
Partitioning RDF Exploiting Workload Information

Rebeca Schroeder
Univ. Federal do Paraná

Curitiba, PR, Brazil
rebecas@inf.ufpr.br

Raqueline Penteado
Univ. Federal do Paraná

Curitiba, PR, Brazil
rrmpenteado@inf.ufpr.br

Carmem S. Hara
Univ. Federal do Paraná

Curitiba, PR, Brazil
carmem@inf.ufpr.br

ABSTRACT

One approach to leverage scalable systems for RDF manage-
ment is partitioning large datasets across distributed servers.
In this paper we consider workload data, given in the form
of query patterns and their frequencies, for determining how
to partition RDF datasets. Our experimental study shows
that our workload-aware method is an effective way to clus-
ter related data and provides better query response times
compared to an elementary fragmentation method.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems—Dist. databases

Keywords

RDF; data fragmentation

1. INTRODUCTION
An increasing and expressive amount of data are becoming

available in RDF format. DBpedia had extracted 1.89 bil-
lion RDF triples from Wikipedia last year, and the Linked
Open Data project[4] had collected over 20 billion triples
from 295 interlinked datasets on the Web. Not surprisingly,
the massive scale of data overwhelms computing resources
on commodity infrastructures. A scalable distributed sys-
tem is required to store and manage these large datasets.
However, scalable processing of large RDF graphs also re-
quires careful partitioning of data across servers. Otherwise,
the system performance may decrease when related data is
spread over large geographic distances.
RDF datasets have been fragmented in different ways.

Simple hash functions have been applied on RDF triples to
cluster them by subject or property[2]. As an example, con-
sider the RDF graph in Figure 1 extracted from the Berlin
SPARQL Benchmark[1]. In this example, triples related to
product entities may be joined by a hash function on the
subject (<product1, label, ProductXYZ>, <product1, offer,

offer1> and so on). An alternative approach is to apply
workload data in order to keep properties accessed together
in the same fragment [3]. For instance, the properties label,
producer and feature are candidates to be placed in the
same fragment according to the query Q2 defined by the
Berlin workload and given in Figure 2. In this paper we show
that a workload-based fragmentation is an effective way to

Copyright is held by the author/owner(s).
WWW 2013 Companion,May 13–17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2038-2/13/05.

Figure 1: RDF graph

Q2-Basic information about a product Q7-Extra information about a product

------------------------------------ ------------------------------------

SELECT ?a ?b ?c SELECT ?a ?b ?c ?d

WHERE { %ProductXYZ% rdfs:label ?a . WHERE { %ProductXYZ% rdfs:label ?a .

%ProductXYZ% bsbm:producer ?p . %ProductXYZ% bsbm:feature ?f .

?p rdfs:label ?b . ?f rdfs:label ?b . ?offer bsbm:

%ProductXYZ% bsbm:feature ?f . product %ProductXYZ% . ?offer bsbm:

?f rdfs:label ?x} price ?c . ?offer bsbm:vendor

?vendor . ?vendor rdfs:label ?d }

Figure 2: Queries from the Berlin SPARQL Benchmark

improve the performance of a distributed RDF datastore,
compared to an elementary approach like hash partitioning.

We have applied xAFFrag[5], a workload-aware algorithm,
which has originally been proposed for partitioning XML
schemas. Section 2 presents the partitioning process on
RDF. Results of applying xAFFrag are compared to the na-
tive method of the Berlin Benchmark [1] in Section 3. We
conclude in Section 4 with some remarks for future work.

2. WORKLOAD-AWARE PARTITIONING
The goal of the xAFFrag algorithm is to minimize the exe-

cution of distributed queries, by keeping the most correlated
data in the same fragment. To this end, we need to measure
the correlations among data according to a given workload.
In order to exemplify the workload characterization process
applied by [5], consider queries Q2 and Q7 as the representa-
tive workload for the RDF graph of Figure 1. The workload
may be initially represented as a usage matrix as depicted
in Figure 3a. In the matrix, each query is represented as
a column, and each data item as a row. In addition, the
expected frequency of each query is represented in the last
row. If a given query q traverses a data item d, then M [q,
d] = 1; otherwise, M [q, d] = 0. In the example, Q2 is ex-
ecuted 37.5 times in a given period of time involving items
product.label, producer.label and prodFeature.label.

