwarded upwards until it reaches the index

root node, since its ancestors may contain sensors in the

searchRange (Lines 9-15). The query is also forwarded to CHs

in the same repository as the current CH (Lines 17-21). Before

forwarding the query downwards in the tree, the algorithm first

computes in childCluster the subset of its children that may

contain sensors in searchRange (Lines 23-27). Observe that

here the intersection operation refers to value intersection for



value-based queries and geometry overlap for spatial queries.

For determining the repository to which forward the query,

we first associate with every repository r′, a set denoted as

rep[r′] containing all sensors c′ such that c′ is CH for a

cluster in childCluster (Line 32). We then insert in destRep
the repositories containing the largest number of clusters in

the search space (Line 33). The query is then forwarded to

repositories in destRep. The sensor waits for result sets from

its children, parent, and clusters from the same repository

before forwarding them to the sensor from which it received

the query (its previous entryPoint) (Lines 35 to 38).

As an example, consider a spatial query to obtain sensor

readings at the square region that consists of subareas a, b
and c depicted at Figure 1. Suppose the query is injected

to the WSN at sensor s2. Since s2 is not a cluster-head, it

forwards the query message to s68, its closest CH for cluster

A. From s68 the message is forwarded to s99 because both

are members of repository R4. s99 is a CH for D and thus it

already contains sensor readings for subregion c. From s68
query messages are not forwarded to cluster A’s children

because neithermbb(B) normbb(C) intersect the query target.
Following the upward traversal on the tree, the query message

is forwarded to A’s parent, which is the root node vr at sensor

s55. At vr it is determined that its descendents D,E and F
contain mbb that intersect the area of interest. Since sensors

in D have already been obtained from s99 (D is in cSet), then

vr chooses repository R2 to forward a single query message.

This is because R2 contains CHs for both E (s91) and F (s41).

IV. PERFORMANCE EVALUATION

We have conducted simulations in order to determine SIDS

efficacy and compare its cost for processing queries with other

existing models. In order to determine SIDS efficacy, we have

considered three metrics. The first determines the effect of

our similarity-based clustering strategy on the accuracy of the

results returned by spatial queries. The other two tackle the

question of the model’s scalability by determining the cost

of the clustering algorithm and also the storage requirement

on the CHs. In other words, our goal is to determine how

the size of the WSN affects the network deployment, and if

the model is compatible with current sensor devices’ storage

capacity. We have also conducted simulations to compare the

cost of processing queries on SIDS with Peer-tree [12], which

has been for proposed for processing spatial queries, and CAG

[10], proposed for supporting value-based queries. They have

been chosen based on their similarities with SIDS.

A. Simulation Settings

SIDS, Peer-tree, and CAG have been implemented on net-

work simulator NS2 version 2.34, with Destination Sequenced

Distance Vector routing protocol (DSDV). The radio range

of every sensor on the field was set to 30 meters. We have

generated synthetic scenarios where sensors were randomly

placed on the field. Sensors’ readings were generated by

a Matlab tool [20], which has been especially designed to

produce spatially correlated sensor data. The tool receives

as input a correlation coefficient (h) and the size of the

monitoring area (m). It generates as output a matrix D of

dimension m × m, used to determine sensors’ readings as

follows: each sensor s at position (xs, ys) gets as reading the

value at D[⌊xs⌋, ⌊ys⌋]. The correlation coefficient determines

the level of similarity. That is, h = 0 generates data with no

spatial similarity, and higher values of h induces higher spatial

correlation. All simulations described in this section have been

executed on scenarios generated with high correlation (h = 9).
The cost measure is given in number of transmissions (or

hops). Although this metric differs from energy consumption

on absolute values, there is a direct correspondence between

them, since communication cost is usually much higher than

in-place processing cost [21].

Simulation studies for determining precision, clustering and

storage costs considered a 500× 500 square meter monitored

area and five synthetic data sets have been generated with

h = 9 and m = 500. The network density (d), that is, the
number of sensors on the field, varied from 200 to 1000,

with steps of 200, and for each density we’ve generated five

different snapshots of the sensing area, based on each data set.

The following similarity thresholds (τ ) have been considered

for clustering sensors: 0%,1%, 2%, 4%, 6%, 8%, and 10%.

