Reasoning about Nested Functional Dependencies *

Carmem S. Hara'and Susan B. Davidson

Dept. of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104-6389
Phone (215) 898-3490, Fax (215) 898-0587

Email: chara@saul.cis.upenn.edu, susanQ@central.cis.upenn.edu

Abstract

Functional dependencies add semantics to a database schema,
and are useful for studying various problems, such as
database design, query optimization and how dependencies
are carried into a view. In the context of a nested relational
model, these dependencies can be extended by using path
expressions instead of attribute names, resulting in a class
of dependencies that we call nested functional dependencies
(NFDs). NFDs define a natural class of dependencies in
complex data structures; in particular they allow the specifi-
cation of many useful intra- and inter-set dependencies (i.e.,
dependencies that are local to a set and dependencies that
require consistency between sets). Such constraints cannot
be captured by existing notions of functional, multi-valued,
or join dependencies.

This paper presents the definition of NFDs and gives
their meaning by translation to logic. It then presents a
sound and complete set of eight inference rules for NFDs,
and discusses approaches to handling the existence of empty
sets in instances. Empty sets add complexity in reasoning
since formulas such as Vx € R.P(x) are trivially true when
R is empty. This axiomatization represents a first step in
reasoning about constraints on data warehouse applications,
where both the source and target databases support complex

types.

1 Introduction

Dependencies add semantics to a database schema
and are useful for studying various problems such as
database design, query optimization and how depen-
dencies are carried into a view. In the context of the re-

This research was supported in part by DOE DE-FG02-94-
ER-61923 Sub 1, NSF BIR94-02292 PRIME, ARO DAAH04-93-
G0129, and ARPA N00014-94-1-1086.

Partially supported by CNPg-Brazil, and Universidade Fed-
eral do Parana.

lational model, a wide variety of dependencies have been
studied, such as functional, multivalued, join and inclu-
sion dependencies (see [14, 2] for excellent overviews of
this work). However, apart from notions of key con-
straints and inclusion dependencies [5, 16], dependen-
cies in richer models than the relational model have not
been as thoroughly studied.

Complex data models are, however, heavily used
within biomedical and other scientific database appli-
cations. Reasoning about dependencies within these
applications is becoming increasingly important as
schemas get larger, queries span multiple complex
databases, and new databases are created as materi-
alized views. For example, if a new database is created
as a materialized view over multiple complex databases,
knowing how dependencies are carried into this com-
plex view could eliminate expensive checking as the new
database is created and later updated.

We therefore start attacking this problem by defining
a notion of functional dependency for the nested
relational model together with inference rules for these
dependencies. We are considering the nested relational
model, where set and tuple constructors are required
to alternate, mainly for simplicity, but relaxing this
assumption does not significantly change the inference
rules. Since in this model attributes of a relation may
be sets rather than atomic types, dependencies may
traverse into various levels of nesting through paths.
We call this new form of functional dependencies nested
functional dependencies (NFDs).

As an example of what we would like to be able
to express, consider a type Course defined as a set
of records with attributes cnum, time, students, and
books, where students is a set of records with labels
sid, age, and grade, and books is a set of records with
labels isbn, and title:

Course : {<cnum, time
students : {<sid, age, grade>},
books : {<isbn, title>}>}.

Some nested functional dependencies that we would
like to be able to express for Course are:

1. cnum is a key.

2. Every Course instance is consistent on their assign-
ment of title to a given isbn.

3. In a given course, each student gets a single grade.

4. Every Course instance is consistent on their assign-
ment of age to sid.

5. A student cannot be enrolled in courses that overlap
on time.

Note that there are “local” dependencies, such as
dependency 3 where a student can have only one
grade for a given course but may have different
grades for distinct courses. There are also “global”
dependencies such as dependencies 2 and 4, where
the assignment of title to an isbn and age to sid
must be consistent throughout the Course relation.
Dependency 5 illustrates how an attribute from an outer
level of nesting may be determined by attributes in a
deeper level of nesting. Note that even if every level of
nesting presents a “key” as suggested in [1], this type
of dependency is not captured by the structure of the
data.

Our definition of NFDs can also be used to express
other interesting properties of sets. For example, they
can be used to state that some fields in a set valued
attribute are required to be disjoint, or that a set is
expected to be a singleton. In AceDB [18], a database
which is very popular among biologists, every attribute
is defined as a set. This is useful in applications where
the database is sparsely populated and evolves over
time, since empty sets can model optional or undefined
attributes. However, some attributes can be specified to
be (maximally) singleton sets. In order to reason about
constraints in this model, it is therefore important to be
able to express the fact that a set must be a singleton.
The importance of singleton sets is also evident in [7],
which investigates when functional dependencies are
maintained or destroyed when relations are nested and
unnested. In most cases, this relies on knowing whether
a set is a singleton or multivalued.

One of the most interesting questions involving
dependencies is that of logical implication, i.e., deciding
if a new dependency holds given a set of existing
dependencies. For functional dependencies in the
relational model, this problem has been addressed from
two different perspectives: a decision procedure called
the tableau chase, and a sound and complete set of
inference rules called Armstrong’s axioms.

