A Model for XML Instance Level Integration
Aldo Monteiro do Nascimentad', Carmem S. Hara

!Departamento de Informatica — Universidade Federal darRafUFPR)
Caixa Postal 19.081 — 81.531-990 — Curitiba — PR — Brasil

{al do, carnmemi@ nf. ufpr. br

Abstract. There are two major problems for merging instances fromedhfit
sources in order to build a datawarehouse: entity identtfma ambiguity and
attribute value conflict. In this paper we propose a data nholdat facilitates
the resolution of value attribute conflicts by explicitlypresenting them in the
integrated schema. In this model, the datawarehouse is ab x&¢ populated
with data imported from one or more XML sources, and nodesaaretated
with provenance information. The purpose of annotationwdfold: first, they
represent the origin of every element in the datawarehod$gs information
is essential for determining the quality and amount of ts¢ places on the
data. Second, they allow the portion of source XML tree usqebpulate the
warehouse to be reconstructed. This capability is impdrthone needs the
original document to compare with new releases from the ssonece in order
to incrementally update the warehouse. Algorithms for pajng the ware-
house according to the proposed model and for reconstrgdtie source data
are presented. We also report results from an experimeitalysconducted to
determine the impact of the annotations on the size of thelvaoarse.

1. Introduction

Cooperation between institutions from the same area andfev@ distinct areas has cre-
ated the need for building databases that store large amsotiimtformation on a specific
subject. One approach to accomplish this task is to buddtawarehouseA dataware-
house is an integrated repository of data generated from ymaaurces
[Pokorny 2002]. Usually, distinct data sources store datdifferent models and struc-
tures. Moreover, data that refer to the same entity in thewedd may have different
representations in each source. Thus, in order to succeedihining data, the dataware-
house has to rely on its flexibility.

XML is a semi-structured data model that has become the elomth in data and
document management systems because of its capabilitypofsenting irregular data
while keeping the data structure as much as it exists [Sawiral. 2005]. XML flexi-
bility allows documents to be extended or reduced to desardmtent of any size, even
when the structure of the document changes. Combining teebaologies, dataware-
house and XML, is a step towards obtaining the flexibilitytthavarehouse application
needs. A number of XML datawarehouses have been proposied literature. Some ad-
dress the problem of schema matching and integration [Xg28901, Draper et al. 2001,
Rundensteiner et al. 2000], while others concentrate danee level integration. There
are two major problems for combining instances from différesources
[Prabhakar et al. 1993]: entity identification ambiguitgaitribute value conflict. These
are problems that in recent literature have been addressedlat cleaning

[Rahm and Do 2000]. Entity identification refers to the pesblof identifying overlap-
ping data in different sources. It has been the purpose ehskte research on the rela-
tional [Limetal. 1996], entity-relationship [Menestrieaal. 2006], and XML
[Poggi and Abiteboul 2005] data models. Attribute valueftiorrefers to the problem of
two or more sources containing information on the sameyeatiattribute, but with con-
flicting values. Some existing approaches for addressisgtioblem include data profil-
ing, data mining, and constraint-based techniques [Pkalrle al. 1993]
[Rahm and Do 2000].

In this paper we propose a data model that facilitates résalwf value at-
tribute conflicts by explicitly representing them in theegtated schema. As an exam-
ple, consider two data sources on the domain of produatstifited in Figure 1(a) and
(b). The document denoted &ur ce 1 contains information on products obtained
from an online store, whil&our ce 2 contains information provided by a manufac-
turer. A mapping fromSour ce 1 to a datawarehouse with the structure depicted in
Figure 1(c) defines thahane of thest or e is mapped to thet or e of apr oduct'’s
quot at i on; ani t emsold by the store is mapped tgpaoduct , and its subelements
manuf act urer, nodel andcol or are mapped ter oduct’s subelements; the
pri ce of thei t em on the other hand, is placed undegw@ot at i on element. We de-
fine a mapping fronSour ce 2 to the datawarehouse in a similar way. Given that in the
datawarehouse we define that whenever two products agreeeomanuf act ur er
andnodel they refer to the same entity in the real world, the resultieg is given
by Figure 1(c). This can be expressed as XML keys [Bunemah 2082a] defined on
the datawarehouse. That rsanuf act ur er andnodel are keys forpr oduct , and
therefore whenever two products agree on their values, sheyld be merged in the
datawarehouse.

Observe that the data sources disagree on the color of tliigiroand this is
represented by creating two distinct elements for eacheyals highlighted in the figure.
The goal is to facilitate the process of solving the attézdnflict problem. Conflicts that
have been identified can then be eliminated by a cleaningepsoc

Nodes in our model are annotated with provenance informafidne purpose of
the annotations is twofold: first, we would like to be able &etmine the origin of every
element in the datawarehouse. This information is esddati@determining the quality
and amount of trust one places on the data [Tan 2007], andeasdd as a parameter
for solving a conflict. In the example of Figure 1, one canttthat the color provided
by a manufacturer is accurate, and thus give priority to ¥aisie over the one given
by a store. Second, we would like to be able to reconstrucptivéon of the XML
tree used to populate the warehouse. This reconstructionpertant for automating
the process of updating the warehouse. More specificalgngihe new version of the
document and the reconstructed version, it is possiblet@ miff algorithm to determine
what are their differences. Then, based on the source mgpm system can determine
what are the updates to be applied to the datawarehouse patkee to date. Without
the reconstruction capability, the original document wiolidve to be locally stored for
incrementally updating the warehouse.

