
Universidade Federal do Paraná

Andressa Eloisa Valengo

miRSNaPi: integrating access to data on polymorphisms in
microRNA target sites

Curitiba
2016

Andressa Eloisa Valengo

miRSNaPi: integrating access to data on polymorphisms in
microRNA target sites

Trabalho apresentado como requisito parcial à con-
clusão do Curso de Bacharelado em Informática
Biomédica, setor de Ciências Exatas, da Universidade
Federal do Paraná.

Área de concentração: Bioinformática.

Orientador: Daniel Weingaertner.

Coorientador: Rodrigo Coutinho de Almeida.

Curitiba
2016

Acknowledgments
It has being amazing to study and work as a scientific trainee at Universidade Federal do Paraná.
I’d like to thank every good person who works/studies at this great university, and without even
knowing it, made this project possible. Thank you very much! Specially, many thanks to my
co-workers of the Laboratório de Genética Molecular Humana and Simepar, who are just
amazing people and incredible good at doing science. You’re really great! For the PET guys
and girls, thank you for being so nice! I even ate pastel because of you! By now, I can remember
many people, many things, many little things, but I have being told that I can write only one page
about acknowledgments [Somebody, 2016], so I’ll try to keep it short, meaning that I can’t name
everyone I’d like to :(

You! Thank you for reading this simple work. Hope it can help you somehow. Share
your thoughts about it with me! :)

Professor Maria Luiza, thank you for introducing me to the world of science. You’re
an amazing advisor and taught me how to approach the worlds’ problems as a scientist, this is
one of the best things that happened to me. Thank you very much.

Professor Rodrigo, thank you for actively helping me in this project and all your
recommendations and thoughtful advice. You’re a great person.

Professor Daniel, thank you for giving me the opportunity of going on one year
exchange in Germany, in the Friedrich-Alexander-Universität, where I could learn so many things
that helped me in my course, projects and life. Thanks for helping out with this project.

Professor Spinosa, thank you for your help, advice, and motivational words.
Marco Aurélio, thank you for helping me with the server stuff! You’re a great person!
Biel, thanks for sharing your great ideas with me. Even this project, you’re the one who

first thought about it. Thank you for having confidence in me to get this job done!
Lê and Stael! Thank you for being so nice, and helping me every time I needed. You’re

amazing people and we´re all lucky to have you on our back, handling all the paper work like a
charm.

Nicolas Pansardi, thank you for being such a good friend. Please let’s have some
hamburgers!

Vinícius, thank you for helping me with my projects and for being such good friend.
Let’s keep coding! :D

Aldayr, Aninha, Apu, Bovs, Fran, Helena, Nicholas, Rafaela, and Raphael thank
you for attending classes with me, and also for being good friends.

Mom and dad, I can’t think of being here, finishing this course, without your help.
Thank you for my education, your love, and everything you gave to me. I love you! I’m sorry for
the moments of absence (and stress! hehe). Thanks for being so understanding.

Brother (Toasty!), thank you for being so funny and for helping me in the moments
of need. I’m sorry for being so absent in the last years and I thank you for being this awesome
brother and friend. I love you! Be prepared for many mid X1! No Pudge allowed!

Thelma and Carlos, thank you for letting me being part of your life and helping me
this much. I’m really thankful for everything you’ve done for me. Carlos, I just love your jokes :p

Li! Wow, how do I begin thanking you? Are there enough words? Thank you for
sharing everything with me. Thank you for your patience, love, comprehension, and advice.
Thanks for helping me in my studies (even this project!), English and everything. I really love
you! Thank you!!! <3

Resumo
O aumento da quantidade de dados biológicos, em conjunto com as novas possibilidades de
disponibilizá-los, permite o desenvolvimento de ferramentas e bases de dados nas mais diferentes
áreas científicas. Esse é também o caso dos microRNAs (miRNAs) e sua variação genética.
Considerando o contexto dos Polimorfismos de Nucleotídeo Único (SNPs) em sítios alvos de
microRNAs (miRSNPs), existem muitas bases de dados que reportam predições sobre os efeitos
dos miRSNPs. Pesquisadores que trabalham commiRNAs/miRSNPs comumente realizam buscas
nas bases de dados para encontrar efeitos de miRSNPs que são reportados nas diferentes bases.
Essa tarefa, quando realizada manualmente, pode ser muito cansativa, além de gerar resultados
imprecisos. Até então, não existe, de acordo com o nosso conhecimento, nenhuma aplicação capaz
de integrar o acesso aos dados de miRSNPs que estão espalhados em diferentes bases de dados
online, o que justifica o desenvolvimento de uma ferramenta que faça esta integração. O objetivo
deste trabalho foi o desenvolvimento de uma RESTful application programming interface (API)
que integre o acesso às mais recentes bases de dados de miRSNPs. Cinco bases de dados foram
selecionadas para integração, as quais foram encontradas através de buscas de artigos realizadas
no Pubmed. Nossa API, chamada miRSNaPi (http://lgmh.c3sl.ufpr.br/miRSNaPi), possui uma
interface uniforme com métodos HTTP para receber requisições de dados de miRSNPs (por gene,
miRNA ou SNP), acessa as bases de dados selecionadas e envia os dados combinados como
resposta. A API disponibiliza os dados no formato JSON, o que significa que aplicações externas,
que solicitam os dados, podem utilizá-los de diferentes maneiras. Além da API miRSNaPi,
também foi desenvolvido o web client miRdiver (http://lgmh.c3sl.ufpr.br/miRdiver), que faz uso
da API (miRSNaPi), permite que o usuário busque por gene, miRNA ou SNP e ainda exibe em
quais bases de dados os miRSNPs foram reportados, com uma interface responsiva e amigável.

Palavras-chave: microRNA, variação genética, interface de programação de aplicação, integra-
ção de dados.

Abstract
The growth of biological data, together with the new possibilities of making data available, allow
the creation of different tools and databases that cover various scientific areas. That is also the
case of microRNAs and their genetic variation information. Considering the context of the single
nucleotide polymorphism (SNP) in microRNA target sites (miRSNPs), there are plenty of online
databases full of predictions about the effect of miRSNPs. It is a common task for a researcher
who works with microRNAs/miRSNPs to search over miRSNPs databases to look for strongly
reported effects, and such task can be tiring and imprecise when done manually. To the best of
our knowledge, there is no application that integrates the access to miRSNPs data that is spread
out in different databases and this may explain the urge for a web service that fulfills this task.
This project aimed to create a programmer-friendly RESTful Application Programming Interface
(API) that integrates the access of the most recent miRSNPs databases. In order to select the
miRSNPs databases, a Pubmed search was performed, resulting in five online databases to work
with. Our API, named miRSNaPi (http://lgmh.c3sl.ufpr.br/miRSNaPi), has a uniform interface
that uses HTTP methods to receive miRSNPs data requests (by gene name, miRNA name, or
SNP identifier), accesses the selected online databases, and sends the combined miRSNPs data
as a response. As the API provides the data in JSON format, the external applications are able
to easily work with them in many different ways. Besides our main result, the miRSNaPi API
itself, the icing on the cake is our miRdiver (http://lgmh.c3sl.ufpr.br/miRdiver) web client that
makes use of miRSNaPi, allows the user to search by gene, microRNA, or SNP, and shows how
frequently reported are the miRSNPs found, with a responsive and user-friendly interface.

Keywords: microRNA, genetic variation, application program interface, data integration.