Recall that τ is a user-defined value that in conjunction

with a characteristic reading Cr determine the minimum and

maximum cluster limits.

B. Precision

This simulation has been conducted in order to determine

the accuracy of spatial query results. This is an important

measurement both for analyzing if the clustering strategy is

appropriate for a given application and also for guiding the

choice of the similarity threshold τ . For each combination of

τ and network density (d), 10 spatial queries were injected

to obtain the sensor reading at a given coordinate c = (x, y).
Thus, the total number of queries of the simulation was 350.

The relative error (ǫ) of the result is given by ǫ = |1−(rs/rc)|,
where rc is the actual reading at coordinate c and rs is

the characteristic reading of the cluster that contains the

coordinate, returned as the query result.

Relative errors shown in Figure 4(a) are the average for all

network densities obtained for each value of τ . When τ = 0%
the precision is almost absolute (ǫ = 0.0045%) since in most

cases clusters consist of a single sensor and thus the query

result is obtained from the sensor itself. It can be observed that

the relative error increases with higher values of τ . However,
in most cases, the relative error is at most half of the value

of τ . Indeed, for τ = 4% we have ǫ = 1.6388% and for τ =
10%, ǫ = 3.5952%. This shows that the effect of increasing

the similarity threshold, which may be necessary for coping

with larger sensor density or monitoring area, may impact the

accuracy of the results by only half of the increase on τ . It
is important to point out that the reported relative errors in

these simulations are the maximum that may result from our

clustering model, since we consider that the query result is

based solely on the cluster characteristic reading, without the
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Fig. 4. (a) Relative error of the characteristic reading (b) Cost of clustering (c) Number of clusters

use of any prediction or aggregate operation on actual cluster

members readings.

C. Clustering

In this section we examine the cost of SIDS for sensor clus-

tering at network deployment. To this end, we have collected

the number of hops needed for disseminating a clustering

message on the WSN, collecting all sensors’ readings at the

base station and disseminating the clustering information back

to every sensor. The results shown in Figure 4(b) is the

average number of hops obtained from five simulations for

each combination of τ and d.
When the similarity threshold τ is set to 0% almost all

sensors on the field constitute a singleton sensor cluster.

Indeed, the number of clusters is almost the network density, as

shown in Figure 4(c). Moreover, the number of transmissions

for clustering formation is more than three times the number

of sensors on the field. This is because when collecting

information for clustering, only the sensor with the cluster

characteristic reading sends the cluster members information

back to the base station. Thus, when τ = 0% almost all

sensors send distinct messages back to the base station in

reply to the clustering message. The decrease on the number

of transmissions for larger clusters (and consequent smaller

number of clusters) is also due to the decrease on the messages

sent back to the base station. Since we are considering a

scenario with high level of similarity on sensor readings, this

decrease is considerable even for a similarity threshold of

1%. Indeed, for a density of 200 sensors and τ = 0%, the

number of hops is 833 and the number of clusters is 194.

These values reduce to 543 and 90 for τ = 1%. A steeper drop

can be observed for a density of 1000 sensors: the number of

hops reduces from 4145 to 1938, and the number of clusters

decreases from 848 to 143 for τ = 1%. For larger values of

τ the decrease on these values are not so substantial. These

results show that the expected impact on these two measures

for scenarios with lower levels of similarity on sensor readings

than the one considered in our simulations is the following:

both the number of hops and the number of clusters reduce

with the increase on the similarity threshold τ ; however, the
drop is abrupt for high levels of similarity and easier for lower

levels. Given that smaller number of clusters result in larger

number of cluster members, the question of storage cost on

Density Maximum (bytes) Average (bytes)

200 1882 108,506
400 4828 212,742
600 7150 308,199
800 9678 369,758
1000 11910 414,987

TABLE I
STORAGE COST FOR SIMILARITY THRESHOLD OF 10%.

CHs have an impact on the model’s scalability. Next section

reports simulation results on this issue.

