
A Semantical Change Detection Algorithm for XML

Rodrigo Cordeiro dos Santos
Universidade Federal do Parana, Brazil

rodrigosantos@celepar.pr.gov.br

Carmem Hara
Universidade Federal do Parana, Brazil

carmem@inf.ufpr.br

Abstract
XML diff algorithms proposed in the literature have fo-

cused on the structural analysis of the document. When
XML is used for data exchange, or when different versions
of a document are downloaded periodically, a matching
process based on keys defined on the document can generate
more meaningful results. In this paper, we use XML keys de-
fined in [5] to improve the quality of diff algorithms. That is,
XML keys determine which elements in different versions re-
fer to the same entity in the real world, and therefore should
be matched by the diff algorithm. We present an algorithm
that extends an existing diff algorithm with a preprocessing
phase for pairing elements based on keys.

1. Introduction
XML has become the standard format for data exchange

on the Web. It helps the process of publishing data, es-
pecially when the underlying information is constantly be-
ing updated. The data consumer, on the other side, may be
interested not only on the current contents of a web site,
but also on the updates that have been made since his last
access. As an example, one may want to know what are
the new products in a catalog, or which products had their
prices changed. To help the task of comparing two versions
of XML documents, a number of diff algorithms have been
proposed in the literature [1, 2, 15, 16].

The majority of these algorithms are based on a struc-
tural analysis of the documents. Similar to diff algorithms
on strings, their main strategy is based on finding large frag-
ments of data that are identical in both versions of a doc-
ument and match them. After finding these matchings, a
sequence of operations that transforms the old version of
the document to the new one is generated. This is called
an edit script or delta. In many applications, XML docu-
ments are not arbitrary tree structured data, but have well
defined structure and semantics. A strategy based solely
on structural and value similarities can generate erroneous
matchings of elements.

We have conducted an experimental study to analyze the
results of two diff algorithms: XyDiff[1], and X-Diff[15].

The experiments consisted of modifying an XML tree by in-
serting, deleting, modifying, and moving both internal and
leaf nodes in the tree, and then analyzing how semantically
meaningful the changes detected by these algorithms were.
The results showed the following: 1) both algorithms are
extremely sensitive to changes in the structure of the doc-
ument, especially when they involve insertion and removal
of internal nodes; 2) the existence of several similar or iden-
tical subtrees in a document may induce the algorithms to
erroneously match them, and these erroneous matchings are
propagated to their ancestors and descendants. We illustrate
these problems below.

Example 1: Consider the two XML documents, repre-
sented as XML trees, depicted in Figure 1. They contain in-
formation about university professors. Each professor
has a name, an office, and optionally a phone or
email. Comparing the old version with the new one, we
can observe that both John and Mary have their offices
changed, and moreover, that Mary has moved to John’s
former office. If the strategy of the diff algorithm is to find
the largest common subtree in both versions, it will match
John’s old office (node 9) with Mary’s new one (node 49).
This matching can then be propagated upwards by match-
ing professor elements (nodes 4 and 45). That is, the
professor element node that corresponds to John is
matched with the one that corresponds to Mary. As a con-
sequence, the edit script contains an update on the name of
the professor who works in the matched office, while
our expected result is an update on professor’s office.
In particular, if we know that name uniquely identifies a
professor in the document, that is, name is a key for
professor, then it is always the case that matches of
professor elements based on their names produce more
meaningful results than matches based on similar subtrees.

Observe that not only values have been modified, but the
structure of the document has also changed. In the old ver-
sion, professors are organized by their universities, while in
the new one, they are placed under their departments. In
our experimental study, the edit scripts generated by both
XyDiff and X-Diff consisted of operations that remove all
subtrees rooted at professor elements, followed by in-