Contributions. In this paper we propose a data model for XML instance levid-in
gration. It is a first step towards designing a mechanism @itoraating the process of

1
:
11 12 3

111

223

/\

(b) Tsp from Source 2

13
114 115 (product 2 (product
rco or 11.
1141 1142 quotation A A
source) source
11411 1.1.4.2.1
- .. m — m 1151 1152
"wrist watch” [2.2.1] i, ("black” [1.2.31]) ("slver/black” [2.2.2.21]) store price
o 113
(manufacturér) (modeél) 11511 11521

‘ 11211 1131 ("Watchzone" [1.1.1]) ("830"[1.2.4.1])
("Movado" [1.2.1.1,2.1.1]) ("0605041"[1.2.2.1,2.2.2.1.1])

(c) Datawarehouse §
Figure 1. Merging of two data sources
incrementally updating a datawarehouse based on new mersfesource data. We make
the following contributions:

e adata model for merging source data based on XML Keys [Bunerhal. 2002a]
that explicitly represents value conflicts and allow thersewdocument to be re-
constructed based on provenance annotations;

e algorithms for populating a datawarehouse structuredrdoup to the proposed
model and for reconstructing source data from the warehouse

e an experimental study to determine the impact of provenanoetations on the
size of the datawarehouse.

Organization. The rest of the paper is organized as follows. Section 2ribesca tree
model for XML, and XML Keys. Our proposed model, a mappingjaage for populat-
ing the datawarehouse, and algorithms are presented il®S&ct Experimental results
are given in Section 4, followed by a discussion on relatetkvio Section 5. Section 6
concludes the paper by presenting some future work.

2. Preliminary Definitions
We begin with the definitions of XML trees and the class of XMiyk which will be used
throughout the paper.

2.1. XML Tree

An XML document is typically modeled as a node-labeled tk&e.assume three pairwise
disjoint sets of labelsE of element tagsA of attribute names, and a singleton $&}
denoting text (PCDATA).

Definition 1 An XML treeT is defined to bd" = (source, V, r, id, lab, ele, att, val),
where (1)source is the XML tree source identification; (2) is a set of nodes; (3) is
the unique and distinguished root node;44)s a function that assigns unique identifiers
to nodes inV; given a nodey, id(v) returns a vector that represents the path froimv;

(5) lab is a mappingd” — E U A U {S} which assigns a label to each nodédina node
vin V is called arelementf lab(v) € E, anattributeif lab(v) € A, and a text node if
lab(v) = 8; (6) ele andatt are partial mappings that define the edge relatioh:dbr any
nodev in V,

e if v is an element therle(v) is alist of elements and text nodes Wandatt(v)
is asetof attributes inV; for eachv’ in ele(v) or att(v), v' is called achild of v
and we say that there is a (directed) edge frota v';
e if v is an attribute or a text node thete(v) andatt(v) are undefined;
(7) val is a partial mapping that assigns a string to each attribudetext node: for any
nodev in V, if v is an attribute or text node thenl(v) is a string, andal(v) is undefined
otherwise.

An XML tree has a tree structure, i.e., for eacke V, there is a unique path of
edges from root to v. O

Examples of XML trees are given in Figure 1(a) and (b), whexehenodev is
represented with its identifieid(v)), a label (ab(v)) if it is a an element or attribute
node, and a valuev@l(v)) if it is an attribute or text node. The encoding adopted by
the identifier functionid is calledDewey Ordef Tatarinov et al. 2002], which provides
a global node ordering. In our model, we assume that eachstatae has a distinct
source identifier, and that this value is used as the identifier ofri@ node; that is,
id(r) = source. In our running exampleSour ce 1 has identifier 1, so in Figure 1(a),
id(r) = 1. We define functiorvrigin that receives an identifigrof a node inT, and
returns itssource; that isorigin(i) = source(T).

2.2. XML Keys

Various forms of key specification have been proposed initbkature [Bray et al. 1998,
Fallside 2000]. We use the key specification proposed in fguem et al. 2002a] because
it provides a method for defininglative keys To define a key three things are specified:
1) thecontextin which the key must hold; 2) &rgetset on which we are defining a key;
and 3) thevalueswhich distinguish each element of the target set.

The path language we adopt is a common fragment of regularessipns
[Hopcroft and Ullman 1979] and XPath [Clark and DeRose 1999]

Q == e [L | QQ | [/
wheree is the empty path, is a node label, “/” denotes concatenation of two path expres
sions ¢hild in XPath), and “//" meanslescendant-or-seiih XPath. To avoid confusion
we write P/ /@ for the concatenation aP, // and@. A pathp is a sequence of labels
li/.../l,. We denote byize(p) the number of labels ip. A path expression) de-
fines a set of paths, while//” can match any path. We ugec @ to denote thap is
in the set of paths defined kiy. For example,/product/quotation/store € //store.
Given an XML treeT, we denote byPaths(T') the set of paths ifl. As an example,
let T be the XML tree depicted in Figure 1(a). Thétths(T) = {/, /name, [item,

Jitem/manufacturer, /item/model, [item/color, /item/price}.
Following the syntax of [Buneman et al. 2002a] we write an Xkéy as:

2 (Qb (QQ’ {Ph i '>Pp}))
whereyp is the key identifier, path expressiofs and(), are the context and target path
expressions respectively, afy, ..., P, are the key paths. For the purposes of this paper,
we restrict the key paths to be attributedl,, ..., @A, or simple text valued elements. A
key is said to babsolutdf the context patt), is the empty path, andrelativeotherwise.