Contents

1 Introduction 1
1.1 Aims . 1

2 Background 2
2.1 MicroRNAs . 2
2.2 MiRNA nomenclature . 4
2.3 Genetic variation and miRNA function . 4
2.4 MiRNA: zooming in . 5
2.5 Application Programming Interface . 6
2.6 REST . 6
2.7 Resource-Oriented Architecture . 6

2.7.1 Resources . 7
2.7.2 Addressability . 7
2.7.3 Statelessness . 7
2.7.4 Connectedness . 7
2.7.5 Uniform interface . 7

2.8 More on HTTP . 7
2.8.1 Safety and idempotence . 7
2.8.2 HTTP status code . 8

2.9 API: zooming in . 8
2.10 Conclusion . 8

3 Related Works 9

4 Databases Selection 11
4.1 Selection . 11

5 Online Search 13
5.1 miRNASNP2 . 14
5.2 mirSNP . 15
5.3 mirsnpscore . 15
5.4 PolymiRTS . 16
5.5 mirdSNP . 16
5.6 Conclusion . 17

6 miRSNaPi: an Application Programming Interface 18
6.1 Introduction . 18
6.2 A real world problem . 19
6.3 Requirements . 19

6.3.1 User requirements . 19
6.3.2 Product requirements . 19

6.4 Use cases . 19
6.4.1 Actors . 19
6.4.2 List of use cases . 20
6.4.3 Use case diagrams . 20
6.4.4 Use cases . 20

6.5 Other diagrams . 20
6.5.1 System sequence diagram . 20

6.6 Design overview . 20
6.6.1 Data set definition . 20
6.6.2 Data set split and URI . 20
6.6.3 Resource representation . 21
6.6.4 How it should work . 22
6.6.5 What if something went wrong . 23

6.7 Implementation details . 24
6.8 Conclusion . 26

7 miRdiver: consistent genetic diversity at miRNA binding sites 27
7.1 Requirements . 27

7.1.1 User requirements . 27
7.1.2 Product requirements . 28

7.2 Use cases . 28
7.2.1 Actor . 28
7.2.2 List of use cases . 28
7.2.3 Use case diagrams . 28
7.2.4 Use cases . 28

7.3 Other diagrams . 29
7.3.1 System sequence diagram . 29

7.4 Implementation details . 29
7.5 rs1803254: a frequently reported miRSNP . 35
7.6 Conclusion . 35

8 Concluding remarks 36
8.1 Further work . 36

8.1.1 miRSNaPi . 36
8.1.2 miRdiver . 36
8.1.3 New tools . 37

Bibliography 38

List of Figures

2.1 MiRNA classification considering their genomic location. 3
2.2 Canonical miRNA biogenesis. 3
2.3 Representation of SNP effects on miRNA/mRNA binding. 5
2.4 MiRSNPs - Entity–relationship model. 5

4.1 MiRSNPs database selection workflow. 12

6.1 miRSNaPi overview. 18
6.2 Use case: make a request. 20
6.3 System sequence diagram for make a request use case. 22
6.4 Express-generator directory structure. 25
6.5 miRSNaPi final overview. 25

7.1 Screenshot of the miRdiver homepage. 27
7.2 Use cases for the researcher actor. 29
7.3 System sequence diagram for search by gene use case. 33
7.4 System sequence diagram for search by miRNA use case. 33
7.5 System sequence diagram for search by SNP use case. 34
7.6 Screenshot of the search by the rs1803254 SNP. 35

List of Tables

2.1 Complementarity among RNA nucleotides . 4
2.2 MiRNA naming conventions . 4
2.3 The five HTTP status code series . 8

4.1 Pubmed search results . 11
4.2 Final filtering from Pubmed search . 11
4.3 Selected miRSNPs databases . 12

5.1 Python Packages Used in the Scripts . 14
5.2 MiRSNPs database endpoints . 14
5.3 miRNASNP2 parameters for GET request . 15
5.4 mirSNP parameters for GET request . 15
5.5 mirsnpscore parameters for POST request . 15
5.6 PolymiRTS parameters for 1st POST request 16
5.7 PolymiRTS parameters for 2nd POST request 16
5.8 mirdSNP Parameters for GET Request . 17

6.1 Use case make a request detailed . 21
6.2 Data set split, URI and HTTP method . 21
6.3 Additional information about the resource . 22
6.4 Database identifiers . 22
6.5 npm packages and their installation commands 24

7.1 Use case search by gene . 30
7.2 Use case search by miRNA . 31
7.3 Use case search by SNP . 32
7.4 npm packages used in miRdiver application 32
7.5 Packages used on the client side . 34

Chapter 1

Introduction

MicroRNAs (miRNAs) are small non-coding ribonucleic acids (RNAs) of approximately
23 nucleotides (nt) that play a role in post-transciptional gene regulation. After being processed,
the miRNA will be incorporated into the RNA-induced silencing complex (RISC) that will target
the 3’ untranslated region (3’UTR) of a messenger RNA (mRNA). This binding depends on the
sequence complementarity between the miRNA and the target and may lead to mRNA cleavage
or translation inhibition.

Genetic polymorphisms, as single nucleotide polymorphisms (SNPs), can be located
in a miRNA target sequence (miRSNPs), affecting the targeting relationship by changing the
binding site. Their presence can cause the gain or loss of a miRNA binding site.

There are approximately two thousand miRNAs described in humans and there are
many applications that predict the effect of SNPs on their target sites. These tools apply different
computational techniques and can have therefore different results among them. To the best of our
knowledge, there is no application that integrates the access to the spread out data on miRSNPs,
meaning that every time one needs information about miRSNPs, one has to manually check every
database web site.

1.1 Aims
This project aimed to create an Application Programming Interface (API) to integrate

the data access of the most recent versions of miRSNPs prediction tools. In addition, an user
interface that makes use of the API was also created to show the integrated data by using tables
and graphical elements. Specifically the projected aimed to:

• Select the most recent/applied web-available databases of information on human miRSNPs.

• Develop a RESTful Application Programming Interface that integrates the data access of
the selected databases and allows the user to search by gene, miRNA or SNP.

• Illustrate the use of the proposed RESTful API by developing a web application to generate
a table showing gene-miRNA-SNP relationships along with the respective databases in
which they appear.

Chapter 2

Background

This chapter covers the basic fundamentals about microRNAs, their function, and also
how genetic variation can affect it. In addition, basic concepts about web services, Application
Programming Interface (API), REST and RESTful are presented.

2.1 MicroRNAs
Even though microRNAs (miRNAs) probably exist for a long time, being present even

in the genome of unicellular organisms [Molnar et al., 2007], they were not discovered until 1993,
and only by the year of 2001 were recognized as a class of regulatory RNAs. MiRNAs play a
role in post-transcriptional regulation of genes and it is thought that they can work coordinately
in order to control pathways or biological functions. Additionally, the appearance and expansion
of miRNAs seem to have contributed to the development of multicellular complex organisms,
because they could add an extra level of regulation of gene expression [Heimberg et al., 2008].

MiRNAs can be classified, considering their genomic location, in: 1) intergenic
miRNAs; 2) intronic miRNAs; and 3) exonic miRNAs [Pinhal et al., 2015]. As shown in
figure 2.1, each category may have more than one subclass, regarding the miRNAs having their
own promoters. In addition, miRNAs in humans can commonly be arranged in tandem, what is
known as miRNA clusters (Figure 2.1-A, Figure 2.1-B).

MiRNAs are well known to lack Open Reading Frames (ORFs); they are part of the
non-coding RNAs (ncRNAs), meaning that miRNAs are not translated into proteins. Furthermore,
mature miRNAs are single stranded and really small, having approximately 23 nucleotides (nt).
Considering both conserved and non-conserved miRNA target sites, the majority of coding genes
are regulated by at least one miRNA [Friedman et al., 2009], what could explain why miRNA
biogenesis and function are strictly regulated. MiRNAs dysregulation can affect gene expression
and in consequence biological paths and functions leading to diseases, such as cancer [Lujambio
and Lowe, 2012].

A canonical view of the miRNA biogenesis is shown in the figure 2.2. MiRNAs
are processed from a primary RNA, known as pri-miRNA (primary miRNA), which is firstly
generated by the transcription process undertaken by RNA polymerase II (RNA Pol II). The
pri-miRNA is made up of one or many hairpins (Figure 2.2) that are characterized by a region
of double stranded RNA (dsRNA). Hairpins are also known as stem-loop and their size can
vary, having more than one thousand nt. The nuclear enzymes Drosha and DGCR8 (DiGeorge
syndrome critical region 8) recognize the pri-miRNAs and process them into the precursor
miRNAs (pre-miRNAs) that are 60-80 nt long. The pre-miRNA is then exported to the cytosol
by the protein Exportin-5, where the Dicer (Trans-activation-responsive RNA-binding) enzyme

3

Figure 2.1: MiRNA classification considering their genomic location.
Adapted from [Pinhal et al., 2015].

removes the loop from the hairpin/stem-loop. Finally, one of the RNA strands (the guide strand)
is incorporated by the RNA-induced silencing complex (RISC) that contains the Argonaute
protein 2 (AGO 2).

Figure 2.2: Canonical miRNA biogenesis.
Source: the author.

ThemiRISC (RISC+miRNA) guided by themiRNAwill then target anmRNA transcript
promoting regulation of gene expression. MiRNA/mRNA biding depends on complementarity
between the two sequences (Table 2.1). Furthermore, miRNAs have a region termed as seed (from
the 2nd to 8th nt), which is determinant in the biding effectiveness and affects, in consequence, the

4

way a given miRNA regulates gene expression. In a simplified way, a complete match between
the seed sequence and the target may lead to mRNA cleavage, otherwise, the process may lead
to translation inhibition (Figure 2.2). In addition, miRNAs can also act in: 1) transcriptional
silencing; 2) promoting transcription and 3) translation enhancement [Pereira et al., 2015].