root

university

John

phone

212

professor

scieng

building

office

Mary
building

office

professor

root

university

department

professor

John

phone

212

professor

adm eng

building

office

Mary
building

officename

name

1

ufpr

2

3

304

@email

500

@number @number
20

19

18

1716

15

14

12

11

10

9

8

7

6

5

4 13

(a) old version T1

ufpr

cis

(b) new version T2

604

31

32

37

38 40

43

44

46

47 50

51

52

36

39
41

42

45

49

500

@email

33

48

@number @number

35

34

@name

@name

@name

m@ufpr

name

name

m@ufpr

Figure 1. Two versions of XML trees

sertions of the same subtrees under the new department
node. This is because in both algorithms only nodes reached
by following exactly the same path from the root can be
matched. Clearly, this is not the expected results from the
semantical point of view, which is the creation of a new
level in the tree. Similar to the previous case, if we know
that name uniquely identifies a professor no matter
where the professor node occurs in the tree then the cor-
rect matchings of professor elements would be found,
avoiding their removals in the edit script. �

In this paper, we propose an algorithm, called XKey-
Match, that uses XML keys[5] to guide the comparison of
XML documents. That is, first elements in the two versions
are matched based on their key values, and then a struc-
tural analysis is performed to determine their differences.
In Example 1 we would give as input to the diff algorithm
that name uniquely identifies a professor in the entire
document. A strategy based on keys is natural when com-
paring two relational databases. Since XML has become a
standard for data exchange, it is natural to apply the same
strategy for this format.

One area in which matchings based on semantics is es-
pecially important is data cleansing[11]. One of the main
goals of data cleansing is to detect inconsistencies on in-
put data. As an example, consider a datawarehouse that
maintains data imported from external sources. Periodically
these external sources update and publish new versions of
their database. In order to keep the datawarehouse up-to-
date, it is necessary to determine what are the differences of
the new version compared to the previous one. If the pre-
vious version had been through data cleansing, one would
like to know if previously detected mistakes have been cor-
rected, either to prevent redoing the cleansing process, or to
report the error to the external source. Ideally, a diff algo-

rithm for helping this task should first identify which pieces
in the two versions of imported data refer to the same entity
and then determine what has been changed.
Contributions. The main contributions of this paper are:
• A proposal of a semantical approach in the context of

diff algorithms for XML;
• An algorithm for matching elements in two versions of

XML documents based on XML keys.
To the best of our knowledge this is the first algorithm that
introduces keys in the context of XML diff algorithms, and
that generates semantically meaningful results when there
are changes in the structure of the document.
Related Work. A number of diff algorithms have been
proposed in the literature both for text documents[8] and
for tree structures[13, 14, 17]. XyDiff[1] is one of the
earliest algorithms proposed for XML. It was designed for
datawarehouses that store huge amounts of data, and there-
fore it was designed to be efficient, both in time and space.
The algorithm is based on an ordered tree model. When
the documents are accompanied with a DTD[4], attributes
defined as identifiers (ID) are used to match elements ac-
cording to their values. X-Diff[15] is an algorithm based
on an unordered tree model. The distinguishing feature of
diffX algorithm[2] is that it looks for matches in isolated
fragments of the XML tree, instead of pairing nodes along
a tree traversal. A different strategy for finding matches is
applied by KF-Diff[16]. It is based on defining unique paths
starting from the root for each node in the tree. Whenever
such a path cannot be found, which happens when a node
has more than one child with the same label, these labels
are replaced by key fields. Key fields are values contained
in the subtrees rooted at these nodes that can distinguish
them among those with the same label. Although the idea
of key fields is used in this algorithm, it is applied as a tech-
nique for deriving unique paths. They are not defined by
the user, and therefore are not meant to capture the seman-
tics of the document. Comparative studies of existing XML
diff algorithms can be found in [7] and [12].
Organization. The rest of the paper is organized as fol-
lows. Section 2 defines XML keys, and presents definitions
related to diff algorithms. Section 3 describes our proposal
of a semantical diff algorithm, followed by our conclusions
in Section 4.

2. XML Keys and Diff Algorithms

This section presents some definitions used throughout
the paper.
Tree model and XML keys. XML documents can be mod-
eled as trees. Nodes in the tree can be of three types: ele-
ment, attribute, and text, where attribute labels are prefixed
by “@”. Based on node types, we define function lab(n),
and val(n) as follows: if n is an element node then lab(n)

denotes the name of the element and val(n) is undefined; if
n is an attribute node then lab(n) denotes the name of the
attribute and val(n) is its associated string value; if n is a
text node then lab(n) = “S”, and val(n) is its string value.
Two examples of XML trees are illustrated in Figure 1.