Example 1 Consider the XML tree in Figure 1(c). Some keys that can bexddfon this
tree are:

o K : (¢, (product,{manufacturer,model})): in the context of the entire docu-
ment ¢ denotes the root), pr oduct is identified by itsmanuf act ur er and
nodel number;

o K, : (/product, (quotation, {store})): within the context of any subtree rooted
atapr oduct node, aquot at i on is identified by itsst or e name.

e K3 : (//product, (type,{})): eachproduct has at most on¢ype; simi-
larly, K, : (//product, (color,{})) for the col or of thepr oduct, and K :
(//product/quotation, (price, {})) for thepri ce of aquot at i on. O
To define the meaning of an XML key, we use the following natatin an XML

treeT, n|P]r denotes the set of nodesinthat can be reached by following path expres-
sion P from noden. We also us¢P]; as an abbreviation for] P], wherer is the root
node of the tree. As an example, in Figure 1().product]r,, = {2.2.2,2.2.3}, and
2.2.2[color]ry, = {2.2.2.2}.

Definition 2 An XML tree T satisfiesa keyy : (Q1, (Q2, {F1,..., F,})), denoted by

T | o, iff for any n in [Q]r and anyny, ny in n[Qs]r, (1) n; andn, each has a unique
node reached by following path; for all ¢ € [1,p], and (2) ifval(n,.P;) = val(ne.FP;)
foralli € [1,p] thenn; = n,, whereval(n'. P;) denotes the text value associated with the
single node im/[P;]r. O

The implication problem for this class of XML Keys has beerdr@dsed in
[Davidson et al. 2007]. A set of inference rul&ds defined such that for any st of
XML keys and a single key, it is possible to determine whethErentails,, denoted
asX E ¢, if ¢ can be proved front usingZ. In particular, the definition for key
satisfaction states that every key path is unique underatyet node. Thus, from any

(Q1, (Q2,{P,...,P,})) € ¥we can derive@),/Q, (P;,{})) for everyi € [1,p]. Let
us denote this rule deyValues

Example 2 The XML tree of Fig. 1(c) satisfies all key constraints givarBxample 1.
Moreover, the following keys can be derived applying kegValuesule. FromK; we
can deriveKs : (/product, (manufacturer,{})) andK; : (/product, (model,{})); that
is, everypr oduct has a uniqueranuf act ur er andnodel . Similarly, from K, we
can deriveKy : (/product/quotation, (store,{})). O

3. Datawarehouse

The datawarehouse is an XML tree populated with data imgdrten one or more XML
sources. We assume that the datawarehouse has a fixed semeh®ery element is
identifiable via XML keys. Keys defined on the datawarehoweterthine how to merge
data originated from different sources.

Example 3 Consider the XML keys defined in Example 1, and XML trees depgic
in Figure 1. Observe that according to k&y, in the datawarehousep oduct ele-
ment is uniquely identified by issanuf act ur er andnodel . Suppose we define that
elementmanuf act ur er is populated with nodes reached by following pdthem /
manu facturer from Sour ce 1, and nodes reached by pathame from Sour ce 2;
similarly, elementrodel is populated by nodes reached by following paitem /model
from Sour ce 1 and pathycategory/product/model from Sour ce 2. Then whenever
these two values coincide they are mapped to the same elemtbetdatawarehouse, as
depicted in Figure 1(c). O

In the datawarehouse, leaf nodes are annotated with progemaormation. These
annotations are important not only to determine the origata, but they also allow the
portion of source XML tree used to populate the datawaredtaue reconstructed. Some
functionalities that may be implemented for the datawanskanay require the original
document to be available. Thus, the reconstruction capaisiimportant for reducing the
amount of storage used by the system. One particular proiplevhich this requirement
exists is the process of incrementally updating of the datelaouse when new versions
of source data becomes available. In this scenario, givenetbuilt source data and the
new release, it is possible minimize the number of updatetebgrmining the differences
between the two versions.

Definition 3 A datawarehouse populated from a set of source XML tfeessdefined to
beD = (Tp,Kp), where (1)T, is an XML tree with a set of nodés such that each leaf
nodev € V' is annotated with a set of paif&l,,, p), whereid,, is the identifier of a node
in a source XML tred” € S used to populate, andp is the path ifl” from the root ton;
(2) Kp is the set of XML keys defined dfi,. Every element node iifi, can be uniquely
identified according to keys ik, or have a singl& node as a child. O

As an example, nodes in the datawarehouse depicted in Figayehave been
annotated with node identifiers froBour ce 1 andSour ce 2. Paths traversed from
the root have been omitted for simplicity. Moreover, the skekeys given by Exam-
ple 1 in addition to those defined in Example 2 satisfy the kigniification require-
ment. This requirement is similar to the notionin$ertion-friendlyset of keys defined
in [Buneman et al. 2002a]. Intuitively, every element idierta simple text element or
“keyed” by some values according Iop.

3.1. Mapping Language
In order to describe how data are extracted from the souneedefine a simple language,

which consists of a set of ruleg, < p,, wherepp, is a path in the datawarehouse, and
is a path in the data source.