D. Storage

Recall that in SIDS we do not consider the application

of any aggregation operation on data collected from cluster

members. Thus, the results reported in this section consist of

the cost on the CHs for storing both the clustering and in-

dexing structure without any data compression or aggregation

technique. As detailed in Section III-B, the information stored

at a CH h can be divided into two groups: clusterData(h)

and indexData(h). The size of clusterData(h) is 34 bytes in

addition to 12 bytes for each cluster member. The size of

indexData(h) is 8 bytes plus 32 bytes for each child node.
Given that with the similarity threshold of 0% most of

clusters are singleton sets and there is no “island” relationship

to create an index hierarchy, the average storage cost ranges

from 52 bytes for a network of 200 sensors and 54 bytes when

the density increases to 1000. The storage cost increases with

higher similarity thresholds, and the average and maximum

values when τ = 10% is given in Table I. The average cost

on CHs in number of bytes is roughly half the number of

sensors on the field. The maximum storage cost, on the other

hand, ranges from 9 to 12 times the number of sensors. This

is because with the similarity threshold of 10%, almost all

sensors belong to a a single cluster, as shown in Figure 4(c), in

addition to several peripheral smaller clusters. As an example,

the maximum cost for a density of 1000 sensors is a cluster

composed to 949 devices, which requires almost 12 Kb of

storage. Although this cost is significant, the required amount

of storage is feasible for current sensor devices capacity even

for the worst case scenario considered in these simulations.

E. Query Processing

Simulations described in this section compare the cost of

processing queries on SIDS with two existing models: Peer-

tree [12] and CAG [10]. We have considered a 200 × 200
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Fig. 5. Number of hops for processing queries (a) Spatial queries (b) Value-based queries (c) Cumulative cost for value-based queries

square meter sensing area with 100 sensors. Ten different syn-

thetic data sets have been generated using the tool described in

Section IV-A. The values reported in this section correspond

to the average query processing cost over all scenarios. The

sensing area extension, number of sensors, and other simula-

tion settings were chosen based on the experimental evaluation

of CAG, described in [10].

1) Spatial Queries: In this section we compare the cost of

processing spatial queries on SIDS and on Peer-tree. Peer-tree

groups sensors based on their spatial locality and two user-

defined parameters: distance and degree. distance determines

the maximum distance (in hops) a cluster member can be

from its CH, while degree determines the minimum (degree)

and maximum (2 × degree) number of cluster members. In

all experiments, we have set distance to 3 and degree to 7.

Moreover, Peer-tree does not assume the existence of a base

station for generating a tree structure in which the mbb of

a higher-level cluster contains the mbb of its descendants. It

relies on in-network processing, with each sensor searching

for a CH at increasing number of hops.

For determining the cost of processing spatial queries, we

have randomly generated 50 (x, y) coordinates in the sensing

area, and for each of them a query has been injected for

obtaining the reading from the closest sensor to this coordi-

nate. Figure 5(a) presents the average cost collected from 500

executions for each similarity threshold.

Observe that since Peer-tree clustering strategy is not based

on spatial similarity correlation, the query processing cost

does not vary with the similarity threshold τ . The almost

invariant cost for SIDS can be explained as follows. In the

simulations we assume that a query can be injected to the

system at any sensor, and not necessarily from the base station.

For all queries we have chosen the sensor with the smallest

identification (sensor zero) as the one that first receives the

query message. Observe that sensor zero can have been

placed anywhere on the sensor field by our scenario generator.

According to our search algorithm, sensor zero forwards the

query to its CH, which in turn forwards to its parent, until

it reaches the root node, placed at the center of the sensing

area. At each CH the message also traverses the tree top-

down following every cluster with a minimum bounding box

that contains the search coordinate. All these messages are

sent in parallel, and the results are sent back to sensor zero.

Given that CHs are chosen to be closest to the center of the

sensing area, this search path involves a traversal to the center

and one or more back to the borders. Moreover, the size of

the path does not vary much with the number of CHs on this

path. Since the similarity threshold mainly affects the size of

clusters and consequently the number of CHs, they do not have

a big impact on the performance for processing spatial queries.

Observe that although we have chosen to execute queries that

involve a single coordinate, similar results are expected for

queries involving a geographical area.

The results show that the cost for processing spatial queries

on Peer-tree is slightly higher than on SIDS. This is because

Peer-tree chooses CHs randomly, based on the message dis-

semination pattern in the clustering phase. For SIDS, on the

other hand, we induce a traversal towards the center of the

sensing area, by placing the index root at this point, and

choosing repositories with the minimum distance to the root.

