
A Model for XML Instance Level Integration

Aldo Monteiro do Nascimento1, Carmem S. Hara1

1Departamento de Informática – Universidade Federal do Paraná (UFPR)
Caixa Postal 19.081 – 81.531-990 – Curitiba – PR – Brasil

{aldo, carmem}@inf.ufpr.br

Abstract. There are two major problems for merging instances from different
sources in order to build a datawarehouse: entity identification ambiguity and
attribute value conflict. In this paper we propose a data model that facilitates
the resolution of value attribute conflicts by explicitly representing them in the
integrated schema. In this model, the datawarehouse is an XML tree populated
with data imported from one or more XML sources, and nodes areannotated
with provenance information. The purpose of annotations istwofold: first, they
represent the origin of every element in the datawarehouse.This information
is essential for determining the quality and amount of trustone places on the
data. Second, they allow the portion of source XML tree used to populate the
warehouse to be reconstructed. This capability is important if one needs the
original document to compare with new releases from the samesource in order
to incrementally update the warehouse. Algorithms for populating the ware-
house according to the proposed model and for reconstructing the source data
are presented. We also report results from an experimental study conducted to
determine the impact of the annotations on the size of the warehouse.

1. Introduction

Cooperation between institutions from the same area and even from distinct areas has cre-
ated the need for building databases that store large amounts of information on a specific
subject. One approach to accomplish this task is to build adatawarehouse. A dataware-
house is an integrated repository of data generated from many sources
[Pokorný 2002]. Usually, distinct data sources store datain different models and struc-
tures. Moreover, data that refer to the same entity in the real world may have different
representations in each source. Thus, in order to succeed incombining data, the dataware-
house has to rely on its flexibility.

XML is a semi-structured data model that has become the choice both in data and
document management systems because of its capability of representing irregular data
while keeping the data structure as much as it exists [Sawires et al. 2005]. XML flexi-
bility allows documents to be extended or reduced to describe content of any size, even
when the structure of the document changes. Combining thesetechnologies, dataware-
house and XML, is a step towards obtaining the flexibility that a warehouse application
needs. A number of XML datawarehouses have been proposed in the literature. Some ad-
dress the problem of schema matching and integration [Xyleme 2001, Draper et al. 2001,
Rundensteiner et al. 2000], while others concentrate on instance level integration. There
are two major problems for combining instances from different sources
[Prabhakar et al. 1993]: entity identification ambiguity and attribute value conflict. These
are problems that in recent literature have been addressed as data cleaning

[Rahm and Do 2000]. Entity identification refers to the problem of identifying overlap-
ping data in different sources. It has been the purpose of extensive research on the rela-
tional [Lim et al. 1996], entity-relationship [Menestrinaet al. 2006], and XML
[Poggi and Abiteboul 2005] data models. Attribute value conflict refers to the problem of
two or more sources containing information on the same entity or attribute, but with con-
flicting values. Some existing approaches for addressing this problem include data profil-
ing, data mining, and constraint-based techniques [Prabhakar et al. 1993]
[Rahm and Do 2000].

In this paper we propose a data model that facilitates resolution of value at-
tribute conflicts by explicitly representing them in the integrated schema. As an exam-
ple, consider two data sources on the domain of products, illustrated in Figure 1(a) and
(b). The document denoted asSource 1 contains information on products obtained
from an online store, whileSource 2 contains information provided by a manufac-
turer. A mapping fromSource 1 to a datawarehouse with the structure depicted in
Figure 1(c) defines that:name of thestore is mapped to thestore of aproduct’s
quotation; anitem sold by the store is mapped to aproduct, and its subelements
manufacturer, model andcolor are mapped toproduct’s subelements; the
price of theitem, on the other hand, is placed under aquotation element. We de-
fine a mapping fromSource 2 to the datawarehouse in a similar way. Given that in the
datawarehouse we define that whenever two products agree on their manufacturer
andmodel they refer to the same entity in the real world, the resultingtree is given
by Figure 1(c). This can be expressed as XML keys [Buneman et al. 2002a] defined on
the datawarehouse. That is,manufacturer andmodel are keys forproduct, and
therefore whenever two products agree on their values, theyshould be merged in the
datawarehouse.

Observe that the data sources disagree on the color of the product, and this is
represented by creating two distinct elements for each value, as highlighted in the figure.
The goal is to facilitate the process of solving the attribute conflict problem. Conflicts that
have been identified can then be eliminated by a cleaning process.

Nodes in our model are annotated with provenance information. The purpose of
the annotations is twofold: first, we would like to be able to determine the origin of every
element in the datawarehouse. This information is essential for determining the quality
and amount of trust one places on the data [Tan 2007], and can be used as a parameter
for solving a conflict. In the example of Figure 1, one can trust that the color provided
by a manufacturer is accurate, and thus give priority to thisvalue over the one given
by a store. Second, we would like to be able to reconstruct theportion of the XML
tree used to populate the warehouse. This reconstruction isimportant for automating
the process of updating the warehouse. More specifically, given the new version of the
document and the reconstructed version, it is possible to run a diff algorithm to determine
what are their differences. Then, based on the source mapping, the system can determine
what are the updates to be applied to the datawarehouse to keep it up to date. Without
the reconstruction capability, the original document would have to be locally stored for
incrementally updating the warehouse.

