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Abstract. Monitoring the traffic of wide area networks consisting of
several autonomous systems connected through a high-speed backbone is
a challenge due to the huge amount of traffic. Keeping logs for obtaining
measurements is unfeasible. This work describes a distributed real-time
strategy for backbone traffic monitoring that does not employ logs and
allows arbitrary metrics to be collected about the traffic of the backbone
as a whole. Traffic is sampled by monitors that are distributed across the
backbone and are accessed by a Stream Processing Engine (SPE). Besides
the distributed monitoring architecture, we present an implementation
(BackStreamDB) that was deployed on a national backbone. Case studies
are described that show the system flexibility. Experiments are reported
in which we evaluated the amount of traffic that can be handled.

1 Introduction

Consider a wide area network, consisting of several Autonomous Systems (AS)
connected through a high-speed backbone. Obtaining information about the net-
work as a whole and about individual components, in particular traffic informa-
tion, is the first step for most of network management tasks. Traffic information
is important for evaluating the performance, monitoring the security and for gen-
erating profiles that can be used by accounting systems. Although a combination
of polling and alarms offered by traditional network management protocols can
be effectively used in certain limited settings, it does not scale well, and cannot
be used for monitoring traffic in large backbones.

One way to gather information about network traffic is by using a sniffer.
Sniffers are able to store and decode all network traffic they see. Although this
may allow the extraction of any type of traffic information, in order to be de-
ployed at a wide area backbone sniffers should obtain the complete network
traffic, and the amount of data to be processed can be overwhelming.

To solve this problem, network vendors have been developing for several years
products that are effective in gathering information on network traffic. Protocols
like Netflow3 and Sflow [13] obtain information at the packet flow level. A “flow”

3 http://www.cisco.com/web/go/netflow



is defined as a set of packets of a given protocol flowing between two endpoints,
each consisting of an IP address and transport-layer port. After the flow infor-
mation is obtained, it is stored in secondary memory, and tools like flow-tools4

and ntop5 can be employed for obtaining information about the traffic. This
approach for network monitoring has several drawbacks. First, the majority of
existing tools require flow data to be stored in order to be analyzed. Depend-
ing on the volume of traffic, this would demand considerable storage space for
keeping logs, and possibly a tool for managing the log size, such as RRD6. In
addition, since data flows are not processed at the time they are processed by
routers, flow measurements are not provided in real-time. This may have an im-
pact on important network administration tasks, such as the detection of traffic
anomalies generated by port sweeps or port scans. Second, both ntop and flow-
tools are based on a limited set of predefined metrics. Although they are meant
to cover a large number of network administration needs, it is quite common for
network administrators to develop scripts in order to obtain additional monitor-
ing information. However, this approach does not exempt flow traffic from being
stored, and does not provide results in real-time.

In this paper we propose a distributed architecture for integrating Stream
Processing Engines (SPE) and flow monitoring tools within a framework de-
veloped for large-scale backbones consisting of multiple autonomous systems.
SPEs [10] were developed to provide the same basic features found in traditional
Database Management Systems, but operations are executed in real time on con-
tinuous data streams. In our case the data stream is the network traffic itself.
We have implemented a system, called BackStreamDB, based on the proposed
architecture. In this system, metrics of interest to the network administrator
are expressed in a high level SQL-like language. This allows arbitrary queries to
be issued about the traffic that is flowing across the whole backbone, in which
flow data sources may be geographically distributed. Query results are provided
in real time, and can refer to either a particular segment, or to a set of (or
all) autonomous systems of the backbone. This approach of defining metrics as
queries allows modifications and improvements to be easily made on the fly by
just executing a different query.

In addition, one of the most significant contributions of the system is that ar-
bitrary measures can be obtained without storing any traffic logs. As the amount
of traffic in these systems is huge, existing passive monitoring strategies that rely
on logs [4, 8] are hardly able to offer similar functionality. Another key advan-
tage of the proposed strategy is extensibility. In its current implementation,
BackStreamDB monitors a backbone using Netflow records as source data. It
extends our previous work [11], in which we propose a system to monitor local
segments at the packet level. Thus, the system can provide a general framework
for monitoring a network, in which the administrator issues queries to gather
measurements from both local and wide area networks using the same language.