Table 2.1: Complementarity among RNA nucleotides

Nucleotide (miRNA) Complementary nucleotide (RNA)

C G
G C
A U
U A

2.2 MiRNA nomenclature
As shown in table 2.2, miRNA genomic locations (loci) are named using the prefixmir,

while the mature miRNA (after being processed by Dicer) receives the prefix miR (capital letter
R). These prefixes are followed by a hyphen (-) and an identification number (mir-#; miR-#). It
is recommended to write loci name itself using italic font (mir-#) whilst the pre-miRNA using
regular font (mir-#) [Lagos-Quintana et al., 2001]. When the miRNAs are clustered (Figure 2.1)
they are normally processed together and named according to their location in the 5’ → 3’
sense. MiRNAs can also have paralogues that will result in different loci generating miRNAs
with identical sequences, these miRNAs are named with an extra hyphen and number (mir-#-1,
mir-#-2). On the other hand, similar miRNAs (but not identical) are named using lowercase letter
after the identification number (mir-#a, mir-#b).

Table 2.2: MiRNA naming conventions

loci pre-miRNA mature miRNA

Regular/Cluster mir-# mir-# miR-#
Paralogue mir-#-1, mir-#-2 mir-#-1, mir-#-2 miR-#-1, miR-#-2
Similar mir-#a, mir-#b mir-#a, mir-#b miR-#a, miR-#b

Homo sapiens hsa-mir-# hsa-mir-# hsa-miR-#

Considering miRNAs from different species, the miRBase [Griffiths-Jones, 2006], which
is the most used miRNA database, recommends an additional prefix, for example: hsa-mir for
Homo sapiens and dme-mir for the fly Drosophila melanogaster. Furthermore, according to the
miRBase the miRNA identification numbers are given sequentially.

2.3 Genetic variation and miRNA function
The binding efficiency between the miRNA and its target site depends on sequence

complementarity between the 3’UTR of an mRNA and the mature miRNA. Therefore, genetic
polymorphisms may affect the miRNA function by changing the interaction between miRNA and
mRNA sequences. In this context, the most described polymorphisms are the single nucleotide

5

polymorphisms (SNPs). When SNPs are located in the miRNA target sequence (miRSNPs)
they can cause: 1) miRNA target loss; 2) miRNA target gain; 3) binding enhancement;
and 4) binding weakening when the SNPs alters the complementarity with the seed sequence
(Figure 2.3). In the dbSNP database [Sherry et al., 1999], SNPs are named using the prefix rs
(reference SNP) followed by a number (rs#).

Figure 2.3: Representation of SNP effects on miRNA/mRNA binding.
A) represents miRNA target loss, and B) represents miRNA target gain. Source: the author.

SNPs with effects on miRNA/mRNA binding can be represented by using the En-
tity–relationship model (Figure 2.4). In simple terms, miRNA binds to an mRNA and this
relationship can be affected by SNPs. Both miRNA and mRNA have their own names, as well
as the SNP has its own rs. Finally, the SNP interference has its effect on the miRNA/mRNA
binding.

Figure 2.4: MiRSNPs - Entity–relationship model.

2.4 MiRNA: zooming in
If one searches for a miRNA in the miRBase, its sequence can be retrieved in the FASTA

format:

6

1 >hsa-miR-9-5p MIMAT0000441
2 UCUUUGGUUAUCUAGCUGUAUGA

The above miRNA can be retrieved through the following address: www.mirbase.org/
cgi-bin/get_seq.pl?acc=MIMAT0000441.

2.5 Application Programming Interface
An Application Programming Interface (API) is a set of rules defined by a program so

other applications can communicate with it. There is a variety of APIs for many purposes, such
as Java libraries, Ruby classes and methods, Python Packages, OpenGL, Apache CouchDB, and
others. In addition, APIs are used to provide access to data; for example, Twitter has its own API
that allows developers to retrieve tweets and complete timelines. Such API, known as Web API,
are web services and generally communicate over the Hypertext Transfer Protocol (HTTP).

2.6 REST
Web based services are most of the time related to the Client-Server (CS) concept, where

a server provides a service and the client makes requests to the server, which may perform a service
in order to respond the requests [Fielding, 2000]. Web APIs are currently strongly related with
the REST (Representational State Transfer) concept that was defined by Fielding in his doctoral
thesis by the year of 2000. REST is a design criteria for distributed hypermedia systems that
reflects the modern Web architecture created by the examination of its own constraints [Fielding,
2000].

When creating the REST style, Fielding started from a null style defined by the World
Wide Web itself and added elements/constraints in the model. The first constraint added was the
Client-Server architectural style; the idea of using this communication model is that it is simple
and also implies that the server and client evolve in a separated way. The communication between
the server and the client must be stateless, what means that every request the client makes to
the server must be understood by the server without any previous information. Among other
constraints, the uniform interface is the feature that most distinguishes REST from other network
styles, because it applies the software engineering principle of generality to the component
interface, the information/request is then transferred in a standardized manner [Fielding, 2000].
This information exchange standardization obligates different clients to adapt to the server
interface. An API that applies REST design is called RESTful API.

2.7 Resource-Oriented Architecture
REST concepts described in the Fielding thesis are sparse and can be understood

in different ways. For example, when specifying the concept of uniform interface, Fielding
did not describe interface on the matter of which/how methods should be used to achieve
interface standardization [Richardson and Ruby, 2007]. Considering this, Richardson and Ruby
described the Resource-Oriented Architecture (ROA) in their book. ROA is RESTful because it is
based in the following four features: addressability, statelessness, connectedness and uniform
interface [Richardson and Ruby, 2007].

www.mirbase.org/cgi-bin/get_seq.pl?acc=MIMAT0000441
www.mirbase.org/cgi-bin/get_seq.pl?acc=MIMAT0000441

7

2.7.1 Resources
Web RESTful services expose their functionality as HTTP objects named re-

sources [Richardson and Ruby, 2007]. That being said, RESTful services instead of using
methods/functions applying the most different names for getting, for example, a list of objects,
they all use the HTTP methods (GET, HEAD, POST, PUT, DELETE and OPTIONS). Going
deeper in the getting object list example, one could create a function named getBooksList(), or
one could create another function named getSongsList(). These two functions return different
data, but they are basically the same, so instead of using different functions, one could use the
HTTP GET method, making both functions uniform. This goes even more beautiful if one thinks
that these lists are hosted in different places and both support the same basic operations.

A resource is a piece of an interesting information, a data set of something, a result of a
script/algorithm, a picture, or something similar. Every resource needs a URI (Uniform Resource
Identifier) to be addressed on the web [Richardson and Ruby, 2007]. In ROA, resources are just
as important as their name (URI), their representation, and the links that connect them.

2.7.2 Addressability
The fact that a resource needs a URI to be something in the web agrees with the

addressability concept. The URI itself is a resource.

2.7.3 Statelessness
As defined by Fielding, statelessness means the isolation of each request the client

makes to the web service. Isolation makes it easier to cache the data.

2.7.4 Connectedness
Connectedness means that each resource is connected to the others that are part of the

same web service. This is normally achieved by adding links in the resources themselves that
make reference to the other resource URIs. The connectedness feature is mostly not applied
by web services. However, web services that do not fulfill the connectedness concept are still
considered RESTful [Richardson and Ruby, 2007].

2.7.5 Uniform interface
Uniform interface is achieved by using the HTTP methods, making all method names

standardized.

2.8 More on HTTP

2.8.1 Safety and idempotence
HTTP methods have two properties: safety and idempotence. A method is safe when it

does not require any change to the server state. This means that making a safe request (GET or
HEAD) is, to the server, the same thing as not making it, because safe requests do not change
anything. The concept of idempotence means that making many times an idempotent (PUT or
DELETE) request to the same URI is the same thing of doing only one idempotent request.

8

2.8.2 HTTP status code
The HTTP status codes are based on five series (Table 2.3). The most used status codes

are: 200, 400, 404, and 500, meaning, respectively, OK (success), Bad Request (a problem on
the client side), Not Found (the URI does not exist), and Internal Server Error.

Table 2.3: The five HTTP status code series

Serie Description

1xx Transition
2xx Success
3xx Redirection
4xx Client side error
5xx Server side error

These codes are even more important in the context of web services/APIs because it is
easier for a computer program to handle codes instead of reading a page full of messages about a
given error. On the other hand, text messages are preferred over codes when showing an error to
humans, because they do not like codes as much as programs do.