Contributions. In this paper we propose a data model for XML instance level inte-
gration. It is a first step towards designing a mechanism for automating the process of

store

name

model color price

item item

"Movado" "0605041" "black" "830"

quotation

"Watchzone" [1.1.1]

product

source source

"silver/black" [2.2.2.2.1]

model

"0605041" [1.2.2.1, 2.2.2.1.1]"Movado" [1.2.1.1, 2.1.1]

manufacturer

"wrist watch" [2.2.1]

type

price

"830" [1.2.4.1]

DW

product product

"black" [1.2.3.1]

name

company

category

model descriptioncolor

product product"Movado"

"0605041" "silver/black"

color

store
1.1.5.1

1

"Watchzone"

1.3

manufacturer

1.1

1.1.1

1.2

1.2.1 1.2.2 1.2.3 1.2.4

1.2.1.1 1.2.2.1 1.2.3.1 1.2.4.1

1.1.5.1.1 1.1.5.2.1

1.3

1

1.1.5.2

"swiss quartz"

2

2.1 2.2

2.2.2 2.2.3

2.2.2.1 2.2.2.2 2.2.2.3

2.2.2.1.1 2.2.2.2.1 2.2.2.3.1

@name
"wrist watch"

2.1.1 2.2.1

(b) T from Source 2S2

S1(a) T from Source 1

1.1

1.1.1

1.1.1.1

1.1.2

1.1.2.1

1.1.3

1.1.3.1

1.1.4

1.1.4.1

1.1.4.1.1

1.1.4.2

1.1.4.2.1

1.2

1.1.5

(c) Datawarehouse TD

Figure 1. Merging of two data sources

incrementally updating a datawarehouse based on new versions of source data. We make
the following contributions:

• a data model for merging source data based on XML Keys [Buneman et al. 2002a]
that explicitly represents value conflicts and allow the source document to be re-
constructed based on provenance annotations;
• algorithms for populating a datawarehouse structured according to the proposed

model and for reconstructing source data from the warehouse;
• an experimental study to determine the impact of provenanceannotations on the

size of the datawarehouse.

Organization. The rest of the paper is organized as follows. Section 2 describes a tree
model for XML, and XML Keys. Our proposed model, a mapping language for populat-
ing the datawarehouse, and algorithms are presented in Section 3. Experimental results
are given in Section 4, followed by a discussion on related work in Section 5. Section 6
concludes the paper by presenting some future work.

2. Preliminary Definitions
We begin with the definitions of XML trees and the class of XML keys which will be used
throughout the paper.

2.1. XML Tree
An XML document is typically modeled as a node-labeled tree.We assume three pairwise
disjoint sets of labels:E of element tags,A of attribute names, and a singleton set{S}
denoting text (PCDATA).

Definition 1 An XML treeT is defined to beT = (source, V, r, id, lab, ele, att, val),
where (1)source is the XML tree source identification; (2)V is a set of nodes; (3)r is
the unique and distinguished root node; (4)id is a function that assigns unique identifiers
to nodes inV ; given a nodev, id(v) returns a vector that represents the path fromr to v;
(5) lab is a mappingV → E ∪A ∪ {S} which assigns a label to each node inV ; a node
v in V is called anelementif lab(v) ∈ E, anattribute if lab(v) ∈ A, and a text node if
lab(v) = S; (6) ele andatt are partial mappings that define the edge relation ofT : for any
nodev in V ,

• if v is an element thenele(v) is a list of elements and text nodes inV andatt(v)
is asetof attributes inV ; for eachv′ in ele(v) or att(v), v′ is called achild of v
and we say that there is a (directed) edge fromv to v′;
• if v is an attribute or a text node thenele(v) andatt(v) are undefined;

(7) val is a partial mapping that assigns a string to each attribute and text node: for any
nodev in V , if v is an attribute or text node thenval(v) is a string, andval(v) is undefined
otherwise.

An XML tree has a tree structure, i.e., for eachv ∈ V , there is a unique path of
edges from rootr to v. �

Examples of XML trees are given in Figure 1(a) and (b), where each nodev is
represented with its identifier (id(v)), a label (lab(v)) if it is a an element or attribute
node, and a value (val(v)) if it is an attribute or text node. The encoding adopted by
the identifier functionid is calledDewey Order[Tatarinov et al. 2002], which provides
a global node ordering. In our model, we assume that each datasource has a distinct
source identifier, and that this value is used as the identifier of theroot node; that is,
id(r) = source. In our running example,Source 1 has identifier 1, so in Figure 1(a),
id(r) = 1. We define functionorigin that receives an identifieri of a node inT , and
returns itssource; that isorigin(i) = source(T).

2.2. XML Keys
Various forms of key specification have been proposed in the literature [Bray et al. 1998,
Fallside 2000]. We use the key specification proposed in [Buneman et al. 2002a] because
it provides a method for definingrelative keys. To define a key three things are specified:
1) thecontextin which the key must hold; 2) atargetset on which we are defining a key;
and 3) thevalueswhich distinguish each element of the target set.

The path language we adopt is a common fragment of regular expressions
[Hopcroft and Ullman 1979] and XPath [Clark and DeRose 1999]:

Q ::= ǫ | l | Q/Q | //

whereǫ is the empty path,l is a node label, “/” denotes concatenation of two path expres-
sions (child in XPath), and “//” meansdescendant-or-selfin XPath. To avoid confusion
we writeP//Q for the concatenation ofP , // andQ. A pathp is a sequence of labels
l1/ . . . /ln. We denote bysize(p) the number of labels inp. A path expressionQ de-
fines a set of paths, while “//” can match any path. We useρ ∈ Q to denote thatρ is
in the set of paths defined byQ. For example,/product/quotation/store ∈ //store.
Given an XML treeT , we denote byPaths(T) the set of paths inT . As an example,
let T be the XML tree depicted in Figure 1(a). ThenPaths(T) = {/, /name, /item,
/item/manufacturer, /item/model, /item/color, /item/price}.