As an example of an inference we might want to
make over the complex type Course, suppose we have
a database DBCourse which is known to satisfy all
the dependencies listed above. We wish to know if in
DBCourse, given a student ID sid, and a time, there is

a unique set of books used by the student at that time.
Reasoning intuitively, the answer is affirmative since a
student can be enrolled in only one course cnum in a
given time, and cnum, which is a key, determines a set
books. However, it would be useful to have a technique
and inference rules to prove this.

The development of inference rules is important for
many reasons [4]: First, it helps us gain insight into the
dependencies. Second, it may help in discovering effi-
cient decision procedures for the implication problem.
Third, it provides tools to operate on dependencies. For
example, in the relational model, it provides the basis
for testing equivalence preserving transformations, such
as lossless-join decomposition, and dependency preserv-
ing decomposition, which lead to the definition of nor-
mal forms of relations, a somewhat more mechanical
way to produce a database design [19].

We therefore focus in this paper on the development
of a sound and complete set of inference rules for NFDs.
However, the presence of empty sets in instances causes
serious problems in developing such rules since formulas
such as Vx € R.P(x) are trivially true when R is empty.
We therefore initially restrict the inference problem to
the case where empty sets cannot occur in any instance,
and then suggest how this assumption can be relaxed
by specifying where empty sets are known not to occur.

The remainder of the paper is organized as follows:
Section 2 describes our nested relational model, the
definition of nested functional dependencies in this
model, and their translation into logic. We also contrast
our approach to others taken in the literature. Section
3 presents the axiomatization of NFDs, illustrates their
use on some examples, and discusses how empty sets in
instances can cause problems. Section 4 concludes the
paper and discusses some future work.

2 Functional Dependencies for the
Nested Relation Model

The nested relational model has been well studied (see
[2] for an overview). It extends the relational model by
allowing the type of an attribute to be a set of records
or a base type, rather than requiring it to be a base
type (First Normal Form). For simplicity, we use the
strict definition of the nested model and require that
set and tuple constructors alternate, i.e. there are no
sets of sets or tuples with a tuple component, although
allowing nested records or sets does not substantially
change the results established. For ease of presentation,
we also assume that there are no repeated labels in a
type, i.e., <A :int, B : {<A : int>}> is not allowed.

An example of a nested relation was given by C'ourse
in the previous section.

More formally, a nested relational database R is a
finite set of relation names, ranged over by Rj, Ra,.. ..
A is a fixed countable set of labels, ranged over by

Ap,As, ..., and B is a fixed finite set of base types,
ranged over by b, ...

The data types Types are as follows:

Tu=b|{r} | <41 :7,..., An >

Here, b are base types, e.g. boolean, integer and
string. The notation {w} represents a set with elements
of type w, where w must be a record type. <a;
Ti,y-..,Gn : Tp> represents a record type with fields
Ay,..., A, of types 7,...,T,, respectively. Each 7;
must either be a base or a set type.

A database schema is a pair (R,S), where R is a
finite set of relation names, and S is a schema mapping

S : R — Types, such that for any R € R, R > 7R
where 7% is a set of records in its outermost level.

A database instance of a database schema (R,S)
is a record I with labels in R such that wg! is in [S(R)]
(we assume the natural denotation for types) for each
ReR.

As an example, if ({Course},S) is a schema where

S(Course) = {<cnum : string,
time : int,
students : {<sid : int,
grade : string>}>}.

Then the following is an example of an instance of this
schema:

<Course —{<cnum — ”¢isb50”,
time — 10,
students — {<sid — 1001,
grade — 7 A”>,
<std — 2002,
grade — "B7>}>,
<cnum — " ¢is5007,
time — 12,
students — {<sid — 1001,
grade — 7 A”>}>1>

2.1 Nested Functional Dependencies

The natural extension of a functional dependency
X — A for the nested relational model is to allow
path expressions in X and A instead of attributes. That
is, X is a set of paths and A is a single path. As
an example, the requirement that a student’s age in
Course be consistent throughout the database could be
written as Course : [students : sid — students : age],
where “:” indicates traversal inside a set. Note that
we have enclosed the dependency in square brackets “[]”
and appended the name of the nested relation, Course.

We start by giving a very general definition of path
expressions, and narrow them to be well-defined by a
given type.

Definition 2.1 Let A = Ay, A, ... be a set of labels.
A path expression is a string over the alphabet
AU{:}. € denotes the empty path. A path expression
p is well-typed with respect to type T if

® D=¢€, or

o p=Ap' and T is a record type <A : 7',...> and p'
is well-typed with respect to 7', or

e p= :p and T is a set type {7’} and p' is well-typed
with respect to '.

As an example, A : B is well-typed with respect to

<A : {<B : int,C : int>}>, but not with respect to
<A :int>.
The semantics of path expressions is given by:
f[eel = [e]
[Ae] = [e]l(4)
undefined, if [e] = {}
[: e] = [e1], otherwise, where [e1]

is an element of [e]

Note that the value of a path expression that
traverses into an empty set is undefined, i.e., it does
not yield a value in the database domain. We say that
a path expression p is well defined on v if it always
yields a value in the database domain.

