
Model Search: Formalizing and Automating
Constraint Solving in MDE Platforms

Mathias Kleiner1, Marcos Didonet Del Fabro2, Patrick Albert2

1 Arts et Metiers ParisTech, CNRS, LSIS Laboratory, France
mathias.kleiner@ensam.eu,

2 IBM Software Group, France
{marcos.ddf, albertpa}@fr.ibm.com

Abstract. Model Driven Engineering (MDE) and constraint program-
ming (CP) have been widely used and combined in different applica-
tions. However, existing results are either ad-hoc, not fully integrated
or manually executed. In this article, we present a formalization and an
approach for automating constraint-based solving in a MDE platform.
Our approach generalizes existing work by combining known MDE con-
cepts with CP techniques into a single operation called model search. We
present the theoretical basis for model search, as well as an automated
process that details the involved operations. We validate our approach
by comparing two implemented solutions (one based on Alloy/SAT, the
other on OPL/CP), and by executing them over an academic use-case.

1 Introduction

The combination of models and constraints is well-known and widely used in
software engineering. On the one hand, the model-driven engineering (MDE) ap-
proaches have been using constraint languages (like OCL[21]) to further specify
metamodels. Many constraint-based tools such as [15,10] have been developed,
mainly for model checking and animation. However, in most of these approaches,
constraint-solving is an external operation that can hardly be automated (in
terms of input generation and output retrieval), and usually relies on solver-
dependent tasks. On the other hand, part of the constraint programming (CP)
approaches have aimed at extending the search engines with higher-level lan-
guage support, either to obtain solver-independent languages [19], or to solve
object-oriented/relational problem definitions[5,2,27].

Typical MDE solutions require chaining operations of different nature, such
as extractions, injections or transformations. However, the explicit scope of CP-
based operations remains vague. We believe they can be seen as model operations
with combinatorial properties (see [17] for an application scenario). The CP-
solving operation thus needs to be model-driven, fully automated and integrated
with existing MDE tools.

In this paper, we therefore present a formalization of CP-solving tasks within
a solver-independent MDE process chain. We define it as a first-class model-
driven operation called model search. Our solution generalizes existing approaches

with an identified set of elementary operations and model-based inputs and out-
puts. The operations cover the whole model search chain, from the data definition
to the solver execution and data re-injection.

We validate our approach by implementing it based on two well know solvers:
Alloy/SAT [5] and OPL/CP [8]. We also apply both chains on an academic
example of software product lines and discuss the results.

This paper is organized as follows. In section 2, we introduce model-driven
engineering and constraint programming. In Section 3, we describe the model
search approach and we present formal definitions for it. In Section 4, we present
a solver-independent MDE integration for model search. In Section 5, we present
two implementations of the presented chain using known solvers. Experiments
on an application use case are provided in Section 6, and Section 7 discusses
related and future work.

2 Context

2.1 Introduction to MDE and model transformation

Model Driven Engineering considers models, through multiple abstract repre-
sentation levels, as a unifying concept. The central concepts that have been
introduced are terminal model, metamodel, and metametamodel. A terminal
model is a representation of a system. It captures some characteristics of the
system and provides knowledge about it. MDE tools act on terminal models
expressed in precise modeling languages. The abstract syntax of a modeling lan-
guage, when expressed as a model, is called a metamodel. The relation between
a model and the metamodel of its language is called conformsTo. Metamodels
are in turn expressed in a modeling language for which conceptual foundations
are captured in an auto-descriptive model called metametamodel.

The main way to automate MDE is by executing operations on models. For
instance, the production of a model Mb from a model Ma by a transformation
Mt is called a model transformation. The OMG’s Query View Transform (QVT)
[20] defines a set of useful model operations and proposes clues on how they
should be implemented. As a mean to provide interoperability with tools from
non-MDE environments (often referred to as technological spaces), special model
operations (often called injection/extraction) allow for data exchange (usually
through serializing/parsing) [14].

We use in this article the model definitions introduced in [6]:

Definition 1 (model). A model M is a triple < G,ω, µ > where:

– G is a directed multigraph,
– ω is a model (called the reference model of M) associated to a graph Gω

– µ is a function associating nodes and edges of G to nodes of Gω

Definition 2 (conformsTo). The relation between a model and its reference
model is called conformance and noted conformsTo (or abbreviated C2).

Definition 3 (metametamodel). A metametamodel is a model that is its own
reference model (i.e.it conforms to itself).