Each data item is represented as a node in an affinity
graph (Figure 3b), and the affinity measure between two
nodes ni and nj is defined by the sum of the query fre-
quencies that involve both ni and nj . As an example, the



Data item Q2 Q7

product.label 1 1

producer.label 1 0

prodFeature.label 1 1

offer.price 0 1

vendor.label 0 1

Frequency 37.5 25

(a) Usage Matrix

(b) Affinity graph (c) Query Performance (d) System Throughput

Figure 3: Workload data and Experimental Results

affinity between product.label and prodFeature.label consists
of the sum of frequencies of queries Q2 and Q7 (62.5). The
affinity values are used to label edges in the affinity graph.
xAFFrag takes an affinity graph and a storage threshold to

find a fragmentation schema. As an example, assume that
the storage threshold is set such that each fragment can keep
up to 3 nodes. In this case, the fragmentation schema gen-
erated by xAFFrag is represented by two fragments: f1 =
{product.label, producer.label, prodFeature.label} and f2 =
{offer.price, vendor.label}. Notice that the size of frag-
ments fits in the storage threshold and the affinity between
any node in f1 with any node in f2 is lower than the affinity
between any pair of nodes in the same fragment. Thus, the
most related data items are placed in the same fragment.

3. EXPERIMENTAL EVALUATION
In order to measure the effect of our proposed method

for RDF partitioning, we compare xAFFrag with the native
fragmentation of Berlin. The workload data has been ex-
tracted from the benchmark for a representative subset of 5
SPARQL queries and given as input to the workload-aware
process. The native partition method fragments the dataset
in a user-defined number of files. Thus, data related to a
specific product may be in a single file or distributed among
a set of files. Berlin supports the creation of arbitrarily large
datasets using the number of products as scale factor. We
generated datasets with 50, 100 and 150 products. They
are referred to as datasets of size 1, 2 and 3, respectively.
Berlin and xAFFrag partition each product in 9 fragments
given that the threshold considered for the fragment size is
11 kB. The datasets are stored in Scalaris [6], a key-value
store running on 16 Amazon EC2 micro instances. Thus, the
SPARQL queries are directly mapped to Scalaris requests.
In order to determine the impact of the 2 fragmentation

approaches, queries were executed with increasing number
of clients and dataset sizes. The results in terms of query
response time are depicted in Figure 3c. They present the
average value of 300 executions for a dataset with size 1 and
96 clients. The query mix is given beside each query name
and consists of the percentage of queries of this type in the
set of queries of each run. The results reported for xAFFrag

and Berlin can be explained by the number of fragments re-
quired to process the queries. For executing Q2 on xAFFrag,
we need only 2 accesses to the datastore, which takes 16.32
ms. The execution of the same query on Berlin increases the

number of requests to 9 fragments and has the same effect on
the response time (142.48 ms). In other words, the affinity-
based approach clusters data required by the most frequent
query (Q2) in 2 fragment, while Berlin spread the related
data in 9 fragments. With the increase on the number of
fragments, the number of requests to process a query is also
likely to be larger, which reflects on the results. Notice that
Berlin presents better performance for Q11 and Q12. This is
because they are the most infrequent ones and the xAFFrag

approach favors the performance of frequent queries.
Both approaches present a similar degradation on the thro-

ughput when the database size is increased as shown in Fig-
ure 3d. With respect to the number of clients, we observed
a degradation when the number of clients is between 96 and
160. We believe that with higher number of requests the
competition for resources increases, leading to CPU over-
head and query conflicts, which impacts the system perfor-
mance.

4. CONCLUSIONS
We have demonstrated that an algorithm originally pro-

posed to fragment XML can be effectively applied for parti-
tioning RDF. The experimental results show that a workload-
aware method for partitioning RDF is effective to improve
the performance of a distributed datastore, compared to
an approach that ignores workload data. We are currently
working on the extension of xAFFrag, which includes the
adjustments performed in this work to support RDF. The
main issue related to this topic involves processing cycles
in RDF graphs. Future works include comparative studies
with other partitioning approaches, as well as replication,
query load balancing and dynamic workloads.

5. REFERENCES
[1] C. Bizer and A. Schultz. The berlin sparql benchmark. IJSWIS,

5(2):1–24, 2009.

[2] M. Cai and M. Frank. RDFPeers: a scalable distributed RDF
repository based on a structured peer-to-peer network. In
WWW ’04, pages 650–657, 2004.

[3] L. Galarraga, K. Hose, and R. Schenkel. Partout: A distributed
engine for efficient rdf processing. CoRR, abs/1212.5636, 2012.

[4] T. Heath and C. Bizer. Linked Data: Evolving the Web into a

Global Data Space. Morgan and Claypool, 2011.

[5] R. Schroeder, R. Mello, and C. S. Hara. Affinity-based xml
fragmentation. In WebDB, pages 61–66, 2012.

[6] Zuse Institute Berlin. Scalaris-distributed transactional key-value
store. Available at http://code.google.com/p/scalaris/, 2013.