As an example, if

v=<A~ {<B~10,C ~ 20>,
<B+15,C +— 21>}>

then

o A(v) ={<B+ 10,C + 20>,
<B+~15,C +— 21>}

e A:B(v)=100r A: B(v) =15

To help define nested functional dependencies, we
introduce the notion of path prefix.

Definition 2.2 Path expression p; is o prefix of ps if
p2 = p1ph. Path p1 is o proper prefix of ps if p1 is a
prefiz of pa and p1 # po.

With this notion, we are now in a position to define
nested functional dependencies (NFDs), and how an
instance is said to satisfy an NFD.

Definition 2.3 Let SC = (R,S) be a schema. A
nested functional dependency (NFD) over SC is
an expression of the form xg : [T1,...,Zm-1 = ZTm),
m > 1, such that all z;, 0 < i < m, are path expressions
of the form A} : ... : AL, ki > 1, where zo = Ry,
ReR, andy : x;,1 < i < m, are well-typed path
expressions with respect to 7.

In general, the base path o can be an arbitrary path
rather than just a relation name. For the degenerate
case where m = 1, i.e. the NFD is of form zg : [} = 2.,],
then in any value of zg, : 2, must be a constant.

Definition 2.4 Let f = zg : [T1,--.,Zm—1 — Tm] be
an NFD over schema SC, I an instance of SC, and
v1,vs two values of xo : (I) in the database domain. I
satisfies f, denoted I |= f, if for all vi,vs, whenever

1. z;(v1) = zi(v2) for all 1 <i < m, and

2. for every path x which is a common prefiz of z;,x;,
1 <4,j <m, z(vi) coincide in x;(v1) and z;(v1)
and x(v2) coincide in x;(v2) and xj(v2) (i.e. x; and
z; follow the same path up to x in v and in vy)

then
Tm (V1) = T (v2)

If for some z;, 1 < i < m, =z;(v1), or z;(ve) is
undefined, we say f is trivially true.

Our definition of NFDs is very broad, and captures
many natural constraints. As an example, we can
precisely state the constraints on Course described in
the introduction.

Example 2.1 In Course, cnum is a key.

Course : [cnum — time)]
Course : [cnum — students]
Course : [cnum — books]

Example 2.2 For any two instances in Course, if
they agree on isbn for some element of books then they
must also agree on title for that element of books.
Course : [books : isbn — books : title]

Example 2.3 In a given course, each student gets a
single grade.

Course : students : [sid — grade]

Note that in this example, sid is a “local” key to
grade; this illustrates the use of a path rather than just
a relation name outside the “[]”. Contrast this to the
previous example, where the NFD requires that isbn
and title be consistent throughout the database.

Example 2.4 Every Course instance is consistent
on their assignment of age to sid.

Course : [students : sid — students : age]

Example 2.5 A student cannot be enrolled in
courses that overlap on time.

Course : [time, students : sid — cnum)

Some interesting properties of sets can also be
expressed by NFDs. For example, if an instance I
satisfies an NFD of the form zg : [z1 : 2 — 1], then
given two values vy, vs of xg : x1(I), either v; = vy, or
U1 n Vg = @1.

As an example, suppose that a university’s courses
database is defined as Courses : {<school, scourses :

INote that values of xg : x1(I) must be of set type.

A B E
C|D F |G
11113 5| 6
5 | 7
C|D F |G
2122 3| 4
113 4 | 4

Figure 1: An instance that violates R: [B: C — E : F).

{<enum, time>}>}, and it satisfies the NFD Courses :
[scourses : cnum — school]. We can conclude that
schools in the university do not share course numbers,
because the existence of the same cnum in different
schools would violate the NFD.

NFDs can also express that if a set is not empty then
it must be a singleton. Le., if an instance I satisfies an
NFD of the form zg : [21,...,Zm — Z, : A], where z,
is not a proper prefix of any z;, 1 < i < m, then for
any value v of 2o : (I) in which paths z; ...z, are well-
defined, all elements e of z,,(v) have the same value for
A(e).

For example, let R be a relation with schema {<A :
{<B :int,C :int>},D :int>}. f R: [D - A : B], and
R : [D — A : C], then it must be the case that A is
either empty, or a singleton set, since for every value of
A all elements agree on the values of B and C. Since
these are the only attributes in A, then A has a single
element.

It should be noted that our definition also allows
some unintuitive NFDs. For example, assume R :
{<A,B : {<C,D>},E : {<F,G>}>}. Then the NFD
R:[B:C — E: F] implies that:

e all tuples <F,G> in E have the same value for F
when B is not empty, and

¢ if any tuple <C, D> in B agrees on the value of C,
then the elements <F,G> in E must have the same
value for F'.

Figure 1 shows an instance of R that does not satisfy
R:[B:C — E : F]. If we only consider the first
line in the table, the NFD is satisfied since all values
of attribute F' coincide, i.e. B : C = 1 determines
E : F = 5. The existence of more than one value for F’
automatically invalidates the constraint because a single
value in C' would be related to distinct values in F' as
in the second line. The second line also violates the
dependency because it has a value in B : C that also
appears in the first line, but has a different value for
E:F.