2.9 API: zooming in
The miRNA hsa-miR-9-5p found in the section 2.4 was retrieved by making a GET

HTTP request to the miRBase API through a web browser (such as Chrome or Firefox). The
regular user needs only to paste the link given in section 2.4 in the address bar of a web browser
and it redirects to the miRNA Fasta file, which will be displayed on the browser’s window. Of
course, a person more used to code can access miRBase API by creating a script.

2.10 Conclusion
When using HTTP to create a RESTful API, HTTP methods are available, among

them: GET, PUT, POST and DELETE. The API itself can be developed using any programming
language that allows responding HTTP requests, for example: JavaScript, PHP and Python. The
clients must be able to perform HTTP requests (GET, PUT and the others). Each request may
have its own parameters (rules) to be interpreted correctly by the server (API).

Chapter 3

Related Works

The achievements of big data biology require integration of skills across several fields,
including mathematics, statistics, and computer sciences. The organization of data, as well as
their integration and analysis, demand sophisticated computational methods. These tasks are
essential on the way towards comprehension of the molecular, cellular and physiological processes
underlying phenotypes such as complex (multifactorial) diseases. That is also the case of the
microRNAs and their related information. This chapter will cover some miRNA tools, specially
tools4miRs [Lukasik et al., 2016] and the two programmable interfaces: targetHub [Manyam
et al., 2013] and miRMaid [Jacobsen et al., 2010].

Lukasik et al. developed and made available a very interesting tool, called tools4miRs,
that helps researchers to find out which miRNA tools fit the best to their problems. The authors
have made a survey of the scientific literature and gathered over 160 tools that are related to
miRNA analysis. Besides gathering the tools, they also manually classified them regarding
the methods that each tool applies, creating four categories: 1) sequencing data analysis (N
= 36); 2) all-in-one-tools (N = 2); 3) Databases (N = 62); and 4) other tools (N = 16), and
seven more detailed sections: 1) known miRNA identification; 2) isomiRs identification; 3)
novel miRNA/precursor analysis; 4) differential expression analysis; 5) target prediction;
6) target functional analysis; and 7) miRSNPs analysis [Lukasik et al., 2016]. Method
classification results are displayed using tables on the tools4miRs web site, which has an user-
friendly interface. In addition, tools4miRs allows for the prediction of miRNA targets. However,
so far, there is no API or related reported by tools4miRs.

We identified only two miRNA related APIs available: targetHub [Manyam et al., 2013]
and miRMaid [Jacobsen et al., 2010]. Even though none of them integrate information about
SNPs in miRNA target sites, they will be briefly described.

miRMaid was created by the year of 2009 and it is completely RESTful. It was developed
using Ruby and Rails and it uses the miRBase database as its core [Jacobsen et al., 2010]. When
one uses the API on the web browser, it is almost the same of navigating the miRBase; the
difference comes when considering the plugins that can be used together with the miRMaid API.
However, there are only two plugins currently available, one that tracks miRNAs and diseases
and another that is related to miRNA cloning. Besides being well designed, the API has not been
updated since the year of 2010.

The targetHub web service integrates data of different miRNA-target binding predictions
tools, such as: TargetScan [Grimson et al., 2007], PicTar [Krek et al., 2005], andmiRanda [Enright
et al., 2003]. It was developed using the Apache CouchDB database (couchdb.apache.org) which
provides storage and a RESTful access programmable interface [Manyam et al., 2013]. The
user can then access targetHub data using HTTP requests or using the web interface that is

10

available [Manyam et al., 2013]. Nonetheless, the data integration is made by downloading all
the available data or running algorithms over the available miRNAs (miRBase), what means that
every time the data is changed on its original source, targetHub programmers have to update it.

To the best of our knowledge, there is no application that addresses miRSNPs, integrating
the access of the different online databases that apply different computational techniques and can
have therefore different results among them. That being said, the creation of a web service that
fulfills this task is needed.

The problem of combining data residing at different sources, and providing the user with
a unified view of these data, is known as data integration [Lenzerini, 2002]. Data integration is
hard considering that there are differences among the sources, for example, sources may differ on
schema, language, implementation, and most importantly, how one can perform queries over their
data. There are various data integration architectures, however, the majority of the integration
systems uses a composition of warehousing and/or virtual integration architectures [Doan et al.,
2012]. The concept of data warehousing is that the data from every source is loaded and
materialized into one physical database, which can be used to answer queries over the data. On
the other hand, in virtual integration, the data are kept in their original source and accessed at
query time [Doan et al., 2012]. The main advantage of using virtual integration over warehousing
is that one can query the most recent data from different sources/databases.

Chapter 4

Databases Selection

4.1 Selection
In order to select which databases were going to be integrated, a Pubmed search was

carefully done using the key words showed in table 4.1. The main idea was to find the manuscripts
that describe the databases, as well as to avoid missing relevant ones. The searches were
performed on April 6th, 2016, considering the last five years and only title and abstract (TIAB).

Table 4.1: Pubmed search results

Search Terms Results

mirna[TIAB] AND polymorphism[TIAB] AND database[TIAB] 14
mirna[TIAB] AND snp[TIAB] AND database[TIAB] 16
microRNA[TIAB] AND snp[TIAB] AND database[TIAB] 12
microRNA[TIAB] AND polymorphism[TIAB] AND database[TIAB] 15
Total 57

As shown in table 4.1, 57 manuscripts were found and, as expected, some of them
appeared more than once. The replicates were merged summing 37 manuscripts. The abstracts
were read to extract the following information: 1) objective; 2) type of study; 3) whether an actual
application was developed; 4) species considered in the study; 5) whether the study actually
considered SNPs in miRNA target sites (miRSNPs); 6) whether there is an online available
database, and if so 7) how the database is available (search, browse and download were taken
into account). Firstly, considering criteria 1 to 3, 23 additional manuscripts were discarded,
because they did not report database creation or were not written in English (Figure 4.1). Finally,
considering the criteria 4, 5, 6, and 7, the final manuscript count was 5 (Table 4.2).

Table 4.2: Final filtering from Pubmed search

Name URL Year Reference

miRNASNP2 http://bioinfo.life.hust.edu.cn/miRNASNP2/ 2015 [Gong et al., 2015]
miRNASNP http://www.bioguo.org/miRNASNP/ 2012 [Gong et al., 2012]
mirSNP http://cmbi.bjmu.edu.cn/mirsnp 2012 [Liu et al., 2012]
mirsnpscore http://www.bigr.medisin.ntnu.no/mirsnpscore/ 2011 [Thomas et al., 2011]
PolymiRTS 2.0 http://compbio.uthsc.edu/miRSNP/ 2012 [Ziebarth et al., 2012]

12

Figure 4.1: MiRSNPs database selection workflow.

One of the manuscripts (miRNASNP2) described an update to a database that was
previously reported in another manuscript (miRNASNP). In addition, the PolymiRTS website
reported a new version of the database (PolymiRTS 3.0) which was used instead of the previous
one (PolymiRTS 2.0).

In addition to the databases found through the Pubmed search, miRSNP databases
enumerated in a recent review [Hrdlickova et al., 2014] were considered. One different
database [Bruno et al., 2012] was included, summing five databases to work with (Table 4.3).

Table 4.3: Selected miRSNPs databases

Name URL Year Reference

miRNASNP2 http://bioinfo.life.hust.edu.cn/miRNASNP2/ 2015 [Gong et al., 2015]
mirSNP http://cmbi.bjmu.edu.cn/mirsnp 2012 [Liu et al., 2012]
mirsnpscore http://www.bigr.medisin.ntnu.no/mirsnpscore/ 2011 [Thomas et al., 2011]
PolymiRTS 3.0 http://compbio.uthsc.edu/miRSNP/ 2014 [Bhattacharya et al., 2014]
mirdSNP http://mirdsnp.ccr.buffalo.edu/index.php 2012 [Bruno et al., 2012]

Chapter 5

Online Search

In order to integrate the most recent available data of SNPs in miRNA target sites
(miRSNPs), it is a better approach to query the web applications of interest each time the data is
needed, instead of downloading and storing them. Therefore, this online up-to-date approach
was used in this project. All data access and data parsing scripts were written in Python language
using multiple libraries (Table 5.1). For each selected database, at least one HTTP request is
performed. Considering the similarity between all requests, one of the ways to build a GET and
POST HTTP request in Python is shown in the listing 5.1.

Listing 5.1: Example of GET and POST HTTP requests in Python.
1 import requests
2

3 endpoint = ’server/url’
4 payload = {’gene’: ’a gene id’}
5

6 # Here the GET request is done
7 response = requests.get(endpoint, params=payload, timeout=3)
8

9 # Do something with response...
10

11 # And now a POST request
12 response = requests.post(endpoint, data=payload, timeout=3)
13

14 # Note that when making POST requets, the parameters are assigned to data
15 # (data=payload) instead of params (params=payload)

Even though the way all the requests are build is similar, it is important to highlight that
each server responds a different endpoint and expects specific parameters (payload) to understand
what it should do to respond the client.