Following the syntax of [Buneman et al. 2002a] we write an XMLkey as:
ϕ : (Q1, (Q2, {P1, . . . , Pp}))

whereϕ is the key identifier, path expressionsQ1 andQ2 are the context and target path
expressions respectively, andP1, ..., Pp are the key paths. For the purposes of this paper,
we restrict the key paths to be attributes@A1, ..., @Ap or simple text valued elements. A
key is said to beabsoluteif the context pathQ1 is the empty pathǫ, andrelativeotherwise.

Example 1 Consider the XML tree in Figure 1(c). Some keys that can be defined on this
tree are:

• K1 : (ǫ, (product, {manufacturer, model})): in the context of the entire docu-
ment (ǫ denotes the root), aproduct is identified by itsmanufacturer and
model number;
• K2 : (/product, (quotation, {store})): within the context of any subtree rooted

at aproduct node, aquotation is identified by itsstore name.
• K3 : (//product, (type, {})): eachproduct has at most onetype; simi-

larly, K4 : (//product, (color, {})) for thecolor of theproduct, andK5 :
(//product/quotation, (price, {})) for theprice of aquotation. �

To define the meaning of an XML key, we use the following notation: in an XML
treeT , n[[P]]T denotes the set of nodes inT that can be reached by following path expres-
sionP from noden. We also use[[P]]T as an abbreviation forr[[P]]T , wherer is the root
node of the tree. As an example, in Figure 1(b),[[//product]]TS2

= {2.2.2, 2.2.3}, and
2.2.2[[color]]TS2

= {2.2.2.2}.

Definition 2 An XML tree T satisfiesa keyϕ : (Q1, (Q2, {P1, . . . , Pp})), denoted by
T |= ϕ, iff for any n in [[Q1]]T and anyn1, n2 in n[[Q2]]T , (1) n1 andn2 each has a unique
node reached by following pathPi for all i ∈ [1, p], and (2) ifval(n1.Pi) = val(n2.Pi)
for all i ∈ [1, p] thenn1 = n2, whereval(n′.Pi) denotes the text value associated with the
single node inn′[[Pi]]T . �

The implication problem for this class of XML Keys has been addressed in
[Davidson et al. 2007]. A set of inference rulesI is defined such that for any setΣ of
XML keys and a single keyϕ, it is possible to determine whetherΣ entailsϕ, denoted
as Σ |= ϕ, if ϕ can be proved fromΣ usingI. In particular, the definition for key
satisfaction states that every key path is unique under the target node. Thus, from any
(Q1, (Q2, {P1, . . . , Pp})) ∈ Σ we can derive(Q1/Q2, (Pi, {})) for everyi ∈ [1, p]. Let
us denote this rule askeyValues.

Example 2 The XML tree of Fig. 1(c) satisfies all key constraints given in Example 1.
Moreover, the following keys can be derived applying thekeyValuesrule. FromK1 we
can deriveK6 : (/product, (manufacturer, {})) andK7 : (/product, (model, {})); that
is, everyproduct has a uniquemanufacturer andmodel. Similarly, fromK2 we
can deriveK8 : (/product/quotation, (store, {})). �

3. Datawarehouse
The datawarehouse is an XML tree populated with data imported from one or more XML
sources. We assume that the datawarehouse has a fixed schema,and every element is
identifiable via XML keys. Keys defined on the datawarehouse determine how to merge
data originated from different sources.

Example 3 Consider the XML keys defined in Example 1, and XML trees depicted
in Figure 1. Observe that according to keyK1, in the datawarehouse aproduct ele-
ment is uniquely identified by itsmanufacturer andmodel. Suppose we define that
elementmanufacturer is populated with nodes reached by following path/item/
manufacturer from Source 1, and nodes reached by path/name from Source 2;
similarly, elementmodel is populated by nodes reached by following path/item/model
fromSource 1 and path/category/product/model fromSource 2. Then whenever
these two values coincide they are mapped to the same elementin the datawarehouse, as
depicted in Figure 1(c). �

In the datawarehouse, leaf nodes are annotated with provenance information. These
annotations are important not only to determine the origin of data, but they also allow the
portion of source XML tree used to populate the datawarehouse to be reconstructed. Some
functionalities that may be implemented for the datawarehouse may require the original
document to be available. Thus, the reconstruction capability is important for reducing the
amount of storage used by the system. One particular problemin which this requirement
exists is the process of incrementally updating of the datawarehouse when new versions
of source data becomes available. In this scenario, given the rebuilt source data and the
new release, it is possible minimize the number of updates bydetermining the differences
between the two versions.

Definition 3 A datawarehouse populated from a set of source XML treesS is defined to
beD = (TD,KD), where (1)TD is an XML tree with a set of nodesV such that each leaf
nodev ∈ V is annotated with a set of pairs(idn, p), whereidn is the identifier of a noden
in a source XML treeT ∈ S used to populatev, andp is the path inT from the root ton;
(2)KD is the set of XML keys defined onTD. Every element node inTD can be uniquely
identified according to keys inKD or have a singleS node as a child. �

As an example, nodes in the datawarehouse depicted in Figure1(c) have been
annotated with node identifiers fromSource 1 andSource 2. Paths traversed from
the root have been omitted for simplicity. Moreover, the setof keys given by Exam-
ple 1 in addition to those defined in Example 2 satisfy the key identification require-
ment. This requirement is similar to the notion ofinsertion-friendlyset of keys defined
in [Buneman et al. 2002a]. Intuitively, every element is either a simple text element or
“keyed” by some values according toKD.