2.2 NFDs expressed in logic

In the relational model, a functional dependency Course :

[cnum — time, students] can be understood as the fol-
lowing formula:

Ver € Course Yeg € Course
(¢1.cnum = ¢o.cnum) —
(c1.time = co.time A ¢ .students = co.students)

There is also a precise translation of NFDs to logic.
Intuitively, given an NFD R : [21...Zpm—1 — Tp], we
introduce two universally quantified variables for R and
for each set-valued attribute in zy ...z,; The body of
the formula is an implication where the antecedent is
the conjunction of equalities of the last attributes in
Z1...Tm—1 and the consequence is an equality of the
last attribute in x,,.

As an example, Course [students sid —
students : age] can be translated to the following
formula:

Ve € Course Yes € Course
Vs1 € ¢1.students Vsy € cy.students.
(s1.51d = s5.51d — s1.age = sy.age)

To formalize this translation, we define functions var,

and parent. Let SC = (R,S) be a schema, I an
instance of SC, and f = z¢ : [21...Zm—1 — Tm] be
an NFD defined over SC, where z; = A} : ... : A} ,

0<i<m,and A9 =R, ReR.
Define var as a function that maps labels to variable
names as follows:

e for each label A in 7 that appears in some path z;,
0 < i < m, var(A) = va. Recall that we assume
labels cannot be repeated.

The function parent maps a label to the variable
defined for its parent as follows:

o for all Af, 1 <i < m, parent(A}) = var(A4Y),), ie.,
the parent of the first labels in paths z; . ..z, is the
variable associated with the last label in path zg.

. parent(A§-+1) = var(A;'-). Let {A7... A7} be the
set of such A; labels, i.e., the set of labels that have
some descendent in a path expression.

Also, let parent(A9).A9 = R. Then f is equivalent
to the following logic formula:

V’UA? € parent(AJ).A? ...
V’UAg . Eparent(Ago_l).Ago_l
VvAg Eparent(Ago).Ago Vvig Eparent(Ago).Ago
\7’1}?4; € parent(A})'. A} vaq 06 parent(A})2.A7 ...
\7’11114; € parent(A})'.A; Vvi; € parent(A})*. A}
((true A
parent(Ag,)'.Ag, = parent(Ag,)?.Ap, AL A

parent(AZ:;_ll)1 .A;"":_ll = parent(A;c”":_l1)2.AZ:_11)
%
(parent(Af) ! Ay = parent(AL,)2 A)

Note that only one variable is mapped to each
label in A9,..., A9 whereas two variables are used
elsewhere.

Using this translation, examples 2. 2 and 2. 3 can
be expressed as:

0—1

e Course : [books : isbn — books : title]
Ve; € Course Yeg € Course
Vb, € ¢;.books Vb € c.books.
(b1-isbn = ba.isbn — by.title = by.title)

Note that books is referred to twice in the depen-
dency, but that only two variables for books are in-
troduced in the logical form.

o Course : students : [sid — grade]
Ve € Course
Vs1 € c.students Vso € c.students
(s1.8id = s9.51d — s1.grade = sy.grade)

Note that only one variable is introduced for labels
in zo (except for the last label), and that two
variables are introduced for all other labels.

2.3 Discussion

In the definition of NFDs, the base path can be an ar-
bitrary path rather than just a relation name. The
motivation for allowing this is to syntactically differ-
entiate between local and global functional dependen-
cies: R: A : [B — (] is a local functional depen-
dency in A, while R : [A : B —» A : (] defines a
global dependency between B and C. However, the
local dependency is provably equivalent? to the depen-
dency R:[A, A: B — A: (). Intuitively, by requiring
equality on A (as a set), the dependency between B and
C becomes local to the set. Therefore, the expressive
power of NFDs with arbitrary paths and relation names
as base paths are the same. However, we believe that
the first form is more intuitive.

Most of the early work on functional dependencies for
the nested relational model either used the definition of
functional dependencies given for the relational model
[15], or proposed a simple extension to allow equality
on sets [12]. Our definition clearly subsumes these
definitions.

The idea of extending functional dependencies to
allow path expressions instead of simple attribute
names has been investigated by Weddell [21] in the
context of an object-oriented data model. While this
work supports a data model of classes, where each
class is associated with a simple type (a flat record
type), our model supports a nested relational model

2The equivalence of these two forms is proved in the next
section.

with arbitrary levels of nesting. In [21], following a
path entails an implicit “dereference” operation, while
in NFDs following a path means traversal into an
element of a nested set. We believe these two works
are complementary and that it would be interesting to
investigate how the two approaches could be combined
into a single framework.

3 Inference Rules for NFDs Without
Empty Sets

One of the most interesting questions involving NFDs is
that of logical implication, i.e., deciding if a new depen-
dency holds given a set of existing dependencies. This
problem can be addressed from two perspectives: One
is to develop algorithms to decide logical implication,
for example, tableau chase techniques (see [13] for the
relational model, and more recently [16, 17] for a com-
plex object model). The other is to develop inference
rules that allow us to derive new dependencies from the
given ones.