2) Value-based Queries: For comparing the cost of pro-

cessing value-based queries on SIDS and on CAG, we have

generated 10 range queries, one for each sensing area scenario.

For determining the maximum cost of this type of query, in

each of them the range interval was set to be the minimum and

maximum sensing values on the entire network. The average

number of hops required for processing a single query is

presented in Figure 5(b).

The clustering strategy adopted by SIDS and CAG are

similar. They are both based on the spatial correlation of sensor

readings, but differ on when clusters are built. In CAG sensor

clustering is executed on demand, at every query injected to the

system. Thus, sensors do not store any clustering information.

When a query is submitted, sensor data are grouped at CHs

based on their current readings and in order to reduce the

number of messages sent back to the base station only CHs

are responsible for this task. SIDS, on the other hand, groups

sensors at the base station at network deployment and stores

clustering and indexing information at CHs pro-actively. SIDS

follows an in-sensor maintenance process whenever a cluster

member reading falls outside the cluster value limits. In the

graph of Figure 5(b), the cost for CAG consists of the number

of transmissions required for clustering sensors and for all CHs

to send the clustering / query result back to the base station.

For SIDS, on the other hand, the total cost for processing

a single query, represented as “SIDS total”, is divided into

two parts: the cost for clustering sensors (“SIDS clustering”),

and the cost for disseminating a query from any sensor



device and sending the result back to this point (“SIDS query

dissemination”). The cost of clustering consists of the number

of transmissions for collecting sensors’ information at the base

station, and sending the clustering and indexing information

back to all devices. Observe that the number of transmission

for clustering alone is higher than the cost for processing

a query on CAG. This is because on CAG, no clustering

information is sent back to the sensors, given that sensors do

not store any clustering information. The query dissemination

cost on SIDS consists of the number of transmissions for

contacting all required repositories, and sending the results

back to the query entry point.

As shown in the graph, the similarity threshold of 0% yields

the highest cost on both models. The number of hops is 387

for CAG and 669 for SIDS, where 546 hops corresponds

to clustering, and 123 hops to the dissemination cost. With

the increase on the similarity threshold, the number of CHs

decreases and so does the total cost on both models. As an

example, when τ = 4%, the average number of clusters is

12 for both models, and the number of hops for processing a

query on CAG is 233, while for SIDS it is 372 hops (328 for

clustering plus 44 for query dissemination).

The total cost for processing a single query is higher on

SIDS than on CAG. However, if a set of queries on the

same sensoring attribute is submitted to the network in a

time interval within which sensor readings updates do not

incur changes on cluster membership, the cost for processing

this set is lower on SIDS. This characteristic is illustrated in

Figure 5(c), which shows the average cost for processing sets

of increasing number of range queries when the similarity

threshold has been set to 4%. In this graph, the cost presented

when the set of queries is zero corresponds to the number

of hops for sensor clustering in each of the models (187

for CAG and 328 for SIDS). Given that CAG follows a re-

active approach for sensor clustering, this cost is replicated for

processing each query in the sequence. Thus, the addition of

a new query in the set increases the total cost by 233 hops.

For SIDS, if no clustering updates are considered, the cost of

an additional query in the set is 44 hops. Thus, the cost for

processing a set of 2 queries on CAG is 466 (233∗2) while on
SIDS, it is 416 (328+44∗2). This shows that for read intensive
applications, SIDS presents a better performance than CAG.

V. CONCLUSION AND FUTURE WORK

In this paper we propose SIDS, a model and indexing struc-

ture to support query processing on WSNs. Our proposal has

been inspired on characteristics usually found in urban sensing

applications, such as spatial correlated data and readings that

change gradually over time. SIDS can efficiently support

both spatial and value-based queries. Results from simulations

show that SIDS presents better performance than Peer-tree for

processing spatial queries. A comparative analysis between

SIDS and CAG shows that SIDS presents better performance

if at least two queries are injected to the system on the same

sensing area snapshot. There are still a number of issues to

investigate in the future. Some of them are related to moving

towards self management and self configuration capabilities,

consider heterogeneity of nodes on the WSN, as well as

experiments with real data sets.
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