To define a key we specify three things: 1) the context
in which the key must hold; 2) a target set on which we are
defining a key; and 3) the values which distinguish each el-
ement of the target set. For example, the key specification
of Example 1 has a context of the root (the entire docu-
ment), a target set of professor, and a single key value,
name. Specifying the context node and target set involve
path expressions.

The path language we adopt is a common fragment of
regular expressions [10] and XPath [6]:

Q ::= ε | l | Q/Q | //
where ε is the empty path, l is a node label, “/” denotes
concatenation of two path expressions (child in XPath), and
“//” means descendant-or-self in XPath. To avoid confusion
we write P//Q for the concatenation of P , // and Q.

Following the syntax of [5] we write an XML key as:
K : (C, (T, {P1, . . . , Pp}))

where K is the name of the key, path expressions C and T
are the context and target path expressions respectively, and
P1, ..., Pp are the key paths. For the purposes of this paper,
we restrict the key paths to be simple paths (without “//”). A
key is said to be absolute if the context path C is the empty
path ε, and relative otherwise.

Example 2: Using this syntax, some constraints on XML
trees in Figure 1 can be written as follows:
• k1 : (ε, (university, {@name})): within the con-

text of the entire document (ε denotes the root), a
university is identified by its name.

• k2 : (university, (//professor, {name, phone})):
within the context of each subtree rooted at a
university element, a professor is uniquely
identified by the values of its subelements name and
phone. The professor can appear anywhere in the
subtree rooted at university.

�
To define the meaning of an XML key, we use the follow-
ing notation: in an XML document (tree), n[[P]] denotes
the set of node identifiers that can be reached by following
path expression P from the node with identifier n. [[P]] is
an abbreviation for r[[P]], where r is the root node of the
tree. As an example, in Fig. 1(a), [[university]] = {2},
2[[professor]] = {4, 13} and [[//name]] = {5, 14}.

The formal definition of the meaning of an XML key is
given next.

Definition 1 An XML tree satisfies an XML key (Q,
(Q’,{P1,. . .,Pn})) iff for any n in [[Q]], and any n1 and
n2 in n[[Q′]], if for all i, 1 ≤ i ≤ n there exists z1 in n1[[Pi]]
and z2 in n2[[Pi]] such that z1 =v z2, then n1 = n2.

The definition above involves value equality on trees
(=v), so we formalize this notion below.

Definition 2 Given an XML tree T , and two nodes n1 and
n2 in T , we say that they are value equal, denoted as
n1 =v n2 iff the following conditions are satisfied: 1)
lab(n1) = lab(n2); 2) if n1 and n2 are attribute or
text nodes then val(n1) = val(n2); 3) if n1 and n2 are
element nodes then: an attribute A is defined for n1 iff it
is also defined for n2, and val(n1.A) = val(n2.A); more-
over, if [d1,. . .,dk] are subelements of n1 then n2 has
subelements [d′1,. . .,d′k], and for all i ∈ [1, k] there ex-
ists j ∈ [1, k] such that di =v d′j .

For example, XML tree of Fig. 1(a) satisfies key
(//professor, {name}) since [[//professor]] = {4, 13},
and 4[[name]] 6=v 13[[name]].

Diff Algorithms. The essential goal of a diff algorithm
is to find an edit script such that given a version of a doc-
ument in time t − 1 and the edit script, it is possible to
obtain its version in time t. The number of operations in
a edit script is called the edit distance. Although the edit
distance is often used to define the cost of the transforma-
tion, finding a minimum edit script is not always the best
strategy for generating semantically meaningful results. In
the next Section, we propose using XML keys to guide the
node matching process of a diff algorithm.

3. A Semantical Diff Algorithm

In this section we present XKeyMatch, an algorithm for
matching elements in two versions of XML trees based on
XML keys. This algorithm is designed to be executed be-
fore a diff algorithm that compares the contents in both ver-
sions. The architecture of the system is depicted in Figure
2.