3.1. Mapping Language

In order to describe how data are extracted from the sources,we define a simple language,
which consists of a set of rulespD ← ps, wherepD is a path in the datawarehouse, andps

is a path in the data source.

Example 4 Consider data sourceSource 1 and datawarehouseTD depicted in Figure
1(a) and (c), respectively. A mapping fromSource 1 to TD can be specified as follows.

/product ← /item
/product/manufacturer ← /item/manufacturer
/product/model ← /item/model
/product/color ← /item/color
/product/quotation/store← /name
/product/quotation/price← /item/price �

In general, several mappings can be specified to populate a datawarehouse from
the same or different sources. Each mapping is defined as a pair M = (source, R), where
source is a source identifier, andR is a set of rules. We denote byorder(M) the number
of rules inR. Observe that the meaning of a mapping is given by the structure of the
datawarehouse and the set of keys. That is, a keyϕ = (Q1, (Q2, K)) determines that
whenever two nodesn1 andn2 are reached by following a pathp ∈ Q1/Q2 and they
agree on the values of theirK subelements, then they should be mapped to the samenD

node in the datawarehouse. Thus, we define the following restriction of a well-defined
mapping: ifM = (source, R) is a mapping defined for datawarehouseD = (TD,KD),

andϕ = (Q1, (Q2, K)) is a key inKD then for every pathpD ∈ Paths(TD) andpK ∈ K
such thatpD ∈ Q1/Q2, there exists a rulepD/pK ← p′ in R for somep′. Intuitively, this
says that every key in the datawarehouse must be populated from some element in a data
source. As an example, the mapping given in Example 4 is well-defined since the key
values defined for the datawarehouse aremodel andmanufacturer for product,
andstore for product/quotation; moreover, the mapping defines that all key
values are populated with data extracted fromSource 1.

Despite its simplicity, our mapping language allows unnesting and nesting of
source data, besides projection, union, Cartesian product, and join on key values. In
the following sections we provide algorithms for populating a datawarehouse, and also
for reconstructing a source document from the warehouse.

3.2. Populating the Datawarehouse

The algorithm for populating the datawarehouse consists oftwo steps. First, we build
subtrees structured as the datawarehouse and with values extracted from a source. Then,
these trees are merged with existing data in the warehouse according to their key val-
ues. The pseudo code is presented in Algorithm 1. It takes as input: a datawarehouse
D = (TD, KD), a mappingM = (source, R), and a source treeTs. The following data
structures are used by the algorithm:

• sourcePath: an array of paths[p0, p1, . . . , pm], wherep0 = /, andpi, i ∈ [1, n] are
paths defined on the source data that are used to populate the warehouse. That is,
they are paths on the right-hand side of rules inR. The list is in prefix order: if
pj = pi/Q for some pathQ theni < j. The size of the list is given byorder(M),
which is the number of rules inM .
• dwPath: an array of paths[q0, q1, . . . , qm], whereq0 = / andqi is a path defined on

the datawarehouse populated with pathsourcePath[i]; that is,qi ← sourcePath[i]
is a rule in the mapping.
• sourceNode: an array of nodes[n0, n1, . . . , nm] in the data source such thatni is

the last node in[[sourcePath[i]]]Ts
visited by the algorithm.

Functionpopulate first initializes all nodes insourceNode with null values,
and setssourceNode[0] to be the root of the source treeTs. It then calls function
transformAndMerge to build a subtree with nodes stored insourceNode and merge it
with datawarehouseTD (Lines 2 to 4). Each invocation of function
transformAndMerge looks for a node reached by following pathsourcePath [ind]
in the source treeTs, and assign it tosourceNode[ind]. When nodes are assigned for
every element insourceNode then a subtreeT ′ is built by calling functioncreateTree
and subsequently merged with the datawarehouse by functionmergeTrees (Lines 6 to
8). When looking for a node in[[sourcePath [ind]]]Ts

, we have to restrict the search space
to the smallest subtree rooted at a node that has already beenstored insourceNode. Re-
call thatsourcePath is prefix-ordered and functiontransformAndMerge considers
elements in the array in ascending order of their indices. Then, there exists ana < ind
such thatsourcePath[a] is the longest prefix ofsourcePath [ind] in the array. More-
over, sourceNode[a] is the root of the subtree in which nodesv reached by following
path sourcePath[ind] are searched for (Lines 10 to 13). After assigning a nodev to
sourceNode[ind], functiontransformAndMerge is recursively called for filling up
thesourceNode array (Lines 14 to 16).

FunctioncreateTree builds a treeT ′ with the structure of the datawarehouse as
specified by the mapping, and extract values from nodes insourceNode to populate leaves
in T ′. It starts by creating the root noder of T ′. Then, for each nodev in sourceNode, the
pathpD = /l1/ . . . /lm in the warehouse populated withv is obtained fromdwPath. If T ′

already contains a nodena reached by following path/l1/ . . . /la, a < m then only nodes
for pathla+1/ . . . /lm are generated as descendents ofna (Lines 20 to 25). The last node
receives the value extracted from the source tree and provenance data (attribute@prov)
if it is a leaf node (Lines 26 to 28).