The source code of each selected online database (miRNASNP2, mirSNP, mirsnpscore,
PolymiRTS, and mirdSNP) was read/analyzed to figure out which and how server URLs (Uniform
Resource Locator) are called from each application in order to retrieve its own miRSNPs data
(Table 5.2). Chrome Developer Tools were also applied to check network requests and HTML
(Hypertext Markup Language) elements. Table 5.2 shows the server endpoints that are called
when making HTTP requests, and also which HTTP method is expected for each endpoint/URL.
In the following sections, the steps to retrieve data from each of the web applications and how the
data was parsed are described.

14

Table 5.1: Python Packages Used in the Scripts

Name Brief Description
argparse Command-line parser
sys Provides information about functions and variables of the Python interpreter
beautifulsoup4 HTML and XML parser
csv CSV file reading and writing
urllib Package for openig URLs
urllib2 Package for openig URLs
requests Package to make HTTP requests
re Regex handling
html.parser HTML Parser
html5lib Handles HTML5 (parsing and so on)

Table 5.2: MiRSNPs database endpoints

Name Endpoints HTTP Request

miRNASNP2 http://bioinfo.life.hust.edu.cn/miRNASNP2
http://bioinfo.life.hust.edu.cn/miRNASNP2/geneTargets.php GET

mirSNP http://bioinfo.bjmu.edu.cn/mirsnp/search/SingleSearch GET
mirsnpscore http://www.bigr.medisin.ntnu.no/mirsnpscore/search2.php POST

PolymiRTS 3.0 http://compbio.uthsc.edu/miRSNP/search.php
http://compbio.uthsc.edu/miRSNP/miRSNP_detail_all.php POST

mirdSNP http://mirdsnp.ccr.buffalo.edu/data/search/csv.php GET

5.1 miRNASNP2
The miRNASNP2 miRSNPs data is split in two categories: gain and loss. The user can

search by gene, miRNA or SNP. For each category, one must firstly make a GET HTTP request
(Table 5.3) in order to retrieve and parse an HTML page that contains at its source code a link,
identified by the word "downloading", to download the complete searched data as text file by
making another GET request.

A single report from a downloaded text file when searching formiRNA= hsa-miR-155-5p
is shown in listing 5.2. Text parsing is done by simply removing the blank lines (2nd and 4th lines
in the snippet) and combining each six (1st , 3rd , 5th, 6th, 7th and 8th lines in the snippet) of the
remaining ones. The resulting combined lines are then translated into JSON (JavaScript Object
Notation).

Listing 5.2: Example of miRNASNP2 report.
1 104976 KIAA1751 NM_001080484 rs3795288 chr1:1886888 hsa-miR-155-5p

-16.40 -16.80
2

3 rs3795288: C --> U
4

5 miRNA: 3’ uggggauaGUGCUAAUCGUAAUu 5’
6 ||| ||||||Y
7 UTR: 5’ cttgaaggCACCTCCAGCATTSg 3’
8 7.45 8994 567.46 138 NULL NULL

15

Table 5.3: miRNASNP2 parameters for GET request

Param Value

gene any gene id
mirna any miRNA id
snp any SNP id

gainorlost gain or loss

5.2 mirSNP
The mirSNP miRSNPs data can be retrieved by making a single GET request (Table 5.4)

that returns an HTML page. The parsing is done by firstly getting a table containing a CSS
(Cascading Style Sheets) class named "results" using the Beautiful Soup library. The second step
is done by translating the table from HTML into JSON.

Table 5.4: mirSNP parameters for GET request

Param Value Description

gene any gene id -
mirna any miRNA id -
snp any SNP id -
what rgene, rmir or rsnp what to search for (gene, mirna or snp)

5.3 mirsnpscore
The mirsnpscore miRSNPs data can be retrieved by making a single POST request

(Table 5.5) that returns an HTML page. The parsing is done by firstly getting a table containing
a CSS class named "mybox" using the Beautiful Soup library. The second step is done by
translating the table from HTML into JSON.

Table 5.5: mirsnpscore parameters for POST request

Param Value Description

gene any gene id -
mirna any miRNA id -
snp any SNP id -

limited yes or no whether to consider or not the ’limit’ key
limit any number number of results to show after searching
what rgene, rmir or rsnp what to search for (gene, mirna or snp)

searchMult Search -

16

5.4 PolymiRTS
The PolymiRTS miRSNPs data can be retrieved by firstly making a POST request

(Table 5.6) that returns an HTML page that contains a list of gene transcripts which are related to
the search key (gene id, SNP id, or miRNA id). Using Beautiful Soup it is possible to extract
from the HTML page the transcript id, gene name, gene description, and a link to get the detailed
data related to the transcript itself. Finally, making a new POST request (Table 5.7) for each
transcript link found in the list, a new HTML page that contains all the detailed data about the
referred transcript can be retrieved. Each HTML page is parsed using Beautiful Soup, the first
step is to select all tables from the page, because they have no unique attributes (like class or
id). Then, from the tables with the captions 1) "SNPs and INDELs in miRNA target sites from
CLASH data", and 2) "SNPs and INDELs in miRNA target sites", translate data into JSON.

Table 5.6: PolymiRTS parameters for 1st POST request

Param Value Description

my_run 1 -
my_page 1 -
phenoid ” -
my_org Human -
Fclass[] [’C’, ’D’, ’N’, ’O’] -
Support 0 -
Evicode[] [’CLASH’, ’LT’, ’LTL’, ’HT’, ’HTL’, ’N’] -
my_snpid any snp id -

search_method ” -
my_mirid any miRNA id -
my_geneid any gene id -
my_genedesc ” -
my_phenodesc ” -

my_GOAccession ” -
Search 1, 2 or 3 what to search for (snp, mirna or gene)

Table 5.7: PolymiRTS parameters for 2nd POST request

Param Value

Transcipt_id any transcript id
species Human

5.5 mirdSNP
The mirdSNPmiRSNPs data can be retrieved by making a single GET request (Table 5.8)

that returns a CSV file. Parsing was done by using the Python CSV reader and translating it into
JSON.

17

Table 5.8: mirdSNP Parameters for GET Request

Param Value

sSearch_0 ”
sSearch_1 any gene id
sSearch_3 any miRNA id
sSearch_4 any SNP id
sSearch_5 ”
filter_flank ”
iSortCol_0 6
sSortDir_0 asc

5.6 Conclusion
Considering the need of analyzing the source code of the web pages of each database in

order to access their data, it is even more clear that a web API is needed to integrate the miRSNPs
database data access.

Chapter 6

miRSNaPi: an Application Programming
Interface

Named miRSNaPi (http://lgmh.c3sl.ufpr.br/miRSNaPi), our API is capable of inte-
grating the access to the online data of five different miRSNPs databases and it can be used to
create new applications based on the integrated data. An overview of miRSNaPi is shown in the
figure 6.1. Details about the API implementation, how it works, and how it should be used will
be presented in this chapter.

Figure 6.1: miRSNaPi overview.

6.1 Introduction
APIs are web services that are just like any computer system, the main difference being

that web services are run over the Internet. Like any other system, an API must be planed
and developed in accord to the software engineering processes and concepts. In addition, as
miRSNaPi was intended to be RESTful, a RESTful architecture was followed: the Resource-

19

Oriented Architecture (ROA) that was described in chapter 2. The next sections contain
information about the problem, its solution, requirements, use cases, design, and more.

6.2 A real world problem
The explosion of biological data together with the computational advances, data storage

capacity growth, and new ways of making data available, allow for the creation of different tools
and databases that cover various scientific areas. That is also the case of miRNAs and their related
information, specifically their genetic variation information. Considering the context of SNPs in
miRNA target sites (miRSNPs), there are plenty of databases full of predictions about the effect
of miRSNPs. It is a really common task for a researcher who works with miRNAs/miRSNPs to
search over miRSNPs databases looking for frequently reported effects. This task can be really
tiring because of the different ways in which each database shows its results, meaning that the
researcher has to combine the data manually using spreadsheets, for example, under the risk of
missing something or manually processing something wrong. To the best of our knowledge, there
is no application that integrates the access to miRSNPs data spread out in different databases and
that is why the development of a web service that fulfills this task is needed.

6.3 Requirements

6.3.1 User requirements
The user requirements were gathered by watching and talking to co-workers who actually

use miRSNPs databases. The requirements agree with the aims of the project. That being said,
the user requirements are:

• Simultaneously search data of different online databases that contain information about the
effect of SNPs in miRNA target sites.