XML Keys
Edit
Script

Diff

Algorithm

version
(t−1)

version

(t)

Matched
Nodes
���
���
���

���
���
���

XKeyMatch

Figure 2. A diff algorithm with a preprocessing phase
with XKeyMatch

Algorithm XKeyMatch receives as input two versions,
vt−1 and vt, of XML trees, and a set of XML keys Σ that
are known to be satisfied by both versions. The output is
a set Γ of node pairs [n1, n2], where n1 is a node in vt−1

that refers to the same entity as node n2 in vt according to
Σ. The set Γ is then given as input to a diff algorithm that,

based on these matchings, compares versions vt−1 and vt

and generates an edit script.
Algorithm XKeyMatch is based on the construction of

a deterministic finite automaton (DFA) from the set Σ of
XML keys, denoted as KeyDFA(Σ). Using this DFA, it is
possible to process all keys in Σ at the same time, and all
matchings based on Σ can be generated with a single pre-
order traversal on vt−1 and vt. More specifically, each state
of the DFA represents a set of paths, and it stores infor-
mation on all keys that can be defined on nodes reached by
following these paths. Therefore, each step of the XML tree
traversal corresponds to a change of state in the automaton;
information on keys stored at each state is used to collect
nodes that are candidates for matchings based on these keys.

After collecting all candidates, algorithm XKeyMatch
pairs nodes in both versions according to their key values.
These steps of the algorithm are depicted in Figure 3. Given
XML trees T1 and T2, and a set of XML keys Σ, the algo-
rithm first builds KeyDFA(Σ) (Line 1). Then candidates are
selected by calling function get candidates for both
trees (Lines 2 and 3). The resulting set of matches is com-
puted by function match, which compares the candidates
previously collected (Line 4). Next, we present each of
these steps in detail.

Function XKeyMatch
Input: XML trees T1, T2, and a set of XML keys Σ
Output: a set of matched node pairs
1. KeyDFA:= DFA(Σ);
2. candidates(T1):= get candidates(T1,KeyDFA);
3. candidates(T2):= get candidates(T2,KeyDFA);
4. return (match(candidates(T1), candidates(T2), T1, T2);

Figure 3. Algorithm XKeyMatch

DFA Construction. Given a set Σ of XML keys, this
step of algorithm XKeyMatch generates a deterministic fi-
nite automaton, denoted as KeyDFA(Σ), where each state
stores information for processing every key in Σ with a sin-
gle traversal on an XML tree T .

Let Σ = {σ1, . . . , σn}, where each σi is of the form
(Qi, (Q′

i, {P 1
i , . . . , Pni

i })). We first describe the construc-
tion of a non-deterministic finite state automaton (NFA) as-
sociated with each key σi in Σ. We start with the construc-
tion of a NFA for each path p in {Qi, Q

′
i, P

1
i , . . . , Pni

i },
defined as M(p) = (Np, Lp ∪ {other}, δp, Sp, Fp), where
Np is a set of states, Lp is the alphabet, δp is the transi-
tion function, Sp is the start state, and Fp is the set of final
states. Here, “other” is a special character that can match
any character. These automaton have “linear structure”;
that is, if p = l1/ . . . /lm then δp(Sp, l1) = q1, for each
j, 1 ≤ j < m, δp(qj , lj+1) = qj+1, and qm = Fp. If
p contains “//” then there exists a transition from a state
back to itself with “other”. That is, if p = . . . //lj . . .

for some j then δp(qj−1, other) = qj−1, where q0 = Sp.
The final states of these NFAs carry information about the
key considered for its construction, denoted as keyInfo.
Let F = {FQi , FQ′

i
, FP 1

i
, . . . , FP

ni
i
}. For each f ∈ F ,

keyInfo[f] contains the following information:

• keyId: σi’s identifier;
• type: the value of this field is context if f = FQi ,

target if f = FQ′
i

and keyPath otherwise;
• keyPathId: a identifier for each key path. This field

is defined only when keyInfo[f].type = keyPath; in
this case, if f = FP j

i
then keyInfo[f].keyPathId =

j.