In this section, we present a sound and complete set
of inference rules for NFDs in the restricted case in
which no empty sets are present in any instance. The
extension to allow empty sets in instances is discussed
in detail in Section 3.2.

The implication problem for NFDs that we are
considering is therefore defined as:

Definition 3.1 Let SC be a schema, ¥ be a set of
NFDs over SC, and o an NFD over SC. X logically
implies o under SC, denoted ¥ |Egc o if for all
instances I of SC with no empty sets, I = X implies

IEo.

3.1 NFD Rules

Conceptually, the NFD rules can be broken up into
three categories: The first three mirror Armstrong’s
axioms — reflexivity, augmentation and transitivity. The
next two — push-in and pull-out — transform between
the alternate forms of NFDs discussed at the end of
the last section.? The last three rules allow inferences
based solely on the nested form of the data — locality,
singleton, and prefix.

In the following, z,y,2,Zp,21,... are path expres-
sions, and Ai, As,...,B1,Bs,... are attribute labels.
XY denotes X |JY, where X,Y are sets of path ex-
pressions, and z : X denotes the set {z : z1,...z : x4},
where X = {z1,..., 21}

The NFD-rules are:

e reflexivity:
if x € X then zo : [X — z].

3A discussion of why we don’t adopt a simpler form of NFDs
which would eliminate these two rules is deferred to Section 3.2.

e augmentation:
if 2o : [X — 2] then x : [XY — 2].

¢ transitivity:
ifzg: [X = z1],...,20 : [X = zy),
xg - [:vl,...,:vn—>y]
then zg : [X — y].

e push-in:
ifrg:y:[X = 2] thenzo: [y, y: X = y:2]

e pull-out:
ifxg: [y, y: X > y:2]thenzg:y:[X — 2]

e locality:
ifxg:[A: X, By,...,Br, = A: 2]
then zg : A: [X — 2].

singleton: if

Lazg:[z—ax:A,...
2. type of z is {<A;,...Ap>}

Lo 5 [=z Ay

then zg : [z : A1,...,2: Ay — 7]
e prefix: if

1. zo:[z1: A, Zay..., 21 = Y]
2. x1 has one or more labels

3. z1 is not prefix of y
then zg : [21, Za2,...,Zr = Y]

Theorem 3.1 Let SC be a schema. The NFD-rules
are sound and complete for logical implication of NFDs
under SC for the case when no empty sets are present
in any instance.

Proof OQutline: Soundness can be easily verified.
For completeness, we assume that the domain of all base
types are infinite, and use the standard form of proof.
Let SC = (R,S). We introduce the notion of a closure
of a set of path expressions X with respect to a base
path 2o and a set of NFDs ¥, denoted as (xo, X, X)*,
as the set of paths zg : ¢ such that z¢ : g is a well-typed
path with respect to some R € R and zo : [X — ¢] can
be derived from the NFD-rules. Then an instance I is
built such that I satisfies ¥, but not 2o : [X — y] if
2o : Yy & (20, X, X)*. The construction of I is described
in Appendix A.

As an example of the use of the NFD-rules, let R
be a relation with schema {<A : {<B : {<C>},E :
{<F,G>}>},D>}, on which the following NFDs are
defined:

(nfdl) R:[A:B:C, D—> A:E:F)
(nfd2) R: A:[B— E: (]

We claim that R : A : [B — E]. The proof is as

follows:

1. R: A:[B:C — E: F] by locality of nfdl.

The locality rule allows us to derive a local NFD
from a global one by dismissing the attributes
outside the level of nesting of the local NFD. In the
example above, note that for any element in R, given
a value of A there exists a unique value of D, since
they are labels in a record type. Therefore, locally
for any valueof A, B:C - E : F.

2. R: A:[B — E: F] by prefix rule on (1).

(1) states that whenever two tuples in R have a
common value for C' in the set B, then the value
of E : F must also agree. In particular, if two tuples
agree on the value of B then they present a common
element, since we assumed that there are no empty
sets in instances of R.

3. R: A: E: [} —» F] by locality of (2).

If in any tuple in R : A the value of B determines
the value of E : F', then all elements in E must agree
on the value of F, otherwise (2) would be violated.
Therefore, locally in any A : E the value of F is
constant.

4. R: A:[E — E : F] by push-in.

If the value of F' is constant inside any value of
A : E, then for any given value of A : E there
exists a unique value of F. Therefore, the whole
set determines the value of F.

5. R: A: E: [} — G] by locality of nfd2.
6. R: A:[E — E : G] by push-in.

7. R:A:[E:F, E:G — E] by singleton with (4)
and (6).

Since the value of the set E determines the value of
each of its attributes, then E must be a singleton.
Therefore, the values of its unique element deter-
mines the value of the set.

8. R: A:[B — E] by transitivity with (7), (2), and
nfd2.

3.2 Discussion

Simple NFDs. Note that push-in and pull-out sim-
ply change between equivalent forms of NFDs. I.e., an
NFD of form R : y : [#1,...,2r — 2] is equivalent to
R:ly, y:z1,...,y:x = y: 2z]. Therefore, we could
change the definition of an NFD to allow only relation
names as the base path (z¢) of an NFD, without chang-
ing its expressive power.