Example 4 Consider data sourc&our ce 1 and datawarehousk, depicted in Figure
1(a) and (c), respectively. A mapping frddour ce 1 to 7, can be specified as follows.

/product — Jitem

/product/manu facturer <« [item/manufacturer

/product/model — [item/model

/product /color — [item/color

/product /quotation/store « /name

/product/quotation/price < [item/price O

In general, several mappings can be specified to populatéaavaieehouse from
the same or different sources. Each mapping is defined as &/pai (source, R), where
source iS a source identifier, anft is a set of rules. We denote layder (M) the number
of rules in R. Observe that the meaning of a mapping is given by the streictithe
datawarehouse and the set of keys. That is, akey (Q1, (@2, K)) determines that
whenever two nodes; andn, are reached by following a path € @;/Q, and they
agree on the values of thelf subelements, then they should be mapped to the sgme
node in the datawarehouse. Thus, we define the followingicBsh of a well-defined
mapping: ifM = (source, R) is a mapping defined for datawarehouse= (1p, Kp),

andy = (@1, (Q2, K)) is akey inKCp, then for every path, € Paths(Tp) andpyx € K
such thabp € Q1/Q-, there exists arulgp/px < p’ in R for someyp’. Intuitively, this
says that every key in the datawarehouse must be populat@dssme element in a data
source. As an example, the mapping given in Example 4 is deflhred since the key
values defined for the datawarehouse moelel andmanuf act ur er for pr oduct,
andst or e for product/ quot at i on; moreover, the mapping defines that all key
values are populated with data extracted frfSour ce 1.

Despite its simplicity, our mapping language allows unimgstind nesting of
source data, besides projection, union, Cartesian prpdnct join on key values. In
the following sections we provide algorithms for populgtism datawarehouse, and also
for reconstructing a source document from the warehouse.

3.2. Populating the Datawarehouse

The algorithm for populating the datawarehouse consistsvofsteps. First, we build
subtrees structured as the datawarehouse and with valtrasted from a source. Then,
these trees are merged with existing data in the warehowsedacg to their key val-
ues. The pseudo code is presented in Algorithm 1. It takespasg:i a datawarehouse
D = (Tp, Kp), amapping = (source, R), and a source tre€;. The following data
structures are used by the algorithm:

e sourcePath: an array of path&o, p1, - . ., pm|, Wherepy = /, andp;, i € [1,n] are
paths defined on the source data that are used to populatatebause. That is,
they are paths on the right-hand side of ruleginThe list is in prefix order: if
p; = p;/Q for some patl) theni < j. The size of the list is given byrder (M),
which is the number of rules in/.

e dwPath: an array of pathgy, ¢1, . . ., gm], Wheregy = / andg; is a path defined on
the datawarehouse populated with pathrce Pathli]; that is,q; < sourcePathli]
is a rule in the mapping.

e sourceNode: an array of nodegu, ny, ..., n,,| in the data source such thatis
the last node irfsource Pathl[i]]r, visited by the algorithm.

Functionpopul at e first initializes all nodes insourceNode with null values,
and setssourceNode[0] to be the root of the source trég. It then calls function
t ransf or MAndMer ge to build a subtree with nodes storedsinurce Node and merge it
with datawarehouse7, (Lines 2 to 4). Each invocation of function
t ransf or mMAndMer ge looks for a node reached by following pathurce Path[ind]
in the source tred’;, and assign it tasourceNode[ind]. When nodes are assigned for
every element inourceNode then a subtre@” is built by calling functiorcr eat eTr ee
and subsequently merged with the datawarehouse by funotiogeTr ees (Lines 6 to
8). When looking for a node ifisourcePath[ind]]r,, we have to restrict the search space
to the smallest subtree rooted at a node that has alreadysb&wed insource Node. Re-
call that sourcePath is prefix-ordered and functionr ansf or mMAndMer ge considers
elements in the array in ascending order of their indicesenTkhere exists an < ind
such thatsourcePath|a] is the longest prefix obourcePathlind] in the array. More-
over, sourceNode[a] is the root of the subtree in which nodeseached by following
path sourcePath[ind] are searched for (Lines 10 to 13). After assigning a node
sourceNode[ind], functiont r ansf or mMAndMer ge is recursively called for filling up
the sourceNode array (Lines 14 to 16).

Functioncr eat eTr ee builds a tred/” with the structure of the datawarehouse as
specified by the mapping, and extract values from nodesurce Node to populate leaves
in T". It starts by creating the root nodef 7”. Then, for each nodein sourceNode, the
pathpp = /1;/ ... /1, in the warehouse populated withis obtained fromiwPath. If T’
already contains a nodg, reached by following patil,/ . .. /l,, a < m then only nodes
for pathl,, /... /l,, are generated as descendents ofLines 20 to 25). The last node
receives the value extracted from the source tree and paocerdata (attribut@pr ov)
ifitis a leaf node (Lines 26 to 28).