Algorithm 1 Populate Datawarehouse Algorithm
1: function populate (D = (TD, KD), M = (source, R), Ts)
2: initialize sourceNode array withnull values;
3: sourceNode[0]⇐ r(Ts);
4: return transformAndMerge (TD, 1, sourceNode);

5: function transformAndMerge (TD, ind, sourceNode)
6: if ind > order(M) then
7: T ′ ⇐createTree (sourceNode);
8: return mergeTrees (TD, T ′, KD);
9: else

10: let a be the index s.t.sourcePath [a] is the longest prefix ofsourcePath[ind];
11: let Q be the path s.t.sourcePath[ind] = sourcePath[a]/Q;
12: anc⇐ sourceNode[a];
13: V ⇐ anc[[Q]]Ts

;
14: for each nodev in V do
15: sourceNode[ind]⇐ v;
16: TD ⇐ transformAndMerge (TD, ind + 1, sourceNode);

17: function createTree (sourceNode)
18: create root noder of treeT ′;
19: for i := 1 to order(M) do
20: if sourceNode[i] 6= null anddwPath[i] 6= null then
21: let p be the longest prefix ofdwPath[i] s.t. [[p]]T ′ is not empty
22: let n0 be the single node in[[p]]T ′

23: let dwPath[i] bep/l1/ . . . /lm
24: for j := 1 to m do
25: create nodenj in T ′ as a child ofnj−1 with labellj ;
26: if 6 ∃p ∈ dwPath s.t.dwPath[i] is a prefix ofp then
27: val(nj)⇐ val(sourceNode[i]);
28: nj .@prov ⇐ {(id(sourceNode[i]), sourcePath[i]};
29: returnT ′;

Example 5 Consider again the mapping given in Example 4 andSource 1 depicted
in Figure 1(a). ArraysourcePath generated from this mapping consists of the follow-
ing values:[/, /item, /item/model, /item/manufacturer, /item/color, /item/price,
/name]. Similarly, array dwPath contains the following paths: [/, /product,
/product/model, /product/manufacturer, /product/color, /product/quotation/
price, /product/quotation/store]. The content of arraysourceNode after the firstitem

of Source 1 is traversed by functiontransformAndMerge is the following: [1, 1.2,
1.2.2, 1.2.1, 1.2.3, 1.2.4, 1.1]. Based on these nodes and the structure given bydwPath,
functioncreateTree builds a tree which consists of the following nodes: 1, 1.1, 1.1.2,
1.1.2.1, 1.1.3, 1.1.3.1, 1.1.4, 1.1.4.1.1, 1.1.5, 1.1.5.1, 1.1.5.1.1, 1.1.5.2, 1.1.5.2.1. Here,
we use identifiers of nodes in datawarehouseTD depicted in Figure 1(c). �

Merging XML Trees. The algorithm for merging trees receives two XML trees: the
datawarehouseTD and a source treeTs that has already been transformed according to
the datawarehouse schema. The result is the datawarehouse tree TD with elements in
Ts merged according to XML keysK defined onD. That is, whenever nodes inTs and
TD agree on their key values they are merged into a single one in the datawarehouse;
otherwise new elements are created. Value conflicts are represented by generating two
distinct subelements containing values from both sources.

The pseudocode is given by Algorithm 2. FunctionmergeTrees first checks
whether the datawarehouse is empty and if this is the case, the root node is created (Lines
2 and 3). FunctionmergeNodes is then called to extract values from each child of the
source’s root and insert them in the datawarehouse (Lines 4 to 6). The invoked function
receives the datawarehouseTD, a nodenD ∈ V (TD), which is the root of the subtree into
which source nodes in the subtree rooted atns in V (Ts) are to be inserted, and a set of
keysK that determine when nodes should be merged. The function first checks whether
source nodens is a text or attribute node. If this is the case, functionmergeValues
is called (Lines 9 and 10). Recall that every element in the datawarehouse must have
a key according toK. Thus, ifns is an element node, the function looks for a node in
the datawarehouse with key values matching those ofns. If such a node is found, they
are merged and functionmergeNodes is recursively called for merging their children;
otherwise, the source subtree is copied into the datawarehouse (Lines 12 to 21). Function
mergeValues is called either to create new attribute or text nodes or to compare their
values with existing ones, generating nodes that point out value conflicts if they exist. If
nodenD in the datawarehouse, under which an attribute node@a or text nodeS is to be
created, does not have any children with such label, a new oneis created (Line 24 to 28).
Otherwise it is checked if the new value agree with an existing one in the datawarehouse.
If this is the case, provenance information is inserted inTD (Lines 30 and 31). If this is
not the case, then a value conflict has been detected and a new node with labelsource
is created to identify the conflict (Lines 33 to 37).

Example 6 Consider the XML trees in Figure 1 and XML keys defined in Example 1.
Suppose that the datawarehouseTD has already been populated with all the elements in
Source 1, andSource 2 is now being considered. Recall that before calling function
mergeTrees, Source 2 has already been restructured by functionpopulate to ad-
here to the datawarehouse structure. When processing sourceproduct node 2.2.2, it is
checked whether its key values given byK1 : (ǫ, (product, {manufacturer, model}))
match a node in the warehouse. Since this is the case, it is merge with node 1.1 inTD. Re-
cursive calls to functionmergeNodes annotate leaf nodes undermanufacturer and
model with provenance information. When considering source nodecolor (2.2.2.2),
TD has already been populated with a color node. Since keyK3 : (//product, (color, {}))
defines that eachproduct contains a single subelementcolor, when function
mergeValues is called, the value in the source does not agree with the one already