4 http://www.splintered.net/sw/flow-tools/
5 http://www.ntop.org
6 http://ee-sta~ethz.ch/~oetiker/webtools/rrdtool/



BackStreamDB has been tested on the Brazilian RNP backbone7, showing
the feasibility of the proposed approach. Case studies are described that show the
system flexibility. Experiments are reported in which we evaluated the amount
of traffic that can be handled. The main contributions of this paper are:

– An architecture for distributed traffic monitoring based on a Stream Process-
ing Engine and flow processing protocols, integrated to a multi-AS backbone
traffic monitoring framework;

– Development of a distributed traffic monitoring system based on the pro-
posed architecture. It allows arbitrary queries about the traffic on a wide
area backbone to be processed in real time;

– Experimental deployment of the system on the Brazilian national RNP back-
bone and analysis of results on real datasets.

The rest of this paper is organized as follows. Section 2 presents an architec-
ture for traffic monitoring based on SPEs, and BackStreamDB, the system built
based on the proposed architecture. Section 3 presents experimental results and
Section 4 describes related work. The conclusion follows in Section 5.

2 An Architecture for Backbone Traffic Monitoring

The distributed monitoring architecture we propose allows a network adminis-
trator to issue arbitrary queries to obtain network traffic information from a
multi-AS backbone. Different granularity are permitted as monitored objects
may range from individual segments to the backbone as a whole. Data is ob-
tained from multiple flow data sources that are geographically distributed across
the network, and traffic information is obtained and processed in a distributed
fashion in real time. This strategy is scalable, as it is possible to accommodate in-
creasingly larger traffic loads by changing the system configuration to distribute
data to other existing nodes in the network.

The architecture is shown in Figure 1. SPE (Stream Processing Engine) nodes
are deployed for processing queries, and the system has three other main com-
ponents: acquisition modules, universal receiver (ureceiver), and global catalog,
that are described below. Acquisition modules are in charge of receiving flow
data and of converting them to SPE conformant format. The data is then sent
to one or more SPE nodes for query processing. An SPE node can either process
the entire query or forward partial results to be processed by another SPE node.
The final query results are sent to ureceiver. The acquisition modules are thus
responsible for the interface between data sources and SPEs. A ureceiver (uni-
versal receiver) is responsible for the interface between SPEs and visualization
tools. Query results can also be stored for historical purposes. In short, ureceiver
is responsible for consuming data produced by SPEs and forwarding them to
appropriate applications. Information about queries that are being processed by
SPEs are stored on the third component of the system: the global catalog. For
each query the catalog maintains the query definition and information specifying
the SPE nodes which are executing the query.

There is a large spectrum of possible system configurations, ranging from a
fully distributed system in which each module is assigned to a distinct node, to

7 http://www.rnp.br



Fig. 1. Architecture for traffic monitoring based on SPE and flow protocol.

a centralized system, in which a single node runs all modules. Ideally, when data
sources are geographically distributed, both an acquisition module and an SPE
node should be deployed close to the source. In this way, source data can be
locally filtered by the SPE node, reducing the volume of data to be transmitted
among SPE nodes and the ureceiver.

Query results can be either accessed in real time by a network administrator
with visualization tools, or can also be stored if required. Since the system does
not log flow data, but only query results that have been individually specified
by the administrator, BackStreamDB can drastically reduce the storage cost.
Query definitions are fed to the system by a Query Register Tool in a high-level
query language, which makes queries easy to maintain.

2.1 BackStreamDB

A distributed monitoring system called BackStreamDB was implemented based
on the proposed architecture. Borealis [1] was chosen as the SPE. The main
reason for this choice is that its distributed nature enables a set of SPE nodes
to be deployed across the network, and in particular, close to data sources.
The Borealis component called BigGiantHead is used to deploy a query on SPE
nodes. The BigGiantHead can be executed in either transient or “daemon” mode.
In transient mode, the application is invoked only to send control data to SPEs,
and then quits. Control data include assignment of query tasks to SPEs, and data
flow information. In “daemon” mode it continuously listens for query invocation
requests and sends the control data accordingly to SPEs.

Currently, BackStreamDB processes Netflow data. In the current system,
the acquisition module obtains data using the New Netflow Collector (NNFC)8.
NNFC is a tool for capturing and storing Netflow data sent by a router. An
NNFC plugin was developed to allow communication using Internet Process
Communication (IPC) with flowsender, an application we developed for trans-
lating and forwarding data to Borealis SPEs.