In this simpler form of NFDs, it can be shown that
there are only six inference rules: push-in and pull-out
are unnecessary. Of the remaining rules, only locality
must be modified to what we call full-locality: if

l.zgo:[z:X,Y - z:2]
2. x is not a proper prefix of any y € Y

then zo : [z, z: X -z : 2].

Note that full-locality combines the pull-out and lo-
cality rules. As an example of the need to use full-
locality rather than locality, consider the following:

Example 3.1 Let f; bethe NFD R:[A:B:C, A:
D — A: B : E]. Applying the locality rule, we can
get R:[A, A:B:C, A: D — A: B : E], but not
R:[A:B, A:B:C — A: B : E]. The latter is
derivable using full-locality.

Although the simpler form of NFDs yields a smaller
set of axioms, we believe that the first form, which
allows an arbitrary base path, is more intuitive since it
makes a syntactic distinction between inter- and intra-
set dependencies.

The Problem of Empty Sets. As mentioned ear-
lier, the presence of empty sets causes difficulties in rea-
soning since formulas such as Vz € R.P(z) are trivially
true when R is empty. In particular, the transitivity
rule is no longer sound in the presence of empty sets, as
illustrated below.

Example 3.2 The instance of R below satisfies R :
[A—->B:C],R:[B:C — D], but not R:[A — DJ.

A B D E
1] 2 3
1] 3 4
2 {<C:3>} 4 5

One reasonable solution to this problem is to disallow
empty sets only in certain portions of the schema;
this is analogous to specifying NON-NULL for certain
attributes in a relational schema. The transitivity rule
can then be modified to reason about where empty sets
are known not to occur. We do this by introducing a
new relation follow between paths.

Definition 3.2 Path expression p; follows ps if p1 =
piA, and p| is a proper prefiz of ps.

Intuitively, p; follows po if it only traverses the set-
valued attributes traversed by p». For example, a path
A follows any path p, |[p| > 1, since A = €A, and € is a
proper prefix of any path. A path A : B follows A : B,
A:C:D,but not A, E, and F : G.

The new transitivity rule is then defined as: if

1. 2o : [X = z1],...,20 : [X = zy],
wg:[xl,...,xn—)y]

2. for all pin {z1,...,z,} — X, if p does not follow y,
then p is known not to be an empty set

then zg : [X — y].

The fact that transitivity does not generally hold
in the presence of empty sets has also influenced our
definition of NFDs to allow only single paths on the
right-hand side of functional dependencies rather than
sets of paths.

Recall that in the relational model, a functional
dependency (FD) X — Y, where X,Y are sets of
attributes, can be decomposed into a set of FDs
with single attributes on the right-hand side of the
implication. Unfortunately, the decomposition rule
follows from reflexivity and transitivity and cannot
therefore be uniformly applied with NFDs in the
presence of empty sets.

The presence of empty sets also affects the prefix
rule. Consider the instance I presented in Example
3. 2. Notice that I satisfies R : [B : C — E], but not
R : [B — E]. A modified prefix rule to take this into
account is: if

1. zo:[z1: A, To,..., 2k — Y]
2. x1 has one or more labels, and z; is not prefix of y
3. z1 is not an empty set

then zg : [21, T2,...,2Zk = Y]

4 Conclusion

We have presented a definition of functional dependen-
cies (NFD) for the nested relation model. NFDs nat-
urally extend the definition of functional dependencies
for the relational model by using path expressions in-
stead of attribute names. The meaning of NFDs was
given by defining their translation to logic.

NFDs provide a framework for expressing a natural
class of dependencies in complex data structures.
Moreover, they can be used to reason about constraints
on data integration applications, where both sources
and target databases support complex types.

We presented a set of inference rules for NFDs that
are sound and complete for the case when no empty sets
are present. Although for simplicity we have adopted
the nested relational model, and the syntax of NFDs
is closely related to this model, allowing nested records
or sets would not change the inference rules presented
significantly. However, new rules would have to be
added to consider path expressions of record types as
the current syntax only allows path expressions of set
and base types. As an example, we would need a rule
that states that if in R z is a path of type <A1, ..., A,>,
then R : [z.4:...2.A4, — z], where “.” indicates record
projection.

In [7], Fischer, Saxton, Thomas and Van Gucht
investigate how nesting defined on a normalized rela-
tion destroys or preserves functional and multivalued

dependencies; they also present results on the interac-
tion of inter- and intra-set dependencies. Their results
are based on case studies of the cardinality of relations,
and of the containment relation between the set of at-
tributes over which the nesting is defined and the set
of attributes involved in the dependency. Many results
depend on the fact that a nested relation is a singleton
set. In our definition of NFDs, both inter- and intra-set
dependencies can be expressed. NFDs can also express
that a given set is expected to be a singleton. As a
result, our work generalizes their results by providing a
general framework to reason about interactions between
nesting and functional dependencies.