Definition 4 (metamodel). A metamodel is a model such that its reference
model is a metametamodel.

Definition 5 (terminal model). A terminal model is a model such that its
reference model is a metamodel.

As stated by the previous definitions, the notion of reference model is indepen-
dent from the absolute modeling levels. For instance, both the MOF metameta-
model and the UML metamodel are reference models (respectively of the UML
metamodel and of a UML (terminal) model). Therefore, the conformance rela-
tion is also level-independent and can simply be checked by the existence of a
function µ between the graphs of a model and its reference model.

2.2 Constrained metamodels

The notion of constraints is closely tight to MDE. Engineers have been using
constraints to complete the definition of metamodels for a long time, as illus-
trated by the popular combination UML/OCL. Constraints can be, for instance,
checked against one given model in order to validate it. In our approach we will
always consider that the metamodels on which we wish to conduct CP solv-
ing potentially have constraints attached. We propose the following to formally
define such combination:

Definition 6. A constrained metamodel CMM is a pair < MM,C > where
MM is a metamodel and C is a set (a conjunction) of predicates over elements
of the graph associated to MM . C is an oracle that, given a model M =<
G,MM,µ >, returns true (noted C(M)) iff M satisfies all the predicates.

Definition 7. A model M conformsTo a constrained metamodel CMM if and
only if C(M).

Many languages can be used to define predicates (i.e. constraints), with different
levels of expressiveness. OCL supports operators on sets and relations as well
as quantifiers (universal and existential) and iterators. In this article, we will
be using an OCL-compatible extension (OCL+ [9]) that focuses on metamodel
static constraints. OCL+ is itself defined by a metamodel (available as KM3 [6])
and a parser (generated with TCS [7]).

2.3 Introduction to constraint programming

Constraint programming (CP) is a declarative programming technique to solve
combinatorial (usually NP-hard) problems. A constraint, in its wider sense, is a
predicate on elements (represented by variables). A CP problem is thus defined
by a set of elements and a set of constraints. The objective of a CP solver

is to find an assignment (i.e a set of values for the variables) that satisfy all
the constraints. There are several CP formalisms and techniques which differ by
their expressiveness, the abstractness of the language and the solving algorithms.
In this article we will focus on the language part, i.e what kind of elements
and constraints can be represented and reasoned about. In order to narrow the
scope, we introduce two important CP formalisms: SAT (boolean SATisfiability
problem) and CSP (Constraint Satisfaction Problem). Associated solvers and
their (higher-level) language will be presented in Section 5.

The SAT formalism SAT problem is to decide if, for a given boolean formula,
each boolean variable can be given an assignment such that the formula evaluates
to true. SAT is known as being a NP-complete problem[1].

Definition 8 (SAT instance). A SAT instance S is defined by S = (X , C)
where X is a set of boolean variables and C is a set of clauses. A clause is a
finite disjunction of literals and a literal is either a variable or its negation.

The CSP formalism CSP extends SAT in that it does not restrict variable
domains to binary values.

Definition 9 (CSP instance). A CSP instance is well-defined by a triplet
< X,D,C > :

– X is a finite set of variables X1, ..., Xn

– D is a finite set of domains D1, ..., Dn where Di is a set of possible values
for Xi

– C is a finite set of constraints where each constraint is an assertion on a
subset of X = Xj , ...Xk defined by a subset of Dj , ..., Dk

Solving a CSP consists in assigning a value Vi of the domain Di to each variable
Xi such that it satisfies all the constraints in C.

3 Model search

Deterministic rule-based model transformations are not sufficient for different
MDE scenarios, such as model animation or model automatic generation, be-
cause they cannot handle combinatorial parts of operations chain. For instance,
in [17], the MDE scenario uses a CP-based technique for a part of the process
in which the input model needs to be automatically completed. In this section,
we present model search as a first-class MDE operation for handling such com-
binatorial tasks.

3.1 Relaxed metamodels and partial models

In order to formally define model search, we first define a set of notions that
relate to constrained metamodels.

Definition 10 (Relaxed metamodel). Let CMM =< MM,C > be a con-
strained metamodel. CMMr =< MMr, Cr > is a relaxed metamodel of CMM
(noted CMMr ∈ Rx(CMM)) if and only if GMMr ⊆ GMM and Cr ⊆ C.

In other words, a (minimal) relaxed metamodel can be obtained by the removal
of all constraints: minimum cardinalities are set to zero, attributes are optionals
and predicates are removed. Computing such a relaxed metamodel can obviously
be done easily with existing (meta)model transformation techniques. We call this
operation relaxation.