Algorithm 1 Populate Datawarehouse Algorithm
1: function populate O = (Tp, Kp), M = (source, R), Ts)
2. initialize sourceNode array withnull values;

3: sourceNode|0] <= r(Ty);

4: return transformAndMerg€l(p, 1, sourceNode);

5. function transformAndMergeqp, ind, sourceNode)

6: if ind > order(M) then

7 T" <createTreedourceNode);

8: return mergeTreed(, 7", Kp);

9: else
10: let a be the index s.tsource Path[a] is the longest prefix ofource Pathlind);
11: let @ be the path s.tsourcePathlind] = sourcePath[a]/Q;
12: anc < sourceNode|al;
13: V <= anc]Q]r.;
14: for each node in V" do
15: sourceNodelind] < v;
16: Tp < transformAndMergeqp, ind + 1, sourceNode);

17: function createTreedourceNode)
18: create root node of treeT”;
19: for i := 1to order(M) do

20: if sourceNode[i] # null anddwPath[i] # null then

21: let p be the longest prefix afwPath[i] s.t. [p]r is not empty
22: let ny be the single node ifp]

23: let dwPathli] bep/ly/ ... /L,

24: for j :=1tom do

25: create node; in 7" as a child ofn;_; with labell;;

26: if Ap € dwPath s.t. dwPathli] is a prefix ofp then

27: val(n;) < val(sourceNodeli]);

28: n;.Qprov <= {(id(sourceNodeli]), sourcePath|i]};

29: returnT’;

Example 5 Consider again the mapping given in Example 4 &odr ce 1 depicted
in Figure 1(a). ArraysourcePath generated from this mapping consists of the follow-
ing valuesy[/, /item, /item/model, /item/manufacturer, /item/color, [item/price,
/namel]. Similarly, array dwPath contains the following paths: [/, /product,
/product /model, /product/manufacturer, [product/color, [product/quotation/
price, /product /quotation/store]. The content of arrayourceNode after the firsi t em

of Source 1 is traversed by functiam ansf or mAndMer ge is the following: [1, 1.2,
1.2.2,1.2.1,1.2.3, 1.2.4, 1.1]. Based on these nodes and the structure giveduiuth,
functioncr eat eTr ee builds a tree which consists of the following nodes: 1, 1.1,2,
1121,1.13,1131,114,1.14.1.1,1.15,1.158105.1.1,1.1.5.2, 1.1.5.2.1. Here,
we use identifiers of nodes in datawarehoiisalepicted in Figure 1(c). O

Merging XML Trees. The algorithm for merging trees receives two XML trees: the
datawarehous®), and a source tre€; that has already been transformed according to
the datawarehouse schema. The result is the datawarehease,twith elements in

T, merged according to XML keyk defined onD. That is, whenever nodes i and

Tp agree on their key values they are merged into a single onleeirdatawarehouse;
otherwise new elements are created. Value conflicts aresepted by generating two
distinct subelements containing values from both sources.

The pseudocode is given by Algorithm 2. Functioer geTr ees first checks
whether the datawarehouse is empty and if this is the caseotit node is created (Lines
2 and 3). Functiomer geNodes is then called to extract values from each child of the
source’s root and insert them in the datawarehouse (Lines} tThe invoked function
receives the datawarehousg, a nodenp, € V(71), which is the root of the subtree into
which source nodes in the subtree rooted.ain V' (7;) are to be inserted, and a set of
keysK that determine when nodes should be merged. The functidrchiesks whether
source noder, is a text or attribute node. If this is the case, functimr geVal ues
is called (Lines 9 and 10). Recall that every element in thewiarehouse must have
a key according tdC. Thus, ifn, is an element node, the function looks for a node in
the datawarehouse with key values matching those, ofif such a node is found, they
are merged and functiamer geNodes is recursively called for merging their children;
otherwise, the source subtree is copied into the datawasehhines 12 to 21). Function
mer geVal ues is called either to create new attribute or text nodes or topaoe their
values with existing ones, generating nodes that point alutevconflicts if they exist. If
nodenp in the datawarehouse, under which an attribute rneder text nodeS is to be
created, does not have any children with such label, a nevisareated (Line 24 to 28).
Otherwise it is checked if the new value agree with an exgstine in the datawarehouse.
If this is the case, provenance information is inserte@dn(Lines 30 and 31). If this is
not the case, then a value conflict has been detected and aogewvith labelsour ce
is created to identify the conflict (Lines 33 to 37).

Example 6 Consider the XML trees in Figure 1 and XML keys defined in Exé&anip
Suppose that the datawareholsgehas already been populated with all the elements in
Sour ce 1, andSour ce 2 isnow being considered. Recall that before calling furrctio
nmer geTr ees, Sour ce 2 has already been restructured by funciapul at e to ad-
here to the datawarehouse structure. When processingeqouocluct node 2.2.2, it is
checked whether its key values given By : (e, (product, {manu facturer, model}))
match a node in the warehouse. Since this is the case, it geagth node 1.1i7. Re-
cursive calls to functiomer geNodes annotate leaf nodes undeanuf act ur er and
nodel with provenance information. When considering source rooleor (2.2.2.2),
Tp has already been populated with a color node. Sincdkey(//product, (color,{}))
defines that eaclpr oduct contains a single subelemenbl or, when function
mer geVal ues is called, the value in the source does not agree with the baady

Algorithm 2 Merge Algorithm

1: function mergeTreesip, T, K)

if V(Tp) ={} /*the datawarehouse is emptyttien
3 create root nodep, of Tpp; elserp < r(1p);

4. rg<=r(Ty);

5. for n € children(rs) do

6

7

Tp < mergeNoded p, rp, Ts, n, K);
return?’p;

8: function mergeNodes(p, np, T, ns, K)
9: if n,is atext or attribute nodénen

10: Tp <= mergeValuesp, np, T, ng, pathy);