• Search data by gene, miRNA or SNP

• Be able to use the integrated data in many different ways.

6.3.2 Product requirements
Considering the user requirements, the solution was designed to be a web service, a

RESTful API, that provides the simultaneous search of data from different databases given a gene
name, miRNA name or SNP identifier. In order to provide the possibility of using the integrated
data access in different ways, the data is served in JSON format.

6.4 Use cases

6.4.1 Actors
As an API can be seen as a user interface for a developer, the actor could be the

developer herself and her applications. As the applications themselves are the ones that will be
communicating with the API, the only actor will be named "External Application" (EA).

20

6.4.2 List of use cases
Considering that the external application will be able to perform the requests: 1) request

data by gene; 2) request data by miRNA and 3) request data by SNP, it is possible to write
these requests as a single use case: make a request (Figure 6.2).

6.4.3 Use case diagrams
Make a request

Figure 6.2: Use case: make a request.
The use case description can be found in the table 6.1.

6.4.4 Use cases
The use case make a request is detailed in the table 6.1.

6.5 Other diagrams

6.5.1 System sequence diagram
The system sequence diagram (SSD) helps to understand the order of the events and the

interactions of the system that is being developed. In figure 6.3, the SSD formake a request use
case is shown.

6.6 Design overview

6.6.1 Data set definition
The data served by the API comes from different web applications, this means that

miRSNaPi resources are the combination of the results of the scripts (see chapter 5) that access
the data from the other web applications.

6.6.2 Data set split and URI
The data was split in three different URIs, depending on what the external applications

is looking for: by gene, by miRNA or by SNP (Table 6.2). This division is strongly related to the
user’s requirements. Following ROA concepts, the URI names are very well related with their
resources. POST method was chosen rather than GET because the user must send objects to the
server (an array of identifiers for each database that miRSNaPi has to look for data).

21

Table 6.1: Use case make a request detailed

Use case name:
Make a request

ID:
UC-0

Priorioty:
Very high

Primary actor:
External Application

Level:
User

Goal:
Request data by a gene name, miRNa name or SNP identifier

Precondition:
External application is being/was developed by someone

Trigger:
External application receives the searched data

Typical flow of events:

1. User requests the data passing expected parameters
2. System receives the request and reads the parameters
3. System searches for the data
4. System builds the and sends the response
5. User receives the response that contains the searched data

Alternative flow of events:

1. User passes wrong parameters
3. Parameters are incorrect, system does not perform the search
4. Error while parsing parameters, system sends an error code and message
4. Error while searching data, system sends an error code and message
4. Error while parsing data, system sends an error code and message
5. User receives the response that contains the error code and message

Table 6.2: Data set split, URI and HTTP method

Split URI HTTP method Parameters

By gene miRSNaPi/query/gene POST databases, gene name
By miRNA miRSNaPi/query/mirna POST databases, miRNA name
By SNP miRSNaPi/query/snp POST databases, SNP identifier

6.6.3 Resource representation
The resources are represented by the data itself and some additional information

(Table 6.3). In addition, JSON is used as the representation format because the data is structured.
When smart programmers create HTTP requests, they normally use wrappers/libraries, so they
do not have to write many times the same code. In addition, libraries offer an abstraction in the
sense of HTTP headers (language, cache-control, content-encoding and so on) that are also part
of the resource.

22

Figure 6.3: System sequence diagram for make a request use case.
When one (external application) makes a request targeting an API URI, one sends within the
request two parameters: 1) name for a gene name, a miRNA name, or a SNP identifier and 2)
databases representing the databases of interest. For as many databases selected, the API will
request data and receive a response. After combining the answers, the API will respond the

external application sending the data (resource).

Table 6.3: Additional information about the resource

Key Value

runtime Time to fetch and parse all the data
gene name/mirna name/snp rs Gene name/miRNA name/SNP identifier

databases The ’databases’ array sent by the client

6.6.4 How it should work
The API responds for three URI (Table 6.2) and the databases (Table 6.4) parameter is

an array that must be sent in the body HTTP POST request together with the search name that
agrees with the URI being requested (gene, miRNA, or SNP). These database identifiers kind
of add a complexity to the requests, but that is a way of providing the external application the
possibility of requesting only the data from databases of their own interest.

Table 6.4: Database identifiers

Database Identifier

miRNASNP2 miRNASNP2
mirSNP mirSNP

mirsnpscore mirsnpscore
PolymiRTS PolymiRTS
mirdSNP mirdSNP

Once the external application calls the URI, using the right method and passing the
correct parameters, the API tries to collect the data from the desired databases. If data fetching
and parsing are successful, the API finally sends the data over HTTP (status code 200).

23

External application (our user) could send the requests using one of the many libraries
available that handle HTTP requests. These libraries are really useful considering that they hide
the complexity of creating an actual HTTP request, they are wrappers. Listing 6.1 shows how to
create an AJAX HTTP request that can be used to fetch data from our API (by gene).

Listing 6.1: Example of AJAX HTTP request.
1 var gene = ’TNFSF13B’,
2 selected_bds = [’miRNASNP2’, ’mirsnpscore’, ’mirSNP’, ’PolymiRTS’, ’

mirdSNP’];
3

4 ajax({
5 url : ’miRSNaPi/query/gene’,
6 type : ’POST’,
7 cache : ’true’,
8 data: {’gene’ : gene,
9 ’selected_bds’ : selected_bds},

10 success: function (data, textStatus, jqXHR) {
11 // do something
12 },
13 error: function (jqXHR, textStatus, errorThrown) {
14 // handle error
15 }
16 });

The response sent by the API is shown in listing 6.2. The data for each database is
hidden because it is too large to be pasted here (Listing 6.2).

Listing 6.2: Example of API response
1 {
2 "runtime": "13.303421 s",
3 "gene id": "TNFSF13B",
4 "databases": [
5 "miRNASNP2",
6 "mirSNP",
7 "mirsnpscore",
8 "PolymiRTS",
9 "mirdSNP"

10],
11 "miRNASNP2": [...],
12 "mirSNP": [...],
13 "mirsnpscore": [...],
14 "PolymiRTS": [...],
15 "mirdSNP": [...]
16 }

6.6.5 What if something went wrong
In case an error occurs, the API responds the client with an HTTP error status code

and a message, such as: 500 (internal error), 404 (URI not found) or 400 (bad request) . As
web services are dedicated to programs/applications, sending different status codes is a good
approach because it is easier for programs (that are not humans!) to understand a status code
rather than a complete detailed error message sent using HTTP status code = 200.

24

6.7 Implementation details
miRSNaPi was implemented using the Node.js (Node) that is an asynchronous event

driven based on JavaScript language. Node is meant to build scalable network applications and it
is normally used together with npm to better control JavaScript packages that are used in the
project. Our API uses many npm packages (Table 6.5) and one of the most important is the
express package that is used to route and handle HTTP requests. To create an express application,
one can install (Table 6.5) and call the express-generator:

1 express miRSNaPi

Table 6.5: npm packages and their installation commands

npm package Installation

express-generator npm install express-generator -g
body-parser npm install body-parser –save
cookie-parser npm install cookie-parser –save

debug npm install debug –save
download-file npm install download-file–save

express npm install express –save
file-exists npm install file-exists –save

performance-now npm install performance-now –save
pug npm install pug –save

python-shell npm install python-shell –save
shelljs npm install shelljs –save

The express-generator will create files (Figure 6.4) that are helpful in the sense of avoiding the
need of writing every time the same code when creating a new application. In figure 6.4 the
express-generator directory structure is shown. To this date, files in the view directory were
created by the generator in the jade format, but the jade package was renamed pug, so the files
need to stick to the pug format to be handled by the pug package.

In the package.json file (Figure 6.4) the list of packages needed by the application (JSON
format) is placed. One installs all packages by calling:

1 npm install

Once all dependencies are installed, the server can be started (for development) calling:
1 npm start

After this, one can start giving resources their URIs and programming request handling. In the
following snippet, there is an example of how to define a name (URI) and route a resource using
express.router(). A highlight on the use of post, our very own HTTP POST.

1 router.post(’/query’, function (req, res) {
2 var resource = ’something interesting’;
3 res.status(200).send(resource);
4 });

When an external application makes a request for the miRSNaPi API, it will search
for the requested data in every database in the databases array (Table 6.4) by using the Python

25

Figure 6.4: Express-generator directory structure.

scripts described in chapter 5. That being said, and considering the API description presented in
this chapter, a final overview of our solution is shown in figure 6.5.