Definition 11 (Partial model, p-conformsTo). Let CMM =< MM,C >
be a constrained metamodel and M a model. Mr p-conformsTo CMM if and only
if it conforms to a metamodel CMMr such that CMMr is a relaxed metamodel
of CMM (CMMr ∈ Rx(CMM)). Mr is called a partial model of CMM.

3.2 Model search

Definition 12 (Model search). Let CMM =< MM,C > be a constrained
metamodel, and Mr =< Gr,MMr, µr > a partial model of CMM . Model search
is the operation of finding a (finite) model M =< G,MM,µ > such that Gr ⊆ G,
µr ⊆ µ (embedding i.e ∀x ∈ Gr, µ(x) = µr(x)), and M conformsTo CMM .

ECore
C2

M3

Eclipse Modeling Framework (EMF)

CMM CMM

 M
(request)

M

C2C2

Model Search

M2

M1

Relaxation

p-c
onf

orm
sTo

r

r

Fig. 1. Model search

This MDE operation is illustrated in Figure 1. We consider model search as a
model transformation where the source (metamodel and model) is an instance
of a non-deterministic (combinatorial) problem and the target model is a solu-
tion (if any exists). From the CP point of view, the target metamodel acts as
the constraint model whereas the source model (the request) is a given partial
assignment that needs to be extended.

4 A solver-independent MDE integration

As introduced in the previous Section, the goal of model search is to generate a
complete and valid model M of a constrained metamodel CMM out of a partial
(possibly empty) model Mr (the request). Figure 2 illustrates the whole process
in a model-driven engineering framework. This process is composed of 5 main
tasks.

ECORE
C2

MDE (EMF)

CMM

M
SE
Solution

C2

M2SP

CMM

M

C2

Search
Engine

SE
Program

C2

CMM2SP

SE

Solutions

C2

SS2M

SE
Solution

XML

C2

XML2SS

EBNF
C2

Grammarware

SE.g

SE
Program

C2

C2

XSD.xsd
C2

XML

XMLFormat

SE

Solution

C2

C2

Extraction Run SE

Relaxation

XML Injection

Model Search

Model Transformation

(generated by a higher-order) Model Transformation

Model Extraction - Injection

r

r

Fig. 2. Model search integration

1) Search problem generation: this task, illustrated by the CMM2SP
transformation, expresses the constrained metamodel as a model conforming
to the search engine metamodel. However, the CMM2SP arrow in Figure 2
is a simplified view of the process, since there are actually two source models
(represented by the doubled square) as input to the transformation. Figure 3
illustrates the complete generation process. The metamodel MM contains the
structural constraints, such as cardinality and lower bounds. However, typical
model search applications require more complex domain constraints. These do-
main constraints, which are not part of standard ECORE, are expressed in the
constraint model C, which conforms to the OCL metamodel.

The difficulty of expressing a constrained metamodel in the search engine
language is highly dependent on the abstraction level and the basic elements
offered by the language. Differences between search engines and implementation
issues will be thoroughly discussed in Section 5.

2) Search data generation: this task is illustrated by the M2SP trans-
formation. It takes the request model Mr as input and generates the input
data that will be used by the search engine. However, this transformation is
metamodel-specific, i.e., there is one M2SP per input metamodel. To avoid
writing one transformation for every metamodel MM , a higher-order trans-
formation (HOT) is defined. The HOT takes MM as input and produces the
transformation M2SP , using the transformation language as target metamodel.

ECORE
C2

MDE (EMF)

OCL

C

C2

C2

CMM

M

C2

Search
Engine

SE

Program

C2

MM

M

C2

ap
pl
ie
sT
o

CMM2P

Simplified View

C2

C
M
M
2S
P

C2

satisfies

ECORE
C2

ECORE
C2

Fig. 3. Generation of the problem definition

It is important to note that most of the search engines do not separate the
problem and the data definition: they are expressed all together using the same
language. For that reason, the input data and the problem definition are merged.
This is a straightforward task, since there are no overlapping elements.

3) Engine program extraction: this task extracts the search engine model
into its executable format.

4) CP search: the generated search program is executed in the search en-
gine. When the search succeeds (i.e there is at least one solution), we obtain a
solution model in the search engine output format. The most common formats
are XML or plain-text files.