11: else

12: let path, be the path from the root &f, to n,;

13: let pathp be the path from the root af, to np;

14: let P be the path such thatths = pathp/P;

15: keyPaths < {p | K = (Q1,(Q2, K)), paths € Q1/Q2,p € K};

16: if there existsy in np[P]r, s.t. for allk € keyPaths val(n.k) = val(ns.k)
then

17: for each node’ € children(ns) do

18: Tp < mergeNoded(p, n, T,, ', K);

19: else

20: copy the subtree rooted af to 7p;

21: insertn, in children(np);

22: returnTp;

23: function mergeValueslp, np, T, ng, p)

24: if n, is an attribute node such that= p’/Qa then

25: ps <= Qa; else p, < S;

26: nodesp < np[ps]r, Unp[source/ps]ry,;

27: if nodesp = {} /* no attribute or value element *then

28: copyn, to Tp and insert it as a child ofp;

29: else

30: if there exists a node € nodesp such thawal(n) = val(ns) then
31 val(n.Qprov) < val(n.Qprov) Uwval(ns.Qprov);

32: else

33: create asour ce labelled node:, as a child ofnp;

34: copyn, to T, as a child ofn/;

35: if np[ps]={n} [*thisis the first value conflict *then

36: create aour ce labelled node:,, as a child ofnp;

37: moven from children(n) to children(n’,);

38: returnip;

in Tp. As a consequencsepur ce conflict subelements are created. Observe that with-
out key K5, there would be no restriction on the number of colops aduct may have.
Thus, the algorithm would not create a conflict node, but twb or subelements for

pr oduct , each originated from a given source. O

The overall complexity of the algorithm for populating theanhouse is
O(|T,)?|M||D|), where|T;| is the size of the source documehY/| is the total size of
paths in mapping rules, arid| the size of the datawarehouse tfEg plus the size of
keys in K p [do Nascimento 2008].

3.3. Reconstruction of Data Sources

The reconstruction algorithm rebuilds the portion of theadsource used to populate the
datawarehouse based only on the annotations stored in theatehouse. The pseudo
code is presented in Algorithm 3. Functibni | dSour ce takes datawarehouge and

a source identifiesource as parameters. The algorithm first creates the root nodesof th
document sourcé’ (Line 2), and then computes the sékguves) of all leaf nodes in
the datawarehouse. For each node in this set, it checks arhitd annotatio®prov
contains a paifids, ps) such thatd, is an identifier of a node iRource (Lines 4 and 5).

If this is the case, functioar eat ePat h is invoked to generate a new nodélinreached

by following pathp,.

Functioncr eat ePat h takes as input: a partially built source tfEgan identifier
ids of the formjo.j; ... js; @ pathpath, in the source document of the forfy /... /1,
and a leafhode in the datawarehouse populated from a nodeoimv-ce. Let this source
node beu,. Thenid(n,) = id, and, in the original documefit, n, € [path,]r,. Observe
that fromid, and path, it is possible to create all source nodes in the path from the
root leading ton,. That is, this path traverses nodes . ..n; such that for each;,
id(n;) = jo - ..ji andlabel(n;) = l;. Before creating these nodes we check whether some
of them have already been created (Lines 9 to 12) and themaertbe remaining ones
(Lines 13 to 15). The value of the last node in the path is et@chfrom the node in the
datawarehousewfde). For keeping the relative order of elements in the sourcechent,
the first newly created node is correctly placed in the listlefents of its parent (Line
16 to 18).

Example 7 Consider the reconstruction &our ce 2 from the datawarehousé),
depicted in Figure 1. Suppose that the reconstructionssteith leaf node 1.1.3.1 in
[/product/model/S]r,. Observe that.1.3.1.@Qprov = {(1.2.2.1, /item/model/S),
(2.2.2.1.1, /category/product/model /S) }. Given that the root node &ur ce 2 with
identifier 2 has already been created, the following new s@dle inserted in the source
tree: 2.2 (acat egory node), 2.2.2 (gpr oduct node), 2.2.2.1 (model node) and
2.2.2.1.1 (anS node). Moreover, the value “0605041” is assigned to the naste.
Consider that the next leaf in the datawarehouse to be cemesids node 1.1.1.1 in
[/type/S]r,. Observe thatl.1.1.1.Qprov = {(2.2.1, /category/@name)}. Since
cat egor y node 2.2 has already been created, the algorithm creatgs ogw@nane
node with value “wrist watch”. O

The complexity of the reconstruction algorithm is quadratit takes at most
O(|Tpl||M]) time, where|Tp| is the size of the datawarehouse did| is the size of
paths in the mapping rule that populdtg from source [do Nascimento 2008].