Algorithm 2 Merge Algorithm
1: function mergeTrees (TD, Ts,K)
2: if V (TD) = {} /* the datawarehouse is empty */then
3: create root noderD of TD; else rD ⇐ r(TD);
4: rS ⇐ r(Ts);
5: for n ∈ children(rs) do
6: TD ⇐ mergeNodes(TD, rD, Ts, n,K);
7: returnTD;

8: function mergeNodes(TD, nD, Ts, ns,K)
9: if ns is a text or attribute nodethen

10: TD ⇐ mergeValues(TD, nD, Ts, ns, paths);
11: else
12: let paths be the path from the root ofTs to ns;
13: let pathD be the path from the root ofTD to nD;
14: let P be the path such thatpaths = pathD/P ;
15: keyPaths⇐ {p | K |= (Q1, (Q2, K)), paths ∈ Q1/Q2, p ∈ K};
16: if there existsn in nD[[P]]TD

s.t. for allk ∈ keyPaths val(n.k) = val(ns.k)
then

17: for each noden′ ∈ children(ns) do
18: TD ⇐ mergeNodes(TD, n, Ts, n

′,K);
19: else
20: copy the subtree rooted atns to TD;
21: insertns in children(nD);
22: returnTD;

23: function mergeValues(TD, nD, Ts, ns, p)
24: if ns is an attribute node such thatp = p′/@a then
25: ps ⇐ @a; else ps ⇐ S;
26: nodesD ⇐ nD[[ps]]TD

∪ nD[[source/ps]]TD
;

27: if nodesD = {} /* no attribute or value element */then
28: copyns to TD and insert it as a child ofnD;
29: else
30: if there exists a noden ∈ nodesD such thatval(n) = val(ns) then
31: val(n.@prov)⇐ val(n.@prov) ∪ val(ns.@prov);
32: else
33: create asource labelled noden′

s as a child ofnD;
34: copyns to TD as a child ofn′

s;
35: if nD[[ps]]={n} /* this is the first value conflict */then
36: create asource labelled noden′

D as a child ofnD;
37: moven from children(nD) to children(n′

D);
38: returnTD;

in TD. As a consequence,source conflict subelements are created. Observe that with-
out keyK3, there would be no restriction on the number of colors aproduct may have.
Thus, the algorithm would not create a conflict node, but twocolor subelements for
product, each originated from a given source. �

The overall complexity of the algorithm for populating the warehouse is
O(|Ts|

2|M ||D|), where|Ts| is the size of the source document,|M | is the total size of
paths in mapping rules, and|D| the size of the datawarehouse treeTD plus the size of
keys inKD [do Nascimento 2008].

3.3. Reconstruction of Data Sources

The reconstruction algorithm rebuilds the portion of the data source used to populate the
datawarehouse based only on the annotations stored in the datawarehouse. The pseudo
code is presented in Algorithm 3. FunctionbuildSource takes datawarehouseD and
a source identifiersource as parameters. The algorithm first creates the root node of the
document sourceTs (Line 2), and then computes the set (Leaves) of all leaf nodes in
the datawarehouse. For each node in this set, it checks whether the annotation@prov
contains a pair(ids, ps) such thatids is an identifier of a node insource (Lines 4 and 5).
If this is the case, functioncreatePath is invoked to generate a new node inTs reached
by following pathps.

FunctioncreatePath takes as input: a partially built source treeT ; an identifier
ids of the formj0.j1 . . . jb; a pathpaths in the source document of the form/l1/ . . . /lb,
and a leafnode in the datawarehouse populated from a node insource. Let this source
node bens. Thenid(ns) = ids and, in the original documentTs, ns ∈ [[paths]]Ts

. Observe
that from ids and paths it is possible to create all source nodes in the path from the
root leading tons. That is, this path traverses nodesn1, . . . nb such that for eachni,
id(ni) = j0 . . . ji andlabel(ni) = li. Before creating these nodes we check whether some
of them have already been created (Lines 9 to 12) and then generate the remaining ones
(Lines 13 to 15). The value of the last node in the path is extracted from the node in the
datawarehouse (node). For keeping the relative order of elements in the source document,
the first newly created node is correctly placed in the list ofelements of its parent (Line
16 to 18).

Example 7 Consider the reconstruction ofSource 2 from the datawarehouseTD

depicted in Figure 1. Suppose that the reconstruction starts with leaf node 1.1.3.1 in
[[/product/model/S]]TD

. Observe that1.1.3.1.@prov = {(1.2.2.1, /item/model/S),
(2.2.2.1.1, /category/product/model/S)}. Given that the root node ofSource 2with
identifier 2 has already been created, the following new nodes are inserted in the source
tree: 2.2 (acategory node), 2.2.2 (aproduct node), 2.2.2.1 (amodel node) and
2.2.2.1.1 (anS node). Moreover, the value “0605041” is assigned to the lastnode.
Consider that the next leaf in the datawarehouse to be considered is node 1.1.1.1 in
[[/type/S]]TD

. Observe that1.1.1.1.@prov = {(2.2.1, /category/@name)}. Since
category node 2.2 has already been created, the algorithm creates only a new@name
node with value “wrist watch”. �

The complexity of the reconstruction algorithm is quadratic. It takes at most
O(|TD||M |) time, where|TD| is the size of the datawarehouse and|M | is the size of
paths in the mapping rule that populateTD from source [do Nascimento 2008].