The NFA for key σi is obtained by making the final
state of M(Qi) coincide with the start state of M(Q′

i),
and the final state of M(Q′

i) coincide with start states
of M(P k

i), 1 ≤ k ≤ ni. The NFA for all keys in
Σ, M(Σ) is finally obtained by creating a new start state
with ε-transitions to the start states of all M(σi), 1 ≤
i ≤ n. An example of the resulting NFA for Σ =
{k1 :(university, {name}), k2 :(university,
(//professor, {name, phone}))} is depicted in
Figure 4(a), and the corresponding keyInfo structure is given
in Figure 4(c).

2 3 4

5 7

8

9

6

1

university @name

name

phoneother

university professor

Ε

Ε

−−

−−

−−

−−

3,6

4,6

6
other

6,8

6,9

6,7

(b) KeyDFA

(c) keyInfo

(a) NFA

type

context

target

context

target

keyPath

keyPath

keyPath

1

1

2

keyId keyPathId

k1

k1

k1

k2

k2

k2

k2

[3]

[4]

[6]

[7]

[8]

[9]

[2]

university

other

other
professor

professor

professorname

professor

professor

phone

professor other

other

other

@name

1,2,5

Figure 4. DFA construction

Given NFA M(Σ), KeyDFA(Σ) is obtained applying
standard subset construction algorithm[10]. The resulting
automaton for our running example is shown in Figure 4(b).
Observe that, although in M(Σ) each state contains infor-
mation of at most one key in Σ, after the conversion, each
state q′ in KeyDFA(Σ) contains information from all origi-
nal states represented by q′. As an example, in Figure 4(b),
keyInfo({3, 6}) = {keyInfo[3], keyInfo[6]}.

The automaton construction described in this section is
similar to that defined in [9] for XML stream processing,
which evaluates the effectiveness of processing a large num-
ber of XPath expressions on streams when the DFA is con-
structed ”lazily”. Although the number of states in a DFA
can grow exponentially on the number of input path expres-
sions, the number of keys for a given document is usually

small. Moreover, since changes on keys are not frequent,
if versions of the same document are periodically down-
loaded, KeyDFA(Σ) can be locally stored, instead of being
recomputed at each execution of the diff algorithm.

Selection of Candidates. Given KeyDFA(Σ), algorithm
XKeyMatch process each of the XML trees given as in-
put using this automaton, gathering information on possible
candidates for matchings according to Σ. Let T be one these
trees, and KeyDFA(Σ) = (Q,A, δ, q0, F). Starting with the
root of T and start state q0, T is traversed in preorder, and
each step in the tree traversal corresponds to a step in its
processing with the automaton. During the traversal, infor-
mation about key values are collected using data stored at
each state q visited. That is, suppose the current state is q
when processing a node n in T . If keyInfo[q] contains in-
formation on a key path of a key k, then n is a key value for
some node nt, and therefore we can associate nt with the
value of n. Observe that k may contain more than one key
path. If this is the case, then nt is identified as a candidate
for matching only if it is associated with values for all key
paths of k, and we say that nt is ”keyed” on k.

To keep track of the information needed to determine
whether a node is a candidate for matching along the
tree traversal, we associate the following with each key
k = (Q, (Q′, {P1, . . . , Pn})) in Σ, in a structure called
keyVal [k]:
• contextNodes: a set of nodes in [[Q]];

• targetNode: last node visited in n[[Q′]] for some n in
contextNodes;

• keyNode: last node visited in targetNode[[Pi]].

• keyPathId: key path identifier i, 1 ≤ i ≤ n;
Recall that a node in the tree may play different roles

(as context, target, or key path) for different keys in Σ, and
this information is given by keyInfo[s], where s is a state in
KeyDFA(Σ). Suppose that the current state of KeyDFA(Σ)
is s when processing node n in T . Then for each element
v in keyInfo[s] we obtain the value of v.keyId = k, and
values in v are used for filling up fields in keyV al[k]. As
an example, consider tree T1 in Figure 1(a). Let the cur-
rent node in T1 be 2 (a university node), and the cur-
rent state of KeyDFA(Σ) be {3, 6}. Then the algorithm sets
keyVal [k1].targetNode = 2, since keyInfo[3] states that
the current node is the target of k1. Moreover, node 2 is
inserted in keyVal [k2].contextNodes, based on the value
of keyInfo[6]. That is, structure keyVal [k] is a placeholder
for information gathered along the tree traversal. Whenever
values for all key paths of k are found, values in keyVal [k]
contain data on a candidate for matching based on k. The
result of function get candidates on T1 and T2 is given
in Figure 5.