5) Solution injection: this last task is to inject the resulting solution pro-
duced by the search engine as a model of the original metamodel MM . We have
illustrated this tasks by two transformations, XML2SS and SS2M . Although
those transformations could be merged, we have considered that the engine gen-
erates an XML file. As a result, it is natural to decompose the operation into
two tasks: expressing the XML model as a model of a metamodel of the search
engine solutions, then transform it to a model of MM . For the same reasons as
the M2SP transformation, SS2M is generated using a HOT, which takes MM
as source and generates a transformation from SS to MM .

ECORE vs KM3 The presented process assumes the use of EMF’s Ecore (from
the Eclipse modeling project) as the metametamodel. Effective implementations,
as the ones described later in this article, define the metamodels using the KM3
language[6]. Since KM3 offers automatic translation to Ecore, the conversion
from one framework to another does not introduce any difficulty.

5 Implementation alternatives

The presented chain is solver-independent. We materialize such chain using two
technologies. However a number of difficulties arise with implementations, be-
cause of the solvers languages lack of expressiveness or the formalisms inherent

limitations. We discuss in this section the difficulties that we identified for each
of the two formalisms presented in Section 2.3 combined with state-of-the-art
solvers: OPL/CSP and Alloy/SAT.

5.1 Implementation with Alloy/SAT solver

The SAT paradigm has clear limitations: it requires a finite set of boolean vari-
ables and only offers a low-level predicate language (only negation, disjunction
and conjunction are supported). However, [5] introduced an expressive relational
language with a built-in compilation that allows the use of many recent SAT
solvers. We will thus use Alloy as our target search engine language in order to
ease the transformation definition.

Alloy, which can be seen as a subset of the Z language [13], allows for ex-
pressing complex predicates using atoms (indivisible elements), sets (of atoms),
relations, quantifiers (universal or existential), operators for relations traversal,
etc. However, due to the properties of SAT problems, Alloy cannot be considered
as a true first-order logic solver. Indeed, to be able to translate the problem into
SAT, a scope needs to be given to each set, that limits the number of atoms that
can be contained in the set.

In Alloy, every element is either an atom or a relation but the language is
exclusively based on relations. Indeed, a set is itself a relation from an atom to
the contents of that set (which in turn are also atoms). The main artifacts that
we will manipulate in the Alloy language are:

– Signatures, declarations of sets, for which the body may contain fields as
relations to other signatures. Attributes are treated the same as any rela-
tion. Scalars, as for signatures, are treated as sets of atoms. Signatures also
support a form of inheritance.

– Facts, declarations of predicates, with quantifiers and an important number
of logical, scalar and set operators available.

Generic expression of constrained KM3 metamodels We developed a
metamodel of the Alloy language containing the necessary constructs to represent
KM3 metamodels and OCL+ constraints. Figure 4 shows an overview of the
metamodel. The complete metamodel is written in KM3. We also developed a
TCS parser generator allowing to inject/extract between the textual version of
the language and our metamodel. Both the metamodel and the TCS are freely
available, submitted as a TCS use case (under the form of an Eclipse project),
and can be downloaded from [4]. The OCL+ metamodel is also written in KM3,
its metamodel and TCS are freely available and can be downloaded from [9]. An
overview is presented in Figure 5.

On this basis, we defined a mapping from KM3 to Alloy and developed
the corresponding transformation, using ATL (AtlanMod Transformation Lan-
guage), a QVT-like model transformation language and tool [11]. An excerpt of
the mapping is presented in Table 1. In short, KM3 classes are mapped to Alloy
signatures, KM3 attributes and references are mapped to Alloy fields, references

Module Declaration

TypeDeclaration

-multiplicity
-id

Signature

-id

FunctionDecl

Fact

ExternalType

Function

Field Parameter

SetDeclaration

-multiplicity

Set

TypeSet RelationSet

Expression

VariableExp

-quantifier

QuantificationExp

-unaryOp

UnaryExp

-binaryOp

BinaryExp

-function
-arguments

FunctionExp

-id

Variable

-source : TypeDeclaration
-target : TypeDeclaration

Relation

1..*

1..*

rightExp

leftExp

type

0..*0..*

0..*

Fig. 4. Overview of the Alloy metamodel

Package

Invariant VariableDeclaration

OclExpression

VariableExp

-name

NavigationOrAttributeCallExp

-operationName

OperationCallExp

OperatorCallExp

-name

ConfigElement

IfExp

argumentssource

referredVariable

expression

filter

ctxDeclarations

0..*

Fig. 5. Overview of the OCL+ metamodel

properties are turned into facts. We also developed an ATL transformation from
OCL+ to Alloy so as to express metamodel constraints. An informal excerpt of
these mappings are presented in Table 1. Both the transformations are merged
into a unique transformation using two source models and able to resolve the
links between the constraints and the metamodel elements on which they apply.
This combined transformation corresponds to the CMM2SP of Figure 2. It is
freely available, submitted as an ATL use case (under the form of an Eclipse
project), and can be downloaded from [18].