BackStreamDB can be easily extended to support other formats besides Net-
flow. A new input format can be configured in a way that is similar to defining a
new schema for databases, or wrappers to exchange data between applications.
This process involves: specification of the Borealis input format, and develop-
ment of an application for translating data collected from the source to the new
format in the acquisition module.

8 http://sourceforge.net/projects/nnfc
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Fig. 2. (a)Query that generates a traffic matrix. (b)Anomaly detection query.

Query results produced by SPE nodes are sent to a ureceiver. In the stan-
dard Borealis distribution it is necessary to develop a new receiver application
for each distinct query result format. This is because Borealis outputs results
in binary format, and the receiver is responsible for decoding these values into
typed output fields. We have changed this approach by coding the ureceiver

with the capability to infer the output format based on the query definition.
As a result, the system does not have to be recompiled when new query results
are defined, as in the standard Borealis distribution. When invoked, ureceiver
waits for a connection from a Borealis SPE, and when new query results arrive,
they are output either in text or graphical form by a visualization tool.

For the query language, we employ the same language adopted by Borealis,
in which queries are expressed in an XML document, containing input, out-
put, and query definitions. BackStreamDB’s query register tool reads the XML
document, stores the information in the global catalog, and communicates with
BigGiantHead through the network in order to deploy the execution of queries
on different nodes. For showing the generality of the proposed architecture and
system, we next present how one can easily build a traffic matrix and detect
traffic anomaly using BackStreamDB.

Traffic Matrix A traffic matrix shows the amount of traffic transmitted among
all possible pairs of nodes of a given network. It provides useful information for
defining routing policies and for taking traffic engineering decisions. Building a
traffic matrix with BackStreamDB is simply a matter of configuring the system
to aggregate the records by source and destination AS while summing up the
octets, as depicted in Figure 2(a). Here, we use a graphical representation of a
query, in which each box executes an operation supported by the query language.
First, the query computes the sum of octets in Netflow records with the same
source and destination autonomous systems, src AS and dst AS, respectively,
generating a result every 300 seconds. Then, a union operator is applied to
combine the results in a single output stream.

Traffic Anomaly Detection It is possible to use BackStreamDB to detect
traffic anomalies such as port sweeps or port scans. A very common type of
network probing consists of sending packets to all hosts on a given network
in order to find the active and working ones. This probe can be characterized
by packet flows consisting of one single packet; that is, usually the probing
host sends just one ICMP or UDP packet. A query for detecting this kind of
anomaly is shown in Figure 2(b). First, flows are filtered, selecting only those
that consist of one single packet (pkt == 1). These flows are then grouped by



source (src ip) and destination IPs (dst ip). In order to count the number of
distinct destinations of packet flows sent from a single source, we regroup them
considering only the source IP. The result is the number of one packet flows sent
by distinct source addresses. This result can then be filtered considering a given
threshold. In our example, only source addresses issuing at least 500 probes are
considered suspicious, and are reported in the query result.

These two examples show the expressive power of the system’s query lan-
guage, and the flexibility of the proposed system, which has several applications.
In the next section, we present experimental results that show that it is feasible
to deploy BackStreamDB for monitoring the traffic of a wide area network.

3 Experimental Evaluation
In order to validate BackStreamDB three experiments were executed and are
described below. These experiments show the amount of traffic the system is
able to handle in terms of Netflow records.

Experiment 1: Single Node, Synthetic Traffic The first experiment in-
volved a single node processing synthetic traffic, which we fully controlled in
order to check whether results generated by BackStreamDB were as expected.
This experiment also allowed the evaluation of how much traffic could be pro-
cessed by an SPE. Two hosts were employed, a processing node and a client node.
The processing node was an Athlon XP 2600+ with 1 GB of RAM. We imple-
mented and used a tool (dummysender) for generating synthetic Netflow data.
The client node, which executed the BigGiantHead, dummysender, flowsender
and ureceiver applications, was a 900MHz Celeron CPU with 2GB of RAM.
Both computers were connected to a 100Mbps Ethernet LAN. The traffic rate
generated ranged from 1,000 to 4,000 Netflow records per second, using steps of
1,000 records. The SPE executed a simple but useful query which computes the
number of packets processed within an interval (window) of 10 seconds. Since we
knew the expected results in advance, it was straightforward to verify the results.
The experiment was repeated 10 times for each record rate, and the results were
accurate for all record rates up to 35,000 records per second, approximately. At
rates above this point the SPE entered an error state and crashed. The same
experiment was later executed using a faster processor, a 2GHz Core 2 Duo ma-
chine with 1GB of RAM. In this case we were able to achieve accurate results
for rates up to 60,000 records per second.