The first line in the table of Figure 5(a) has been col-
lected according to the XML key k1 : ((university,

keyId contextNodes targetNode [keyNode, keyPathId]
k1 1 2 {[3,1]}
k2 2 4 {[5,1], [7,2]}

(a) get candidates(T1, keyDFA)

keyId contextNodes targetNode [keyNode, keyPathId]
k1 31 32 {[33,1]}
k2 32 36 {[37,1], [39,2]}

(b) get candidates(T2, keyDFA)

Figure 5. Selection of candidates on T1 and T2

{@name})), while candidate 2 has been collected ac-
cording to key k2 : ((university, (//professor,
{name, phone}))). Observe that node 13 (a
professor node) has not been included in the set, since
it does not have values for key path phone. Similarly, in
Figure 5(b), line 1 has been collected using key k1, while
line 2 has been collected according to k2.

Matching. Given the set of candidates for matching from
both versions of XML trees T1 and T2, function match
looks for candidates in these sets with the same key val-
ues. That is, we search for nodes n1 in candidates of T1

and n2 in candidates of T2 that are keyed on the same key
k and coincide on the values of all key paths. When k is
a relative key, we can only conclude that n1 matches n2

if the contexts in which n1 and n2 are defined also match.
Consider again the XML keys in our running example. If
both candidates contain professor-nodes with the same
name and phone, we can only conclude that they are in-
deed the same professor if the university (the context)
in which they are defined also match. After finding a pair
of target nodes [n1, n2] that match, this matching is propa-
gated downwards. That is, if they have been matched based
on the values of some key paths, these key path nodes can
also be matched.

In function match, all pairs of nodes that are candidates
for matching are collected in a data structure containing the
following information: the key identifier k (keyId); the
context node in T1 (contextNode1); the target node in T1

(targetNode1); the context node in T2 (contextNode2);
the target node in T2 (targetNode2); a set of records
[keyPathId, keyNode1, keyNode2], where keyNode1 and
keyNode2 are key nodes in T1 and T2, respectively, with the
same value.

As an example, consider again XML trees T1 and
T2 depicted in Figure 1 and the output of function
get candidates on T1 and T2 given in Figure 5. Af-
ter comparing the values of candidates for matching, the
resulting set contains the values shown in Figure 6. The
first candidate is included in the set because nodes 2 and 32
are university nodes in T1 and T2, respectively, with
the same @name value. Similarly, the second candidate is

inserted because nodes 4 and 36 are professor nodes
that coincide on the values of both name and phone. To
compute the resulting set of matches, we start by inserting
the pair [1, 31], the roots of T1 and T2, in the set. When
processing the first candidate [2, 32] it is checked whether
their context has already been matched. Since this is the
case, [2, 32] is inserted in the result. This matching is prop-
agated downwards and pair [3, 33] (@name nodes) are also
inserted in the result. For the second candidate [4, 36], it
is checked whether their context [2, 32] has already been
matched. Since this is also the case, we can conclude the it
is indeed a match and insert the pair in the resulting set. The
propagation of matches includes in the result the follow-
ing pairs: [5, 37], [6, 38] (name nodes), [7, 39] and [8, 40]
(phone nodes).

keyId context target context target [keyPathId, keyNode1 , keyNode2]
node1 node1 node2 node2

1 1 2 31 32 {[1,3,33]}
2 2 4 32 36 {[1,5,37], [2,7,39]}

Figure 6. Candidates for matching

Implementation. Algorithm XKeyMatch has been imple-
mented in C++, using DOM [3]. XyDiff is the algorithm
chosen to take as input the set of matches resulting from
XKeyMatch, find additional matchings, and generate the
edit script. Some libraries from XyDiff have been used
by XKeyMatch to implement the communication between
them. We have conducted some experiments to evaluate the
effectiveness of our proposal, and to determine if it indeed
solves the problems detected in other diff algorithms and
reported in Section 1. The results are very encouraging.
In particular, for Example 1, the definition of a single key
(//professor, {name}) prevents both problems described
in the introduction. A final remark is that, although our
proposal can have an impact on the performance of the diff
algorithm to which algorithm XKeyMatch is applied to pre-
process the input XML documents, many applications favor
the quality of the result rather than the efficiency of the al-
gorithm.