The whole project is a partial implementation (all but the two high-order
transformations) of the model search process presented in Section 4, using Alloy
as the search engine. Thanks to its language expressiveness, Alloy bridges the
gap between constrained metamodels and low-level languages. As an open-source
tool, it is a viable alternative with only few drawbacks.

5.2 Implementation with OPL/CP solver

OPL (Optimization Programming Language) [28] is a language part of the IBM
ILOG TMOPL-CPLEXTMdevelopment bundle [8], which is an IDE for develop-
ing CP and optimization models. The OPL programs are executed by the IBM

KM3 concept Alloy concept

Metamodel Module
DataType ExternalType

Class Signature
Attribute Field
Reference Field

StructuralFeature multiplicity Quantifier or Fact
Reference containment Fact

Reference opposite Fact

OCL+ concept Alloy concept

Invariant Fact and QuantificationExpression
Invariant declarations QuantificationExpression variables
VariableDeclaration Variable

VariableExp VariableExpression
IfExp ImpliesExpression

NavigationOrAttributeCallExp NavigationExpression
OperatorCall BinaryExpression

OperationCall (size) SetCardinalityExpression
OperationCall (isIn) ComparisonExpression

OperationCall (others) ExternalFunction

Table 1. Excerpt of the mapping from KM3 and OCL+ to Alloy concepts

ILOGTMCP Optimizer engine. The OPL language has a clear separation be-
tween the input data (booleans, integers, sets, strings, tuples, and others) and
the decision variables (integers and arrays of integers). It offers as well a set of
logical and arithmetic expressions on those elements. These features - together
with the possibility of defining universal quantifiers over variables - enables the
reutilization of the optimization models over different data.

We have developed an OPL metamodel based on the definition from [8] (see
an extract on Figure 6). The main structures used are the following:

– Expressions: combination of logical and arithmetical expressions, functions,
aggregates (sum, union, max and min) and (indexed) variables.

– Input parameters: the input (fixed) data. A parameter may be initialized
from a data set or it can be calculated using any kind of expression.

– Decision variables: the decision variables are scalars or arrays of integers
and doubles. The decision variables may considered the ”output data”, i.e.,
the values of the decision variables are assigned based on a set of constraints
and on the input data.

– Constraints: constraints are logical expressions that are written as an arbi-
trary composition of expressions, input parameters and decision variables.
These constraints must be respected during the solver execution.

Generic expression of constrained KM3 metamodels We have applied the
same approach as for the Alloy/SAT tool: we have developed an OPL metamodel
in KM3 and a TCS parser generator for the injection/extraction between the
OPL textual version and the model3. The mapping from constrained KM3 into
OPL has a higher conceptual mismatch (model-based vs integer-based) than the
one into Alloy. An excerpt of the mapping is presented in Table 2.

3 The complete OPL metamodel/TCS and the transformation from KM3/OCL+ are
not freely available

Fig. 6. Extract of the OPL metamodel

The transformation has three major set of rules. First, the KM3 model is
transformed into the input parameters. Second, the KM3 metamodel is trans-
formed into the output decision variables. The KM3 metamodel is transformed
twice because of the difference of expressiveness between the OPL input param-
eters and the decision variables. The decision variables are restricted to integers
and array of integers. Finally, the constraints are transformed into OPL con-
straints compatible with the input and output variables. The arithmetical, logi-
cal and comparison expressions are translated into their equivalent counterparts
in OPL. The navigation expressions are translated into indexed decision vari-
ables, where the index is the calling expression. Then, the collection expressions
are transformed into aggregates.

6 Application and Experiments

In this section, we describe an effective application of the approach on a Software
Product Lines (SPL) use case. First, we briefly present the context of SPL and
the considered problem. Then, we compare the results of the two implementation
alternatives presented in Section 5.