Experiment 2: Multiple Nodes, Synthetic Traffic In order to simulate an
environment similar to the Brazilian RNP backbone, with several geographically
distributed Autonomous Systems, we have deployed multiple SPE nodes, each
of them capturing a distinct stream of Netflow records, as illustrated in Figure
3(a). Similar to the first experiment, we considered a synthetic load generated
by dummysender, and employed 3 processing nodes and one client node. The
processing nodes were based on Athlon XP processors (models 2600+, 2400+ and
2200+) each with 1GB of RAM. The client node (executing BigGiantHead and
ureceiver applications) was the same one employed in the previous experiment,
featuring a 900MHz Celeron processor with 2GB of RAM. All computers were
connected to a 100Mbps Ethernet LAN.
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Fig. 3. (a)Experiments with synthetic traffic. (b)Results generated on real traffic.

The same query employed in the first experiment was issued in this case:
the number of packets processed within 10 seconds window. However, in this
experiment each node processes only the locally generated records. Partial results
were then sent by each processing node to a node elected to produce the final
result. On each processing node we generated traffic at a rate of 30,000 records
per second, which was correctly summed up by the elected node, which produced
the output of 90,000 records at all repetitions of the experiment. Observe that
similar rates are expected for processing queries as the ones illustrated in Figures
2(a) and 2(b). For 2(a), the grouping and sum of octets could be locally executed
at each processing node, and only the union of all results at the client node. For
distributing the query on Figure 2(b), the filtering and the first grouping and
counting operations could be executed locally at each processing node, while the
second aggregation and filtering operations at the client. This experiment results
show that BackStreamDB scales well, and is capable of processing heavier traffic
loads by adding new processing nodes to the system.

Experiment 3: Multiple Nodes, Real Traffic The goal of the third exper-
iment was to evaluate the tool with a real traffic load. This experiment was
conducted at the Brazilian Research Network (RNP), using traffic flow data col-
lected at the Parana state Point of Presence (PoP-PR). Traffic information was
collected with Nprobe, an application that collects traffic from a mirrored port
of a border switch, and outputs a Netflow stream. Nprobe was configured to
send a copy of the Netflow stream to our acquisition application, and also to
an application for storing the data. The processor that collects Netflow streams
produces output data in intervals of 5 minutes, the standard window size for
this kind of application. We have issued queries to generate results in the same
window size by BackStreamDB. This allows a straightforward verification of the
results, with a direct comparison with the expected results generated from stored
data. The real traffic load differs from the synthetic load of Experiments 1 and 2
described above because of its high variance. While the synthetic load is a con-
tinuous stream, the real load oscillates from very low rates to occasional bursts
containing a large number of packets. Records were sent to BackStreamDB at
intervals of 30 seconds.



The traffic processed by Nprobe was around 1Gbps, which corresponds to
100,000 packets per second. When this traffic is transformed to Netflow, about
one million records are generated every 5 minutes. We used the same query of
the other experiments. The processing node was a 2GHz Core 2 Duo CPU with
1GB of RAM. Figure 3(b) shows the total number of records produced by Back-
StreamDB and also the values obtained by processing the Netflow files for an
interval of one hour. It can be observed that the results are not identical through-
out the experiment. There are two reasons for this difference. First, there is a
small difference on the total number of records stored on the file, and processed
by BackStreamDB. While BackStreamDB processed 14,160,930 records during
an hour, the file contained 14,799,980 records, resulting in a difference of 0.1%
records, possibly due to the loss of a few UDP packets, which is the transport
protocol employed to carry Netflow data. The second reason is that the appli-
cation that collects Netflow records uses the machine local time to determine
its window, while BackStreamDB uses the timestamp from the record itself. So
it is possible that the set of records processed in each system on a given time
window is not the same. This can be evidenced on the graphic, which shows a
smaller number of records in a time frame, followed by a time frame with larger
number of records. However, during the entire experiment, this difference was at
most 5.2%, which happened around the 40th minute. This experiment showed
that BackStreamDB was able to monitor the traffic of a high-speed national
backbone, providing real time measurements that were consistent with the ones
generated from stored data.