Algorithm 3 Reconstruction of source document
1: function buildSource (D = (TD, KD), source)
2: V (Ts)⇐ {r}; id(r)⇐ source;
3: Leaves⇐ {n ∈ V (TD) | n is a leaf node};
4: for each nodenD in Leaves do
5: if (ids, ps) ∈ nD.@prov andorigin(ids) = source then
6: Ts ⇐ createPath(Ts, ids, ps, nD);
7: returnTs;

8: function createPath (T, ids, paths, node)
9: let n0 be the node inT s.t. id(n0) is the longest prefix ofids among identifiers of

nodes inT ;
10: let id(n0) bej0.j1. . . . ja;
11: let ids bej0.ja.ja+1. . . . ja+m;
12: let paths be/l1/l2/ . . . /la+m;
13: for i := 1 to m do
14: create nodeni in T as a child ofni−1 with labella+i;
15: id(ni)⇐ j0.ja. . . . ja+i;
16: val(nm)⇐ val(node);
17: if n1 is an element nodethen
18: sort listele(n0) according to node identifiers;
19: returnT ;

4. Experimental Results
One of the goals of annotating nodes with provenance information is to enable recon-
struction of the source document, which is necessary for incrementally updating the ware-
house based on new versions of source data. It is clear that the same functionality can be
achieved if the source document were locally stored along with the datawarehouse. The
question we would like to answer is how much storage is saved by keeping annotations
instead of the original document. That is, we want to quantify the impact of annotations
on the storage cost of our model.

We have conducted an experimental study to compare the size of a datawarehouse
generated according to the proposed model with the size of a datawarehouse without an-
notations plus the size of the sources. We denote the first asannotated DWand the latter as
DW+source. Recall that in our model elements are merged whenever they agree on their
key values. Thus, the number of mergings has an impact on the size of the warehouse.
More specifically, the difference between the size of an annotated DW and DW+source
tends to grow with the number of mergings. For preventing this aspect to affect the ex-
perimental results, we have chosen to populate annotated DWfrom a single data source
with no restructurings that could cause element mergings. Moreover, we have defined
“complete” mappings; that is, every text value in the sourceis extracted to populated the
warehouse. As a result, the size of annotated DW reported by the experiment represents
theworst case scenario, in which annotations are stored for every text value in the source
and no elements are merged.

The algorithms were implemented in Java using JDOM framework
[Hunter 2000]. We used DBLP repository [Ley 1997] as our source data, and have ex-

ecuted the experiment with five documents extracted from DBLP with different sizes.
Table 1 presents our results. The first column (Elements) shows the number of elements
in the data source; the second (Leaf nodes) contains the amount of leaf nodes in the
source; the size of DW+Source and annotated DW are given in the third and fourth col-
umn, respectively; the last column shows the amount of storage saved by annotated DW in
comparison with DW+source. In our implementation, an annotation of the form(ident, p)
is stored with the node identifierident encoded as a Dewey Order, and pathp represented
as apath identifier, instead of the complete path in its text form.

Elements Leaf nodes (1) DW+Source (2) Annotated DW % Saved
451.678 403.996 36MB 27MB 25%
902.879 809.626 72MB 53MB 26%

1.309.532 1.176.649 104MB 77MB 26%
1.659.740 1.488.950 132MB 97MB 26%
1.988.661 1.785.833 160MB 117MB 26%

Table 1. Size of source data and datawarehouse.

Our experiment showed that in general the size of annotated DW is 26% smaller
than DW+source. It is worth noticing that in all data sets around 90% of the nodes are
leaves. Since in our model only leaves are annotated, this fact imposes a bigger impact on
the size ofannotated DW. Observe that 26% is the minimum amount of storage saved by
our model, since in real datawarehouses, data can be filteredout and sources may contain
overlapping data. The size of annotated DW can be further reduced by compressing node
identifiers. A compression mechanism for an encoding similar to the Dewey Order, which
can be applied to our model, has been proposed in [O’Neil et al. 2004].

5. Related Work

There are many proposals for specifying keys for XML documents. Languages for schema
specification as DTD, and XML Schema also allow keys to be specified. Keys proposed
in [Buneman et al. 2002a] are independent of any schema specification, and allows the
definition of keys that identify elements in the entire document and in subtrees. The need
for defining hierarchical keys in order to univocally identify elements in each level of the
tree has been largely recognized as a requirement for propagating updates through views
[Davidson and Liefke 2001, Braganholo et al. 2006].

Several schemes for generating persistent XML node identifiers have been pro-
posed in the literature. In [Marian et al. 2001], persistentidentifiers XIDs are proposed
to describe changes in XML documents. Three labelling schemes have been presented in
[Tatarinov et al. 2002]: global order, local order, and Dewey order. We have adopted the
Dewey order because it is the only one that enables source reconstruction when only part
of the original document is stored in the warehouse.

Annotations for XML documents have been proposed in severaldomains [Tan 2007,
Buneman et al. 2002b, Simmhan et al. 2005, Buneman et al. 2001]. They may carry not
only provenance information, but also notes on correctionsand errors that the original data
may have. Annotations can also be used for archiving, as proposed in
[Buneman et al. 2002b]. Although they adopt the same idea of merging nodes based on
XML keys, the model assumes that no changes in the structure of the document are made.

To the best of our knowledge, our datawarehouse model is the first to use node identifiers
that combine provenance information with the ability to reconstruct the source data even
in the presence of filtering and restructuring.