6.1 Search in software product lines

The goal of SPL [22] is to create a shared model for a given application domain,
which acts as a basis to generate a set of derived products. The specificities of
each product are defined by features satisfying the needs of a particular applica-
tion. These features contain explicit variation points, which guide the generation
of the final products.

KM3 concept OPL concept

Metamodel Model
DataType Type

Class Integer set
Attribute PrimitiveType set and integer array
Reference Integer set and integer bi-dimensional array

StructuralFeature multiplicity Aggregate expression
Reference containment Global uniqueness constraint

Reference opposite Equality constraint

OCL+ concept OPL concept

Invariant ForAll constraint
Invariant declarations ForAll qualifiers
VariableDeclaration Qualifier expression

VariableExp VarExp
NavigationOrAttributeCallExp Indexed variable exp

OperatorCall (arithmetic and logical) BinaryOptExp + operator type
OperationCall (size) AggreateExp
OperationCall (isIn) AggregateExp and indexed variable

OperationCall (others) FunctionCall
CollectionExp Combination of aggregate expression

Table 2. Excerpt of the mapping from KM3 and OCL+ to OPL

The first step in a SPL chain is to define a model of the shared domain. A
domain model contains a set of characteristics and components that are common
for a class of applications, plus a set of variation points. The variation points
may be expressed in terms of choices of possible values or in terms of user
constraints. Each combination of variation point may generate a distinct product
(a process called derivation). In other words, finding and generating all the
possible products satisfying a set of constraints in a SPL is a model search
problem. The domain model and the variation points are expressed in terms of
a constrained metamodel.

In our example we need to generate classes that handle the execution of
watches (this use case is an adaptation from [23]). We want to generate 5 different
kinds of watches: 1) one simple watch, 2) one with alarm, 3) one with sound
alarm, 4) one with sound and visual alarm and 5) one with visual alarm. We
provide below a simple KM3 metamodel for this SPL problem:

package watches {

class Root {

reference classifiers[1-10] container : Class;

}

abstract class Class {

reference methods[1-15] container : Method oppositeOf class;

}

class Watch extends Class {

reference class : Class oppositeOf methods;

}

abstract class Method { }

class DisplayTime, Start, StartAlarm, StartSoundAlarm,

StartVisualAlarm, Stop, StopAlarm extends Method {}

}

However, not all combinations of methods are allowed. The derived models
should respect the following constraints. 1) the DisplayT ime and Start methods

are mandatory; 2) if there is a Start, there is a Stop; 3) if there is a StartAlarm,
there is a StopAlarm; 4) if there is a StartSoundAlarm, there is a StartAlarm;
5) if there is a StartV isualAlarm, there is a StartAlarm. We show below one
constraint in OCL+, Alloy and OPL, respectively.

context Class inv : methods.exists (m | m.oclIsTypeOf(Start)) ;

fact { all c : Class | some m : c.methods | m in Start }

forall(c in classes)(sum(m in methods) (c_m[c][m] > 0 && m in start)) >=1;

6.2 Results

We executed an Alloy/SAT and an OPL/CP chain in a Intel Core Duo, 2.53GHz,
3GB of RAM and 32 bit processor, with the same metamodel and the same set
of constraints. We used Alloy 4.1.10 with the default SAT4J [26] solver and
OPL 6.2 with the CP solver. The CMM2SP for Alloy transformation produced
an Alloy program with 107 lines and the CMM2SP for OPL produced an OPL
program with 131 lines.

The initial setting for executing the solvers is the standard setting of both
tools. However, in the Alloy case, the bit-width is increased to 6 (the default
is 4), to be able to represent the cardinalities of the references classifiers and
methods. OPL/CP has a largest integer default of 231 − 1. We used the same
input, i.e., one element per class, (1 Root, 1 Watch, 1 Start, 1 Stop, 1 StopAlarm,
1 StartAlarm, 1 DisplayTime, 1 StartVisualAlarm and 1 StartSoundAlarm).

Both engines produced the combination of methods shown in Figure 7. De-
spite being simple, this example enables the visualization of all the solutions
produced and the implication of the input constraints in the output models.

Fig. 7. Produced watches

Both transformation chains produced equivalent solutions from the same
specification. The operations are called automatically (sequentially) by an Apache-
Ant script. The Alloy program is then translated by the built-in compiler into
a SAT predicate (923 lines) with 753 vars, 79 primary vars and 1271 clauses.
The extraction plus the execution were executed in 0,19 seconds. The OPL pro-
gram is transformed and executed by the CP engine in-memory, so the number
of lines of the problem is not accessible. The problem definition has 8 variables
and 300 constraints. It was executed in 0,11 seconds. The high difference in the

number of variables is due to the expressiveness of the outputs: boolean-based
vs integer-based. The conceptual mismatch between OCL+ and OPL is higher
than from OCL+ and Alloy, which provides an expressive language based on
relations and logic.