Algorithm 3 Reconstruction of source document
1: function buildSource D = (T, Kp), source)
V(T) < {r};id(r) < source;
3: Leaves < {n € V(Tp) | nis aleaf nodé;
4: for each nodeip in Leaves do
5: if (ids,ps) € np.Qprov andorigin(ids) = source then
6
7

T, < createPathl, id,, ps, np);
return?y;

8: function createPath[(, id,, path,, node)
9: letngy be the node iN" s.t. id(ny) is the longest prefix ofd, among identifiers of
nodes in7’;
10: let Zd(no) bejojl c. ja;
11: letid, bejy. Ja-Jati-- - Jatm:
12: letpathsbe/li/ls/ ... [lorm;
13: for i:=1tomdo
14: create node; in 7" as a child ofn;_; with labell, ;;
15: zd(m) = j() ja- . ja—i—i;
16: wal(n.y,) < val(node);
17: if ny IS an element nodinen
18: sort listele(ng) according to node identifiers;
19: returnT

4. Experimental Results

One of the goals of annotating nodes with provenance infoomas to enable recon-

struction of the source document, which is necessary foementally updating the ware-
house based on new versions of source data. It is clear #ngathe functionality can be
achieved if the source document were locally stored alonly thie datawarehouse. The
guestion we would like to answer is how much storage is saydtebping annotations

instead of the original document. That is, we want to qugrké impact of annotations

on the storage cost of our model.

We have conducted an experimental study to compare thefstz@adtawarehouse
generated according to the proposed model with the size afaavdirehouse without an-
notations plus the size of the sources. We denote the fisstrastated DWand the latter as
DW-+source Recall that in our model elements are merged whenever tireg an their
key values. Thus, the number of mergings has an impact onzeetthe warehouse.
More specifically, the difference between the size of an tatead DW and DW+source
tends to grow with the number of mergings. For preventing #sipect to affect the ex-
perimental results, we have chosen to populate annotatedr@Wa single data source
with no restructurings that could cause element mergingsreblver, we have defined
“‘complete” mappings; that is, every text value in the souscextracted to populated the
warehouse. As a result, the size of annotated DW reportedéogxperiment represents
theworst case scenarjon which annotations are stored for every text value in thece
and no elements are merged.

The algorithms were implemented in Java using JDOM framkwor
[Hunter 2000]. We used DBLP repository [Ley 1997] as our seutata, and have ex-

ecuted the experiment with five documents extracted from PBlith different sizes.
Table 1 presents our results. The first colurgiementy shows the number of elements
in the data source; the secornicdeé&f node} contains the amount of leaf nodes in the
source; the size of DW+Source and annotated DW are givereithitd and fourth col-
umn, respectively; the last column shows the amount of geosaved by annotated DW in
comparison with DW+source. In our implementation, an aatio of the form(ident, p)

is stored with the node identifiédent encoded as a Dewey Order, and patepresented
as apath identifier instead of the complete path in its text form.

Elements| Leaf nodes| (1) DW+Source| (2) Annotated DW| % Saved
451.678 | 403.996 36MB 27MB 25%
902.879 | 809.626 72MB 53MB 26%
1.309.532| 1.176.649 104MB 77MB 26%
1.659.740, 1.488.950 132MB 97MB 26%
1.988.661 1.785.833 160MB 117MB 26%

Table 1. Size of source data and datawarehouse.

Our experiment showed that in general the size of annotat®d4¥»6% smaller
than DW+source. It is worth noticing that in all data setsuab90% of the nodes are
leaves. Since in our model only leaves are annotated, ttigfigoses a bigger impact on
the size ofannotated DWObserve that 26% is the minimum amount of storage saved by
our model, since in real datawarehouses, data can be filbeitexhd sources may contain
overlapping data. The size of annotated DW can be furthercestiby compressing node
identifiers. A compression mechanism for an encoding sirtoléhe Dewey Order, which
can be applied to our model, has been proposed in [O’Neil &0f4].

5. Related Work

There are many proposals for specifying keys for XML docutselbanguages for schema
specification as DTD, and XML Schema also allow keys to beifpdc Keys proposed
in [Buneman et al. 2002a] are independent of any schemafgadicn, and allows the
definition of keys that identify elements in the entire doemtand in subtrees. The need
for defining hierarchical keys in order to univocally idéptlements in each level of the
tree has been largely recognized as a requirement for patipggupdates through views
[Davidson and Liefke 2001, Braganholo et al. 2006].

Several schemes for generating persistent XML node idergihave been pro-
posed in the literature. In [Marian et al. 2001], persisidettifiers XIDs are proposed
to describe changes in XML documents. Three labelling seisdmave been presented in
[Tatarinov et al. 2002]: global order, local order, and Dgweder. We have adopted the
Dewey order because it is the only one that enables sourcastuaction when only part
of the original document is stored in the warehouse.

Annotations for XML documents have been proposed in sederakins [Tan 2007,
Buneman et al. 2002b, Simmhan et al. 2005, Buneman et al].200&y may carry not
only provenance information, but also notes on correctmserrors that the original data
may have. Annotations can also be used for archiving, as ogemp in
[Buneman et al. 2002b]. Although they adopt the same ideaarfiimg nodes based on
XML keys, the model assumes that no changes in the structtine document are made.

To the best of our knowledge, our datawarehouse model isriediuse node identifiers
that combine provenance information with the ability toaestruct the source data even
in the presence of filtering and restructuring.