4 Related Work

Several existing network management and traffic monitoring tools can be consid-
ered to be related to this work. An extensive list can be found in [6]. Among the
tools that process Netflow, one of the first distributed as open source is cflowd9,
which later originated flowscan10. In [8] the authors argue that tools for packet
analysis do not scale well for high speed networks and propose a framework
for monitoring backbones in real time which is based on Netflow. The frame-
work has a centralized architecture, and requires users to write plugins for each
monitoring task. In [12], a tool which collects Netflow data and export them in
pcap format is described. Such data can then be used as input to Wireshark11

to obtain analytical information. Ntop12 is a tool that can be used both for
packet analysis and for flow management, using a Netflow/Sflow plugin. It is
possible to generate various types of reports and graphics using Ntop, but they
are limited to the predefined metrics provided by the tool, i.e. arbitrary queries
are not supported. Another system for traffic monitoring based on Netflow is
presented in [4]. That system captures Netflow records which are then stored in
an Oracle Database. Databases allow arbitrary queries to be issued on the stored
data. However, this approach still requires a considerable amount of storage, as

9 http://www.caida.org/tools/measurement/cflowd
10 http://www.caida.org/tools/utilities/flowscan/
11 http://www.wireshark.org
12 http://www.ntop.org



opposed to on-the-fly stream processing. The authors of SMART [15] argue that
traditional Netflow tools that store collected data on disk for later processing
are not efficient for large-scale network traffic monitoring. They propose an in
memory storage in order to process data efficiently. The reported results in terms
of Netflow records processed per second - thirty thousand records per second -
is very close to what we have achieved using an SPE, as detailed in Section 3.

Borealis is a second generation distributed SPE. Other prototypes have been
developed in the context of TelegraphCQ [5] and STREAM [3] projects. Gigas-
cope [7] is a system which uses an SPE tailored for high speed network mon-
itoring. Although reported results are promising, Gigascope is a proprietary
(AT&T’s) commercial product. Motivated by the possibility of developing an
open source SPE for traffic monitoring, the authors of [14] describe a case study
using TelegraphCQ SPE [5]. It involved a functionality analysis to determine
whether the SPE can be used to provide the same metrics of T-RAT, a tool
developed for analyzing TCP packet traces. The results obtained in terms of
traffic volume were modest, but it can be considered a seminal work, in which
a single centralized SPE is applied for network management. MaD-WiSe [2] is
a distributed monitoring system for managing data streams generated by wire-
less sensor networks. Our previous work, PaQueT [11], has been proposed to
monitor a single network segment, generating packet level metrics. Moreover,
PaQueT has not been designed as a distributed system in which modules with
specific functionalities can be spread over a wide area network. Some of the main
features of BackStreamDB include the following: it allows data gathering from
multiple data sources and features distributed processing at multiple nodes. It
is also based on an architecture with separate modules for data acquisition and
query result treatment, and is able to process data in Netflow format, considering
the whole backbone.

5 Conclusion
In this paper we proposed an architecture for real time backbone traffic moni-
toring that provides arbitrary measurements about individual segments or the
backbone as a whole. The strategy is based on both flow protocols and stream
processing engines and does not require traffic logs to be stored. The distributed
nature of the proposed system is scalable as depending on the amount of traffic,
more nodes can be deployed for monitoring tasks. BackStreamDB is an imple-
mentation of the proposed strategy, based on Borealis SPE and Netflow. Back-
StreamDB was deployed and validated on the Brazilian national RNP backbone.
An experimental study involving both synthetic as well as real traffic shows that
the approach is feasible and dependable, generating consistent results in both
settings. BackStreamDB was able to process a workload of one million Netflow
records of real traffic in intervals of five minutes. To highlight the system func-
tionality in order to show how it can help network administrators to fulfill their
tasks, case studies were presented for computing a traffic matrix, and detecting
traffic signatures.

We are currently developing a version of BackStreamDB to be a service
provider in the PerfSONAR framework [9], a service-oriented architecture for
multi-domain network monitoring.
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