The clear separation of the problem definition from the input data in OPL -
and the existence of universal quantifiers - enables defining a CMM2SP for OPL
transformation independent of the input data. In particular, it is not necessary
to unfold all the variables and loops.

The metamodels of both tools have been designed to work directly with the
TCS parser. Therefore, some syntactical constructs would deserve a semanti-
cal analysis to completely check the validity of a textual input during model
injections. This 2-step parsing process is left for future work.

To summarize, we were able to execute model search on both tools by imple-
menting the modeling operations of the chain. Despite differences on the solver
capabilities, the tools produced the expected results, showing the applicability
of our approach. Automatic generation of the problem did not here generate
an extra performance overhead compared to a manual definition. Considering
the complexity of constrained search, this should however be validated on larger
problems.

7 Related and future work

To the best of our knowledge, this article presents a first formal definition of
model search as a deep integration of constraint programming in the MDE con-
ceptual framework. However, this work can be linked to other recent develop-
ments that apply optimization techniques to solve MDE problems. For example,
[16] describes transformation as an “Optimization Problem”, this is very close to
our approach, though in this case the optimization engine is not used during the
transformation. The goal is rather to find a good transformation starting from
a small set of available examples. A large share of the work of Jules White re-
lates to our approach. The CURE system - for Configuration Understanding and
REmedy [12] - for example, transforms a configuration into a set of constraints,
automating the diagnosis of invalid configurations or the adapting of existing
configurations to fulfill new requirements. Our approach also differs from SPL-
dedicated solutions, such as [24], because we do not target a specific application
domain. Based on some preliminary work, we believe that the SPL as a whole
will benefit from the model search approach.

More generally, the many bridges that have been built between CP and MDE
in the past years can be divided in two categories:

The CP community that works on modeling has started focusing on the
DSL (Domain Specific Languages) approach for providing specific modeling lan-
guages, see [19] or [25], while preserving the so-called “solver independence”, or
supporting object-oriented or relational problem definitions [5,2,27]. Although
they usually do not provide MDE integration, these languages have a higher

expressiveness and adapted engine support, therefore easing the transition from
metamodeling languages.

The MDE community has been using constraint languages to further specify
metamodels or transformation rules, while constraint-based tools such as [15,10]
were developed mainly for model checking and validation. More recently, con-
straints have been considered to specify transformations or extend their capabil-
ities [3]. Most of these tools depend on a specific solver/language. Moreover, the
MDE integration is incomplete either because the inputs/outputs for the engine
cannot be directly generated/retrieved or because they do not use model-driven
transformations. Finally, partial assignments (i.e non-empty input models) are
usually not taken into account.

In this respect, this article presents both a formalization and generalization
of these approaches. Existing tools can be seen either as partial implementations,
components or goal-specific usage of model search. By formalizing model search
as a first-class model operation, we allow for comparison and integration into
MDE platforms.

As future work, we plan to release the higher-order model transformations
needed to complete the whole presented process. One of them allows to trans-
form models to partial instances of the considered problem, and the other to
transform the search results into a MDE format (M2SP and SS2M in Figure 2).
We also plan to further validate the two implementations on a set of industrial
and academic use cases4. At the theoretical level, our model search theory and
process can naturally be extended to a general model transformation scheme (i.e
with different source and target metamodels), which would expand the scope of
transformations through an implementation of Relational-QVT.

8 Conclusion

In this article, we presented and formalized the use of constraint-based search
engines in MDE platforms as a novel model operation called model search. Be-
sides the presented theoretical foundations, we also described a MDE solver-
independant process chain to realize model search, demonstrated its validity with
two implementations (resp. Alloy/SAT and OPL/CSP), and discussed the results
through experiments on an academic SPL use case. The presented approach gen-
eralizes existing work about constraints resolution in MDE, allows the complete
automation of the process and provides a basis to develop and compare different
alternatives. It simplifies the use of constraint solvers in model-based software
engineering at two levels: a shared knowledge representation (constrained graph-
based models), and a generic process in that one implemented chain is reusable
for any application scenario.