6. Conclusion

The model proposed in this paper is a first step towards a messhdor automating the
update process of a datawarehouse based on new versiongroé 3ML data. To this
end, the model annotates values extracted from each dateesaith information that
allows the portion of the source document used to popul&evirehouse to be recon-
structed. By running a diff algorithm, we can then compute ¢hanges between the
reconstructed document and a new version, and generatpdagsuoperations. We have
conducted an experimental study to determine the impadteoahnotations on the size
of the datawarehouse. It showed that our model reducesdhegst cost in at least 26%.
That is, the size of the annotated datawarehouse is at le#sshaller than the size of the
data source and a non-annotated datawarehouse combinédeliéée that this result can
be further improved by applying a compression mechanisnherewey Order Encod-
ing, which is adopted in our model. Investigating altewvaencoding and compression
mechanisms is one of our future work. Other issues that reebd investigated include:
(1) extensions to the mapping language with selection andtiten calls (such as split
and concatenation of strings); (2) an experimental studyetermine the performance
of the algorithms for populating the warehouse and recaosirg source documents; (3)
definition of cleaning procedures and a mechanism to registesequence of modifica-
tions applied to source data; (4) a complete framework forraating the datawarehouse
update process.

References
Braganholo, V., Davidson, S., and Heuser, C. (2006). Pataxframework to allow
updates through xml viewACM TODS 31:839-886.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., #adjeau, F. (1998)Exten-
sible Markup Language (XML) 1.0World Wide Web Consortium (W3C)ht t p:
[1 www. W3. or g/ TR/ REC- xni .

Buneman, P., Davidson, S., Fan, W., Hara, C., and Tan, W2@2a). Keys for XML.
Computer Networks39(5):473-487.

Buneman, P., Khanna, S., Tajima, K., and W.C., T. (2002b)hAing scientific data.
Technical report.

Buneman, P., Khanna, S., and Tan, W.-C. (2001). Why and wlecharacterization of
data provenance. IRroceedings of ICDT'01

Clark, J. and DeRose, S. (1999). XML Path Language (XPatrldWVide Web Con-
sortium (W3C).ht t p: / / www. W3. or g/ TR/ xpat h.

Davidson, S., Fan, W., and Hara, C. (2007). Propagating Xbtstraints to relations.
Journal of Computer and System Sciences (JCE&%3):316-361.

Davidson, S. and Liefke, H. (2001). Creating and maintgjmarated view databases. In
Knwoledge Discovery and Data Mining in Biological Database

do Nascimento, A. M. (2008). Um modelo para integracaoateichentos XML em nivel
de instancia. Master’s thesis, Universidade Federal dar@aBrazil.

Draper, D., HaLevy, A. Y., and Weld, D. S. (2001). The nimbhal)data integration
system. InProceedings of the International International Confereron Data Engi-
neering (ICDE)

Fallside, D. C. (2000). XML Schema Part 0: Primer World Wide Web Consortium
(W3C). htt p: //www. w3. org/ TR/ xm schenma- 0/ .

Hopcroft, J. E. and Ullman, J. D. (1979ntroduction to Automata Theory, Languages
and ComputationAddison Wesley.

Hunter, J. (2000)JDOM. ht t p: / / www. | dom or g.

Ley, M. (1997). XML Schema Part 0: Primer Universitat Trier. htt p: / / dbl p.
uni -trier.de.

Lim, E.-P., Srivastava, J., Prabhakar, S., and Richardsqi996). Entity identification
in database integratiomformation Sciences89(1).

Marian, A., Abiteboul, S., Cobena, G., and Mignet, L. (200Change-centric manage-
ment of versions in a xml warehouse. Pnoceeddings of VLDB'20QJpages 581 —
590.

Menestrina, D., Benjelloun, O., and Garcia-Molina, H. (8D0Generic entity resolution
with data confidences. IRroceedings of the International VLDB Workshop on Clean
DatabasesSeoul, Korea.

O'Neil, P., O'Neil, E., Pal, S., Cseri, I., Schaller, G., astbury, N. (2004). ORD-
PATHSs: Insert-friendly XML node labels. IRroceedings of SIGMOD’2004ages
903-908, Paris, France.

Poggi, A. and Abiteboul, S. (2005). XML data integrationlwitientification. InPro-
ceedings of International Workshop on Database Progrargrhanguages (DBPL)

Pokorny, J. (2002). Xml data warehouse: Modelling and guaer In Proceedings of the
Baltic Conference (BalticDB&IS)pages 267 — 280.

Prabhakar, S., Richardson, J., Srivastava, J., and LifR, @993). Instance-level integra-
tion in federated autonomous databasedddmwaiian Conference for System Science

Rahm, E. and Do, H. H. (2000). Data cleaning: Problems anectapproachedEEE
Data Engineering Bulletin23(4):3-13.

Rundensteiner, E. A., Koeller, A., and Zhang, X. (2000). mMaining data warehouses
over changing information sourceSommunications of the ACM3(6):57—-62.

Sawires, A., Tatemura, J., Po, O., Agrawal, D., and Candarg.K2005). Incremental
maintenance of path-expression views.Pioceedings of SIGMOD’200pages 443
— 454, Baltimore, Maryland.

Simmhan, Y. L., Plale, B., and Gannon, D. (2005). A survey afdrovenance in e-
science.SIGMOD Record34(3):31=36.

Tan, W.-C. (2007). Provenance in databases: Past, cuamshfuture.|[EEE Data Engi-
neering Bulletin 30(4):3-12.

Tatarinov, |., Viglas, S. D., Beyer, K., Shanmugasundaramshekita, E., and Zhang,
C. (2002). Storing and querying ordered XML using a relaiafatabase system. In
Proceedings of SIGMOD’200pages 204-215, Madison, Wisconsing, USA.

Xyleme, L. (2001). A dynamic warehouse for xml data of the wélicE Data Engineer-
ing Bulletin, 24(02).