In future work, we intend to investigate a relaxation
of the assumption that no empty sets are present in
any instance, by requiring the user to define which set-
valued paths are known to have at least one element.
We believe this is a natural requirement to make, since
definition of cardinality has long been recognized as
integral part of schema design [6] and is part of the
DDL syntax for SQL (NON-NULL). Generalizing the
inference rules to this case would allow us to reason
about constraints for a larger family of instances.

The tableaux chase has been used as a decision proce-
dure for functional dependencies in the relational model
[13], and extended to determine logical implication on
views [10]. We are currently working on an extension
of the tableau technique to determine view dependen-
cies for NFDs. A definition of tableaux for the nested
relational model has been proposed in [16], and we
are using it to develop a transformation rule to chase
nested tableaux with NFDs. We believe that the in-
sights gained with the axiomatization presented in this
paper will be of significant benefit.

Acknowledgments

The authors thank Val Tannen, Peter Buneman and
Dan Suciu for numerous fruitful discussions and sug-
gestions.

References

[1] S. Abiteboul, N. Bidoit. “Non first normal form
relations: An algebra allowing restructuring”. Journal
of Computer and System Sciences, 33(3): 361-390,
1986.

[2] S. Abiteboul, R. Hull, V. Vianu. Foundations of
Databases. Addison-Wesley Publishing Company, 1995.

[3] A.V. Aho, Y. Sagiv, J.D. Ullman. “Equivalences among
relational expressions”. STAM Journal of Computing,
8(2):218-246, May 1979.

[4] C. Beeri, M.V. Vardi. “Formal systems for tuple and
equality generating dependencies”. SIAM Journal of
Computing, 13(1):76-98, February 1984.

[5] P. Buneman, W. Fan, S. Weinstein. “Path Constraints
on Semistructured and Structured Data”. In Proceed-
ings of the Seventeenth Symposium on Principles of
Database Systems, 1998.

[6] P.P. Chen. “The entity-relationship model - Toward a
unified view of data”. ACM Transactions on Database
Systems, 1:9-36, 1976.

[7] P.C. Fischer, P.C., L.V. Saxton, S.J. Thomas, D.
Van Gucht. “Interactions between Dependencies and
Nested Relational Structures”. Journal of Computer
and System Sciences, 31: 343-354, 1985.

[8] C. Hara, S. Davidson. “Inference rules for nested
functional dependencies”. Technical Report MS-CIS-
98-19. University of Pennsylvania. 1998.

[9] A. Klug. “Calculating Constraints on Relational Ex-
pressions”. ACM Transactions on Database Systems,
5(3):260-290, September 1980.

[10] A. Klug, R. Price. “Determining View Dependencies
Using Tableaux”. ACM Transactions on Database
Systemns, 7(3):361-380, September 1982.

[11] A. Kosky. Transforming Databases with Recursive Data
Structures. Ph.D. Thesis, University of Pennsylvania,
1996.

[12] A. Makinouchi. “A consideration on normal form of
not-necessarily-normalized relation in the relational
data model”. In Proceedings of the International Con-
ference on Very Large Databases, pp. 447-453, 1977.

[13] D. Maier, A. Mendelzon, Y. Sagiv. “Testing Implica-
tions of Data Dependencies”. ACM Transactions on
Database Systems, 4(4): 455-469, December 1979.

[14] D. Maier. The Theory of Relational Databases. Com-
puter Science Press, Inc., 1983

[15] Z.M. Ozsoyoglu, L.-Y. Yuan. “A new normal form
for nested relations”. ACM Transactions on Database
Systems, 12(1):111-136, March 1987.

[16] L. Popa. “A Language for Nested Tableaux”. draft.
University of Pennsylvania, 1998.

[17] L. Popa, V. Tannen. “An Equational Chase for Path-
Conjunctive Queries, Constraints, and Views”. Pro-
ceedings of ICDT’99.

[18] J. Thierry-Mieg, R. Durbin. “Syntactic Definitions for
the ACEDB Data Base Manager”. Technical report,
MRC Laboratory for Molecular Biology, Cambridge.
1992.

[19] J.D. Ullman. Principles of Database Systems, Second
Edition. Computer Science Press, 1983.

[20] G. Weddell. “A theory of functional dependencies for
object-oriented data models”. In Deductive an Object-
Oriented Databases, Eds. W. Kim, J.-M. Nicolas,
S. Nishio, Elsevier Science Publishers B.V. (North-
Holland), 1990, pp. 165-184.

[21] G. Weddell. “Reasoning about Functional Dependen-
cies Generalized for Semantic Data Models”. ACM
Transactions on Database Systems, 17(1): 32-64 ,
March 1992.

[22] L. Wong. Querying Nested Collections. Ph.D. Thesis,
University of Pennsylvania, 1994.

[23] M. Zloof. “Query-by-Example: the invocation and
definition of tables and forms”. In Proceedings of ACM
International Conference on Very Large Databases, pp.
1-24, September 1975.

A Completeness of NFDs

In this section we describe the construction of the
instance I that is the basis for the completeness proof.
First, we need to define the set of paths in a schema.

