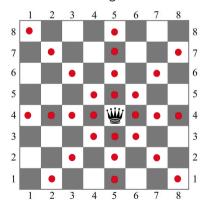
Backtracking Recursivo

Daniel Oliveira

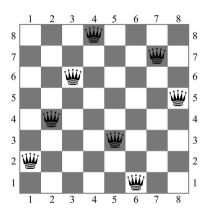

Departamento de Informática - UFPR

Janeiro 2021

8-rainhas

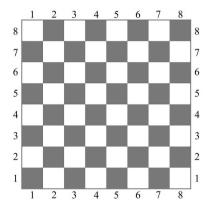
- Como colocar 8 rainhas num tabuleiro de xadrez de forma que nenhuma rainha ataque outra rainha?
 - Rainhas se movimentam (e capturam peças) em toda a linha, coluna, diagonal e anti-diagonal

- Verificar se uma rainha na posição (i, j) ataca outra é trivial:
 - linha: i
 - coluna: j
 - diagonal: i + j
 - anti-diagonal: i j


n-rainhas

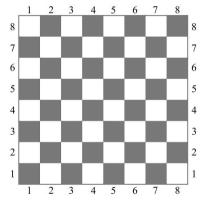
n-rainhas

Instância: n, onde n é a quantidade de rainhas colocadas em um tabuleiro de $n \times n$.


Resposta: Todas as soluções onde as n rainhas não se atacam

8-rainhas - uma solução

8-rainhas - Proposta #1


• Testar todas as combinações possíveis e verificar quais respeitam as condições

- Quantas combinações diferentes existem?
 - \bullet $\binom{64}{8} = 4.426.165.368$

8-rainhas - Proposta #2

- Por que não caminhar apenas por linhas, ou colunas?
 - Nenhuma solução pode ter mais de uma rainha na mesma linha
 - Testar todas as combinações com uma rainha por linha


```
8	ext{-rainhas}(v, I)
Se I > 8
testa\_e\_imprime(v)
Senão
c \leftarrow 1
Enquanto c > 8
v[I] \leftarrow c
8	ext{-rainhas}(v, I + 1)
c \leftarrow c + 1
```

• Possibilidades (#chamadas recursivas): $8^8 = 16.777.216$, equivale a 0,38% de $\binom{64}{8}$

Backtracking

- Uma maneira de examinar todas as possibilidades produtivas, abandonando situações completamente exploradas
 - Método batizado de backtrack por R. J. Walker por volta de 1950
 - 'possibilidades' se referem a diferentes configurações num espaço de busca (8 rainhas no tabuleiro)
 - Todas as configurações devem ser geradas de maneira sistemática
 - Normalmente o algoritmo termina na primeira solução encontrada para o problema

 Backtracking, basicamente, faz uma exploração parcial em vez de exaustiva do espaço de busca

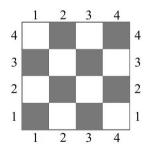
Backtracking - Framework geral

- Buscamos todas as sequências $x_1, x_2, ..., x_n$ tal que uma propriedade $P_n(x_1, x_2, ..., x_n)$ é verdadeira
 - onde x_n pertence a um domínio D_k de inteiros

- Backtracking, na sua forma básica, envolve o uso de uma propriedade de 'corte' ou 'poda' $P_I(x_1,...,x_I)$ para $1 \le I < n$ tal que:
 - $P_l(x_1,...,x_l)$ é verdadeiro sempre que $P_{l+1}(x_1,...,x_{l+1})$ é verdadeiro
 - ② $P_l(x_1,...,x_l)$ é fácil de testar se $P_{l-1}(x_1,...,x_{l-1})$ é verdadeiro

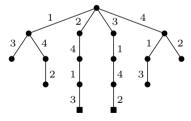
Backtracking - Algoritmo geral

Solucao()

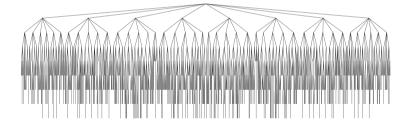

Inicializa P, I e n busca_solucao(P, I, n)

```
busca_solucao(P, I, n)

Se I > n
Uma solução P encontrada


Senão

Para todo x_l pertencente ao domínio D_k
Insere x_l em P
Se P é verdade
busca_solucao(P, I + 1, n)
Remove x_l de P {Passo de backtrack}
```



Backtracking - 4-rainhas

- Árvore de busca, ou árvore de backtrack, para 4-rainhas:
 - 17 nós
 - número de soluções $(P_n = P_4)$ é 2

Backtracking - 8-rainhas

- Árvore de busca, ou árvore de backtrack, para 8-rainhas:
 - 2057 nós
 - $\bullet \ \ 2057 \ \acute{e} \ apenas \ 0,01\% \ de \ 8^8 = 16.777.216$
 - 8^8 é apenas 0, 38% de $\binom{64}{8}$ = 4.426.165.368
 - número de soluções $(P_n = P_8)$ é 92

Backtracking - 27-rainhas

- Em 2016 o problema de 27 rainhas foi resolvido (tabuleiro de 27x27)
 - Um cluster de FPGAs foi usado por 383 dias
 - 234.907.967.154.122.528 soluções foram encontradas

• Sendo Q(n) o número de soluções para o problema de n-rainhas, temos:

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Q(n)	1	1	0	0	2	10	4	40	92	352	724	2680	14200	73712	365596	2279184	14772512

Fim

 O conteúdo desta aula está em Knuth, Donald E. Art of Computer Programming, Volume 4, Fascicle 5: Mathematical Preliminaries Redux; Introduction to Backtracking; Dancing Links. Addison-Wesley Professional