Figure 6.5: miRSNaPi final overview.

26

6.8 Conclusion
The miRSNaPi API is a RESTful API for providing addressability, statelessness, and a

uniform interface by using HTTP methods. In addition, the API agrees with the user requirements
by serving the miRSNPs data spread out in different online databases in a structured format
allowing for the development of various external applications based on this data.

Chapter 7

miRdiver: consistent genetic diversity at
miRNA binding sites

Our very own miRSNaPi API can effectively be used to address the real world problem
described in the chapter 6. Here we present the miRdiver (Figure 7.1) web interface that requests
the miRSNaPi data and graphically shows it to the user, who is finally a human being.

Figure 7.1: Screenshot of the miRdiver homepage.
(http://lgmh.c3sl.ufpr.br/miRdiver)

7.1 Requirements

7.1.1 User requirements
As well as miRSNaPi, the user requirements were gathered by watching and talking to

co-workers, but this time requirements are a little bit different, because they are related to an user

28

interface, which is quite different from an API on the matter of usage. That being said, the user
requirements are:

• To find frequently reported miRSNPs searching by gene, miRNA or SNP on different
miRSNPs databases.

• To see each 3-tuple (gene, miRNA, SNP) being combined with the databases where the
referred 3-tuple is reported.

These two requirements are very similar, because by frequently reported miRSNPs, the user
means miRSNPs that appear in different databases.

7.1.2 Product requirements
Considering the user requirements, the solution was designed to be aweb user interface

that allows the search by gene, miRNA, or SNP and shows the miRSNPs databases in which
each 3-tuple (gene, miRNA, SNP) was reported. A good way to show this combination (gene,
miRNA, SNP, databases) is a table, because it is simple and fits well to the problem. Furthermore,
the user interface must be responsive, what means that the interface layout must be adapted for
different screen resolutions (mobiles, personal computers, tablets and so on).

7.2 Use cases

7.2.1 Actor
Once again, there is only one actor (a human one!) named researcher.

7.2.2 List of use cases
As the researcher wants to simultaneously access the different miRSNPs databases, by

gene, miRNA, or SNP, there are three use cases:

• Search by gene

• Search by miRNA

• Search by SNP

7.2.3 Use case diagrams
Use case diagram for the researcher actor is shown in figure 7.2.

7.2.4 Use cases
The use cases search by gene, search by miRNA, and search by SNP are described

in tables 7.1, 7.2 , and 7.3, respectively.

29

Figure 7.2: Use cases for the researcher actor.
The use cases search by gene, search by miRNA, and search by SNP descriptions can be

found in the tables 7.1, 7.2, and 7.3, respectively.

7.3 Other diagrams

7.3.1 System sequence diagram
System sequence diagrams (SSD) for each use case are shown in the figures 7.3, 7.4,

and 7.5. The SSD diagram shows that the miRSNPs data is fetched through the miRSNaPi API.

7.4 Implementation details
As miRdiver is a web application, it was also developed using Node and npm (see

chapter 6). Nevertheless, considering miRdiver also is an user web interface, bower package
manager was used in order to control the client (user interface) packages. Bower is also part of
the Node environment and can be installed as follows:

1 npm install -g bower

Bower packages are also placed in a JSON file and can be installed using:
1 bower install

The list of npm packages is shown in table 7.4 and the list of bower packages can be found in the
table 7.5. In addition, HTML (HyperText Markup Language), CSS (Cascading Style Sheets),
and JavaScript were used to develop the user interface. Bootstrap related packages were used to
make the interface responsive.

30

Table 7.1: Use case search by gene

Use case name:
Search by gene

ID:
UC-0

Priorioty:
Very high

Primary actor:
Researcher

Level:
User

Goal:
To search miRSNPs data from different online databases by a gene name

Precondition:
None

Trigger:
User can see a table that contains the reported data

Typical flow of events:

1. User selects the miRSNPs databases of interest at the multiselect element
2. User types a gene name in the gene name field and clicks over the GO button
3. System checks if the user selected any database and typed something at the gene name field
4. System requests the data to an external application and parses it
5. System shows the table of results

Alternative flow of events:

1. User does not select any database
2. User does not type anything in the gene name field
3. The system understands that the user did not type/select valid information
4. The system does not request any data
5. The system shows an error message

31

Table 7.2: Use case search by miRNA

Use case name:
Search by miRNA

ID:
UC-1

Priorioty:
Very high

Primary actor:
Researcher

Level:
User

Goal:
To search miRSNPs data from different online databases by a miRNA name

Precondition:
None

Trigger:
User can see a table that contains the reported data

Typical flow of events:

1. User selects the miRSNPs databases of interest at the multiselect element
2. User types a miRNA name in the miRNA name field and clicks over the GO button
3. System checks if the user selected any database and typed something at the miRNA name field
4. System requests the data to an external application and parses it
5. System shows the table of results

Alternative flow of events:

1. User does not select any database
2. User does not type anything in the miRNA name field
3. The system understands that the user did not type/select valid information
4. The system does not request any data
5. The system shows an error message

32

Table 7.3: Use case search by SNP

Use case name:
Search by SNP

ID:
UC-2

Priorioty:
Very high

Primary actor:
Researcher

Level:
User

Goal:
To search miRSNPs data from different online databases by a SNP name

Precondition:
None

Trigger:
User can see a table that contains the reported data

Typical flow of events:

1. User selects the miRSNPs databases of interest at the multiselect element
2. User types a SNP identifier in the SNP identifier field and clicks over the GO button
3. System checks if the user selected any database and typed something at the SNP identifier field
4. System requests the data to an external application and parses it
5. System shows the table of results

Alternative flow of events:

1. User does not select any database
2. User does not type anything in the SNP identifier field
3. The system understands that the user did not type/select valid information
4. The system does not request any data
5. The system shows an error message

Table 7.4: npm packages used in miRdiver application

npm package Installation

express-generator npm install express-generator -g
body-parser npm install body-parser –save
cookie-parser npm install cookie-parser –save

debug npm install debug –save
express npm install express –save
pug npm install pug –save

cli-color npm install cli-color –save

33

Figure 7.3: System sequence diagram for search by gene use case.
The user provides the system with gene name and the databases (dbs) of interest. miRdiver will
request data to the miRSNaPi API, which will respond with the combined data from the selected
databases. miRdiver parses the response and shows a table that contains gene-miRNA-SNP

relationships and where (original databases) they were reported.

Figure 7.4: System sequence diagram for search by miRNA use case.
The user provides the system with miRNA name and the databases (dbs) of interest. miRdiver
will request data to the miRSNaPi API, which will respond with the combined data from the

selected databases. miRdiver parses the response and shows a table that contains
gene-miRNA-SNP relationships and where (original databases) they were reported.

34

Figure 7.5: System sequence diagram for search by SNP use case.
The user provides the system with SNP identifier and the databases (dbs) of interest. miRdiver
will request data to the miRSNaPi API, which will respond with the combined data from the

selected databases. miRdiver parses the response and shows a table that contains
gene-miRNA-SNP relationships and where (original databases) they were reported.

Table 7.5: Packages used on the client side

Package Installation

bootstrap bower install bootstrap –save
jquery bower install jquery–save

font-awesome bower install font-awesome –save
bootstrap-multiselect bower install bootstrap-multiselect –save

dynatable ./vendor/jquery-dynatable-0.3.1
spin.js ./vendor/spin.js

35

7.5 rs1803254: a frequently reported miRSNP
In figure 7.6, a miRdiver screenshot, generated when a search by the SNP rs1803254 was

performed, is shown. It is possible to see that this SNP considering the miRNA hsa-miR-582-5p is
reported by four of the five miRSNPs databases, making rs1803254/hsa-miR-582-5p a frequently
reported miRSNP.

Figure 7.6: Screenshot of the search by the rs1803254 SNP.

7.6 Conclusion
ThemiRdiver application is responsive and showsmiRSNPs data verywell. Furthermore,

it makes use of the miRSNaPi API like a charm.

Chapter 8

Concluding remarks

miRSNaPi (http://lgmh.c3sl.ufpr.br/miRSNaPi) is a RESTful API that is capable of
integrating the access to data of five different online miRSNPs databases (miRNASNP2, mirSNP,
mirsnpscore, PolymiRTS, and mirdSNP). It is RESTful because it provides addressability,
statelessness, and a uniform interface that uses HTTP methods to receive and respond requests.
Furthermore, the API uses JSON as its data format, allowing its clients to use the integrated data
in various forms. An example is the miRdiver (http://lgmh.c3sl.ufpr.br/miRdiver) web client that
generates a table showing gene-miRNA-SNP relationships along with the respective databases in
which they appear. Therefore, miRSNaPi is a very relevant data access tool that allows testing
hypothesis more easily, performing investigations, and developing new applications.