4. Conclusion

We have proposed a new approach in the context of diff
algorithms for XML. As opposed to previous works, that are
based solely on the structural analysis of XML documents,
our technique takes into consideration their semantics. Our
approach consists of extending the structural analysis with
a preprocessing phase which uses XML keys to match el-
ements that refer to the same entity in two versions of the
document. Although XKeyMatch requires the user to be
familiar with the documents being compared, when the in-
put keys faithfully capture their semantics, our algorithm al-
ways generates more meaningful results than others based

solely on structure and value similarities. One topic for fu-
ture work is to perform an experimental study using large
amounts of data, especially real ones, in order to determine
the impact of the preprocessing phase in practice. Possible
test beds are scientific databases, since they present appro-
priate structure and behavior.

References

[1] S. Abiteboul, G. Cobna, and A. Marian. Detecting changes
in XML documents. ICDE’02, 2002.

[2] R. Al-Ekram, A. Adma, and O. Baysal. diffx: an algorithm
to detect changes in multi-version xml documents. In CAS-
CON ’05: Proceedings of the 2005 conference of the Centre
for Advanced Studies on Collaborative research, pages 1–
11. IBM Press, 2005.

[3] V. Apparao et al. Document Object Model (DOM) Level 1
Specification. W3C Recommendation, Oct. 1998.

[4] T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Extensible
Markup Language (XML) 1.0. W3C Recommendation, Feb.
1998.

[5] P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan.
Keys for XML. Computer Networks, 39(5):473–487, Aug.
2002.

[6] J. Clark and S. DeRose. XML Path Language (XPath). W3C
Working Draft, Nov. 1999.

[7] G. Cobena, T. Abdessalem, and Y. Hinnach. A comparative
study for xml change detection, 2002.

[8] FSF. Gnu diff. Available at
http://www.gnu.org/software/diffutils/diffutils.html.

[9] T. J. Green, A. Gupta, G. Miklau, M. Onizuka, and D. Su-
ciu. Processing xml streams with deterministic automata and
stream indexes. ACM Trans. Database Syst., 29(4):752–788,
2004.

[10] J. E. Hopcroft and J. D. Ullman. Introduction to Automata
Theory, Languages and Computation. Addison-Wesley,
1979.

[11] J. Maletic and A. Marcus. Data Cleansing: Beyond In-
tegrity Analysis. Proceedings of The Conference on Infor-
mation Quality (IQ2000), Massachusetts Institute of Tech-
nology, Boston, MA, USA, pages 200–209, 2000.

[12] L. Peters. Change detection in xml trees: a survey. Technical
report, University of Twente, 2005.

[13] S. M. Selkow. The tree-to-tree editing problem. Information
Processing Letters, 6:184–186, 1977.

[14] K. Tai. The tree-to-tree correction problem. Journal of the
ACM, 3(26):422–433, 1979.

[15] Y. Wang, D. J. DeWitt, and J. Cai. X-Diff: an effective
change detection algorithm for XML documents. ICDE,
pages 519–530, 2003.

[16] H. Xu, Q. Wu, H. Wang, G. Yang, and Y. Jia. Kf-diff+:
Highly efficient change detection algorithm for xml docu-
ments. In On the Move to Meaningful Internet Systems,
2002 - DOA/CoopIS/ODBASE 2002 Confederated Interna-
tional Conferences DOA, CoopIS and ODBASE 2002, pages
1273–1286, London, UK, 2002. Springer-Verlag.

[17] K. Zhang, R. Stgatman, and D. Shasha. Simple fast algo-
rithm for the editing distance between trees and related prob-
lems. SIAM Journal on Computing, 18:1245–1262, 1989.