6. Conclusion
The model proposed in this paper is a first step towards a mechanism for automating the
update process of a datawarehouse based on new versions of source XML data. To this
end, the model annotates values extracted from each data source with information that
allows the portion of the source document used to populate the warehouse to be recon-
structed. By running a diff algorithm, we can then compute the changes between the
reconstructed document and a new version, and generate the update operations. We have
conducted an experimental study to determine the impact of the annotations on the size
of the datawarehouse. It showed that our model reduces the storage cost in at least 26%.
That is, the size of the annotated datawarehouse is at least 26% smaller than the size of the
data source and a non-annotated datawarehouse combined. Webelieve that this result can
be further improved by applying a compression mechanism on the Dewey Order Encod-
ing, which is adopted in our model. Investigating alternative encoding and compression
mechanisms is one of our future work. Other issues that need to be investigated include:
(1) extensions to the mapping language with selection and function calls (such as split
and concatenation of strings); (2) an experimental study todetermine the performance
of the algorithms for populating the warehouse and reconstructing source documents; (3)
definition of cleaning procedures and a mechanism to register the sequence of modifica-
tions applied to source data; (4) a complete framework for automating the datawarehouse
update process.

References
Braganholo, V., Davidson, S., and Heuser, C. (2006). Patax´o: a framework to allow

updates through xml views.ACM TODS, 31:839–886.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., andYergeau, F. (1998).Exten-
sible Markup Language (XML) 1.0. World Wide Web Consortium (W3C).http:
//www.w3.org/TR/REC-xml.

Buneman, P., Davidson, S., Fan, W., Hara, C., and Tan, W.-C. (2002a). Keys for XML.
Computer Networks, 39(5):473–487.

Buneman, P., Khanna, S., Tajima, K., and W.C., T. (2002b). Archiving scientific data.
Technical report.

Buneman, P., Khanna, S., and Tan, W.-C. (2001). Why and where: A characterization of
data provenance. InProceedings of ICDT’01.

Clark, J. and DeRose, S. (1999). XML Path Language (XPath). World Wide Web Con-
sortium (W3C).http://www.w3.org/TR/xpath.

Davidson, S., Fan, W., and Hara, C. (2007). Propagating XML constraints to relations.
Journal of Computer and System Sciences (JCSS), 73(3):316–361.

Davidson, S. and Liefke, H. (2001). Creating and maintaining curated view databases. In
Knwoledge Discovery and Data Mining in Biological Databases.

do Nascimento, A. M. (2008). Um modelo para integração de documentos XML em nı́vel
de instância. Master’s thesis, Universidade Federal do Paraná, Brazil.

Draper, D., HaLevy, A. Y., and Weld, D. S. (2001). The nimble xml data integration
system. InProceedings of the International International Conference on Data Engi-
neering (ICDE).

Fallside, D. C. (2000).XML Schema Part 0: Primer. World Wide Web Consortium
(W3C). http://www.w3.org/TR/xmlschema-0/.

Hopcroft, J. E. and Ullman, J. D. (1979).Introduction to Automata Theory, Languages
and Computation. Addison Wesley.

Hunter, J. (2000).JDOM. http://www.jdom.org.

Ley, M. (1997). XML Schema Part 0: Primer. Universitat Trier. http://dblp.
uni-trier.de.

Lim, E.-P., Srivastava, J., Prabhakar, S., and Richardson,J. (1996). Entity identification
in database integration.Information Sciences, 89(1).

Marian, A., Abiteboul, S., Cobena, G., and Mignet, L. (2001). Change-centric manage-
ment of versions in a xml warehouse. InProceeddings of VLDB’2001, pages 581 –
590.

Menestrina, D., Benjelloun, O., and Garcia-Molina, H. (2006). Generic entity resolution
with data confidences. InProceedings of the International VLDB Workshop on Clean
Databases, Seoul, Korea.

O’Neil, P., O’Neil, E., Pal, S., Cseri, I., Schaller, G., andWestbury, N. (2004). ORD-
PATHs: Insert-friendly XML node labels. InProceedings of SIGMOD’2004, pages
903–908, Paris, France.

Poggi, A. and Abiteboul, S. (2005). XML data integration with identification. InPro-
ceedings of International Workshop on Database Programming Languages (DBPL).

Pokorný, J. (2002). Xml data warehouse: Modelling and querying. In Proceedings of the
Baltic Conference (BalticDB&IS), pages 267 – 280.

Prabhakar, S., Richardson, J., Srivastava, J., and Lim, E.-P. (1993). Instance-level integra-
tion in federated autonomous databases. InHawaiian Conference for System Science.

Rahm, E. and Do, H. H. (2000). Data cleaning: Problems and current approaches.IEEE
Data Engineering Bulletin, 23(4):3–13.

Rundensteiner, E. A., Koeller, A., and Zhang, X. (2000). Maintaining data warehouses
over changing information sources.Communications of the ACM, 43(6):57–62.

Sawires, A., Tatemura, J., Po, O., Agrawal, D., and Candan, K. S. (2005). Incremental
maintenance of path-expression views. InProceedings of SIGMOD’2005, pages 443
– 454, Baltimore, Maryland.

Simmhan, Y. L., Plale, B., and Gannon, D. (2005). A survey of data provenance in e-
science.SIGMOD Record, 34(3):31=36.

Tan, W.-C. (2007). Provenance in databases: Past, current,and future.IEEE Data Engi-
neering Bulletin, 30(4):3–12.

Tatarinov, I., Viglas, S. D., Beyer, K., Shanmugasundaram,J., Shekita, E., and Zhang,
C. (2002). Storing and querying ordered XML using a relational database system. In
Proceedings of SIGMOD’2002, pages 204–215, Madison, Wisconsing, USA.

Xyleme, L. (2001). A dynamic warehouse for xml data of the web. IEEE Data Engineer-
ing Bulletin, 24(02).