8.1 Further work

8.1.1 miRSNaPi
miRSNaPi works very well and can, additionally, be improved as follows:

• Increasing the number of databases it provides access to. For example, adding access
to databases of non-human miRSNPs, as well as keeping track of new ones.

• Creating a local cache. The result of an user request could be stored on the server for a
short period of time, in order to avoid making requests (to the original databases) that were
recently made.

• Applying data warehousing together with the virtual integration architecture. This
can be done in order to solve issues related to the availability of the different databases.
All original data could be warehoused, creating a database that can answer data queries
when a given miRSNP online database is offline.

• Creating an easy-to-use way for adding new databases for data access. miRSNaPi
could provide an interface that allows miRSNP database creators to submit their online
data to access integration.

8.1.2 miRdiver
miRdiver web client could also be improved, for example by:

37

• Highlighting experimentally supported reports. Not all relationships (gene-miRNA-
SNP) are experimentally validated and it would be interesting to show which ones are.

• Reporting strongly predictedmiRSNP effects. This can be achieved by using algorithms
to work with the different database scores of predicted effects, giving the user a probabilistic
approach to the results.

8.1.3 New tools
Apart from miRdiver, new and different web clients could be created, for instance, one

could use machine learning algorithms in order to provide a miRSNP classification tool.

Bibliography

Bhattacharya, A., Ziebarth, J. D., and Cui, Y. (2014). PolymiRTS Database 3.0: linking
polymorphisms in microRNAs and their target sites with human diseases and biological
pathways. Nucleic Acids Res., 42(Database issue):86–91.

Bruno, A. E., Li, L., Kalabus, J. L., Pan, Y., Yu, A., and Hu, Z. (2012). miRdSNP: a database
of disease-associated SNPs and microRNA target sites on 3’UTRs of human genes. BMC
Genomics, 13:44.

Doan, A., Halevy, A., and Ives, Z. (2012). Principles of Data Integration. Morgan Kaufmann.

Enright, A. J., John, B., Gaul, U., Tuschl, T., Sander, C., and Marks, D. S. (2003). MicroRNA
targets in Drosophila. Genome Biol., 5(1):R1.

Fielding, R. T. (2000). Architectural Styles and the Design of Network-based Software Architec-
tures. PhD thesis, University of California, Irvine - United States of America.

Friedman, R. C., Farh, K. K., Burge, C. B., and Bartel, D. P. (2009). Most mammalian mRNAs
are conserved targets of microRNAs. Genome Res., 19(1):92–105.

Gong, J., Liu, C., Liu, W., Wu, Y., Ma, Z., Chen, H., and Guo, A. Y. (2015). An update of
miRNASNP database for better SNP selection by GWAS data, miRNA expression and online
tools. Database (Oxford), 2015:bav029.

Gong, J., Tong, Y., Zhang, H. M., Wang, K., Hu, T., Shan, G., Sun, J., and Guo, A. Y. (2012).
Genome-wide identification of SNPs in microRNA genes and the SNP effects on microRNA
target binding and biogenesis. Hum. Mutat., 33(1):254–263.

Griffiths-Jones, S. (2006). miRBase: the microRNA sequence database. Methods Mol. Biol.,
342:129–138.

Grimson, A., Farh, K. K., Johnston, W. K., Garrett-Engele, P., Lim, L. P., and Bartel, D. P. (2007).
MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell,
27(1):91–105.

Heimberg, A. M., Sempere, L. F., Moy, V. N., Donoghue, P. C., and Peterson, K. J. (2008).
MicroRNAs and the advent of vertebrate morphological complexity. Proc. Natl. Acad. Sci.
U.S.A., 105(8):2946–2950.

Hrdlickova, B., de Almeida, R. C., Borek, Z., and Withoff, S. (2014). Genetic variation in the
non-coding genome: Involvement of micro-RNAs and long non-coding RNAs in disease.
Biochim. Biophys. Acta, 1842(10):1910–1922.

39

Jacobsen, A., Krogh, A., Kauppinen, S., and Lindow, M. (2010). miRMaid: a unified
programming interface for microRNA data resources. BMC Bioinformatics, 11:29.

Krek, A., Grun, D., Poy, M. N., Wolf, R., Rosenberg, L., Epstein, E. J., MacMenamin, P.,
da Piedade, I., Gunsalus, K. C., Stoffel, M., and Rajewsky, N. (2005). Combinatorial
microRNA target predictions. Nat. Genet., 37(5):495–500.

Lagos-Quintana, M., Rauhut, R., Lendeckel, W., and Tuschl, T. (2001). Identification of novel
genes coding for small expressed RNAs. Science, 294(5543):853–858.

Lenzerini, M. (2002). Data integration: A theoretical perspective. In Proceedings of the
Twenty-first ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
PODS ’02, pages 233–246, New York, NY, USA. ACM.

Liu, C., Zhang, F., Li, T., Lu, M., Wang, L., Yue, W., and Zhang, D. (2012). MirSNP, a database
of polymorphisms altering miRNA target sites, identifies miRNA-related SNPs in GWAS
SNPs and eQTLs. BMC Genomics, 13:661.

Lujambio, A. and Lowe, S. W. (2012). The microcosmos of cancer. Nature, 482(7385):347–355.

Lukasik, A., Wojcikowski, M., and Zielenkiewicz, P. (2016). Tools4miRs - one place to gather
all the tools for miRNA analysis. Bioinformatics.

Manyam, G., Ivan, C., Calin, G. A., and Coombes, K. R. (2013). targetHub: a programmable
interface for miRNA-gene interactions. Bioinformatics, 29(20):2657–2658.

Molnar, A., Schwach, F., Studholme, D. J., Thuenemann, E. C., and Baulcombe, D. C. (2007).
miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature,
447(7148):1126–1129.

Pereira, T. C., de Santis Alves, C., e Silva, G. F. F., Ortiz-Morea, F. A., and Nogueira, F. T. S.
(2015). Introdução ao mundo dos microRNAs, volume 1, chapter 5, pages 95–105. SBG, Rua
Cap. Adelmio Norberto da Silva, 736.

Pinhal, D., Nachtigall, P. G., de Oliveira, A. C., Bovolenta, L. A., and Herkenhoff, M. E. (2015).
Introdução ao mundo dos microRNAs, volume 1, chapter 5, pages 95–105. SBG, Rua Cap.
Adelmio Norberto da Silva, 736.

Richardson, L. and Ruby, S. (2007). Restful Web Services. O’Reilly, first edition.

Sherry, S. T., Ward, M., and Sirotkin, K. (1999). dbSNP-database for single nucleotide
polymorphisms and other classes of minor genetic variation. Genome Res., 9(8):677–679.

Thomas, L. F., Saito, T., and Sætrom, P. (2011). Inferring causative variants in microRNA target
sites. Nucleic Acids Res., 39(16):e109.

Ziebarth, J. D., Bhattacharya, A., Chen, A., and Cui, Y. (2012). PolymiRTS Database 2.0: linking
polymorphisms in microRNA target sites with human diseases and complex traits. Nucleic
Acids Res., 40(Database issue):D216–221.

	Introduction
	Aims

	Background
	MicroRNAs
	MiRNA nomenclature
	Genetic variation and miRNA function
	MiRNA: zooming in
	Application Programming Interface
	REST
	Resource-Oriented Architecture
	Resources
	Addressability
	Statelessness
	Connectedness
	Uniform interface

	More on HTTP
	Safety and idempotence
	HTTP status code

	API: zooming in
	Conclusion

	Related Works
	Databases Selection
	Selection

	Online Search
	miRNASNP2
	mirSNP
	mirsnpscore
	PolymiRTS
	mirdSNP
	Conclusion

	miRSNaPi: an Application Programming Interface
	Introduction
	A real world problem
	Requirements
	User requirements
	Product requirements

	Use cases
	Actors
	List of use cases
	Use case diagrams
	Use cases

	Other diagrams
	System sequence diagram

	Design overview
	Data set definition
	Data set split and URI
	Resource representation
	How it should work
	What if something went wrong

	Implementation details
	Conclusion

	miRdiver: consistent genetic diversity at miRNA binding sites
	Requirements
	User requirements
	Product requirements

	Use cases
	Actor
	List of use cases
	Use case diagrams
	Use cases

	Other diagrams
	System sequence diagram

	Implementation details
	rs1803254: a frequently reported miRSNP
	Conclusion

	Concluding remarks
	Further work
	miRSNaPi
	miRdiver
	New tools

	Bibliography