Definition A.1 Let SC = (R,S) be a schema. Then
the paths of SC, denoted as Paths(SC), is the set of
all path expressions p = Rp', such that R € R, and p'
is well-typed with respect to T®. Similarly, the paths of
R, R € R, denoted as Pathssc(R), is the set of paths
p such that p € Paths(SC), and p = Rp'.

Let SC = (R,S) be a schema, ¥ a set of NFDs over
SC, X a set of paths such that X C Paths(R), R € R,
and zo a path in Paths(R). The construction of an
instance I of R such that I =X, but I [£ zg : [X — z]
if 2o : 2 & (w0, X,)¢ is as follows. We assume that
the domain of all base types are infinite, and to make
the exposition simpler, we consider a unique base type
b in our data model.

Construction of I: Let closure be (x¢,X,X)
where 2o = Rzj. wvalue(p) are global variables. If p
is a set of records and in its construction value(p') is
used (this happens when p is prefix of p') then value(p')
should be thought as a placeholder until its value is
evaluated.

*,SC
)

val := newValue();
for all p € closure

value(p) := assignVal(val, p);
I := assignXo(R);

The auxiliary functions are defined as:

newValue(): returns a fresh new value in the
domain of b.

assignX_0(p): it is a function that starts the
construction of instance I by assigning new fresh values
to every path that is not a prefix of zg. r is a
local variable of type <Aji,...A,>, where type of p is
{<A41,... Ap>}.

if p = zo then return assignVal(0, zo);
for each A;,1<i<n
if p: A; is prefix of zo then
r.A; .= assignXo(p: A;);
else
r.A; .= assignNew(p : A;);
return {r};

assignVal (val, p): it is a function that gives a value
val for a path p depending on the type of p in a schema,
SC. 71, and 7o are local variables of type t, where the

type of p is {t}.

if typesc(p) = b then return val;
if typesc(p) = {b} then return {val};
if typesc(p) = {<A1,..., Ax>} then
forall 4;,1<i<n
if p: A; € closure then
r1.A; := value(p : A;);
re.A; := value(p : As);
else
r1.4; := assignNew(p : A;);
ro.A; := assignNew(p : A;);
return {ri,r2};

assignNew (p): it is a function that gives a new
fresh value for a path p, p & closure, depending on the
type of p in a schema SC. If type of p is {t}, then r is
a local variable of type t.

if typesc(p) = b then return newValue();
if typesc(p) = {b} then return {newValue()};
if typesc(p) = {<A1,...,A,>} then
forall A;,1<i<nmn
if p: A; € closure then
r.A; .= value(p : A;)
else r.A; 1= assignNew(p : A;)
if {p:Ai,...,p: An} C closure then
return {r, newRow(p, (p,0)*)}
else
return {r}

newRow(p, sameVal): The type of pis {<Ay,... Ap>},

where p € closure, and for all A;, 1 < i < n,
p: A; € closure. This function returns a record, where
the value of 4;, 1 < i < n is set to value(p : A;) if
p: A; € sameVal, otherwise A; is given a new fresh
value. r is a local variable of type <Ay,... A,>

for all label A;, 1 <i<n
if p: A; € sameVal then
r.A; := value(p : A;);
else
if typesc(p : A;) = b then
r.A; .= newValue();
if typesc(p : A;) = {b} then
r.A; == {newValue()};
if typesc(p : Ai) = {<Bi,...,Br>} then
r.A; := {newRow(p : A;, sameVal)};

return r;

Lemma A.1 Let X be a set of paths, xo a path, and X
a set of NFDs. If I is an instance built as described
above, then I |E X, and I (£ =z : [X — y] if
To:yY ¢ ($07X7 E)*

To illustrate the algorithm described consider the
following examples.

Example A.1 Let R be a relation with schema
{<A,B : {<C>},D,E : {<F,G>},H : {<J,L>},I,M :
{<N,0>}>}. The set X of NFDs defined for R are:

:[A— B:C]
:[B:C — D]
:[D— E: F|
[A—= E: G|
:[B:C — H]
(I — H:J]

I=vli=vii=vii=vii=v i~V

Then, (R,{B},X)* ={R:B,R: B:C,R: D,R:
E:FR:HR:H:J} Thefolowing instance is
constructed using the algorithm presented.

A|B|D| E H I M

C F|1G|J]L N]|O

3[0|of[o0[5 |01 |{r}[9 |10
012

c F|G|J]|L N|oO

4f0|o0o[0[6]0]1]{8 [1]12
0|2

Example A.2 Let R be a relation with schema
{<A : {<B : {<C,D,E : {<F,G>}>}>},H>}. The set
3 of NFDs defined for R are:

R:[A:B:C— A:B]

R:[A:B:C—»>A:B:E:F|
R:[H— A:B:D

Then, (R,{A:B:C},X)*={R:A:B:C,R: A:
B,R: A:B:D,R:A:B:E:F} Thefolowing
instance is constructed using the algorithm presented.

A H
B
C|D| E
F | G
0jo0f(0]1 11
F | G
0100 2
B
C|D| E
F | G
3105 |6
B
C|D| E
F | G
00|01 |12
F| G
0]0 0] 2
B
C|D| FE
F | G
7101910