Acknowledgments This article has been partially funded by ANR Idm++ project.

4 We have successfully applied the approach to parse English sentences[17].

References

1. Cook S. A. The complexity of theorem-proving procedures. In STOC, pages 151–
158. ACM, 1971.

2. Felfernig A., Friedrich G., Jannach D., and Zanker M. Configuration knowledge
representation using uml/ocl. In UML, pages 49–62. Springer, 2002.

3. Petter A., Behring A., and Muhlhauser M. Solving constraints in model transfor-
mations. In ICMT’09, pages 132–147, 2009.

4. Alloy usecase: http://www.lsis.org/kleinerm/MS/Alloy mm.html, 2010.
5. Jackson D. Automating first-order relational logic. In FSE, pages 130–139, 2000.
6. Jouault F. and Bézivin J. Km3: A dsl for metamodel specification. In FMOODS,

volume 4037 of LNCS, pages 171–185. Springer, 2006.
7. Jouault F., Bézivin J., and Kurtev I. TCS: a DSL for the specification of textual

concrete syntaxes in model engineering. In GPCE, pages 249–254. ACM, 2006.
8. IBM ILOG CPLEX Development Bundle: http://www-

01.ibm.com/software/integration/optimization/cplex-dev-bundles/, Dec 2009.
9. OCL+ usecase: http://www.lsis.org/kleinerm/MS/OCLP mm.html, 2010.

10. Cabot J., Clarisó R., and Riera D. Umltocsp: a tool for the formal verification of
uml/ocl models using constraint programming. In ASE, pages 547–548, 2007.

11. Jouault J. and Kurtev I. Transforming Models with ATL. In MoDELS Satellite
Events, volume 3844 of LNCS, pages 128–138. Springer, 2005.

12. White J., Schmidt D. C., Benavides D., Trinidad P., and Ruiz-Cortez A. Auto-
mated diagnosis of product-line configuration errors in feature models. In Software
Product Lines Conference (SPLC 2008) Limmerick, Ireland, 2008.

13. Spivey J.M. The Z Notation : a reference manual., 2001.
14. I. Kurtev, J. Bezivin, and M. Aksit. Technological spaces: An initial appraisal. In

International Symposium on Distributed Objects and Applications, 2002.
15. Gogolla M., Büttner F., and Richters M. Use: A uml-based specification environ-

ment for validating uml and ocl. Sci. Comput. Program., 69(1-3):27–34, 2007.
16. Kessentini M., Sahraoui H. A., and Boukadoum M. Model transformation as an

optimization problem. In MoDELS, pages 159–173, 2008.
17. Kleiner M., Albert P., and Bezivin J. Parsing sbvr-based controlled languages. In

Models’09, pages 122–136, 2009.
18. Model search: http://www.lsis.org/kleinerm/MS/ModelSearch-Alloy.html, 2010.
19. Nethercote N., Stuckey P. J., Becket R., Brand S., Duck G. J., and Tack G. Miniz-

inc: Towards a standard cp modelling language. In Proceedings of the 13th CP.
3(4). LNCS, vol. 4741, pages 529–543, 2007.

20. Object Management Group. Meta Object Facility (MOF) 2.0 Query/View/Trans-
formation (QVT) Specification, version 1.0, 2008.

21. OCL 2.0 specification: http://www.omg.org/spec/OCL/2.0/, 2008.
22. Clements P. and Northrop L. Software Product Lines: Practices and Patterns.

Addison-Wesley Professional, 1st edition, 2001.
23. Tessier P, Servat D, and Gerard S. Variability management on behavioral models.

In VaMoS Workshop, pages 121–130, 2008.
24. Trinidad P., Benavides D., Cortés A. R., Segura S., and Alberto Jimenez. Fama

framework. In SPLC, page 359. IEEE Computer Society, 2008.
25. Chenouard R., Granvilliers L., and Soto R. Model-driven constraint programming.

In 10th ACM SIGPLAN PPDP, Valence, Spain, 2008.
26. SAT4J. A SATisfiability libray for Java: http://www.sat4j.org, 2010.
27. Junker u. and Mailharro D. The logic of (j)configurator : Combining constraint

programming with a description logic. In IJCAI’03. Springer, 2003.
28. Hentenryck P. V. The Optimization Programming Language. MIT Press, 1999.

	Model Search: Formalizing and Automating Constraint Solving in MDE Platforms
	 Mathias Kleiner, Marcos Didonet Del Fabro, Patrick Albert

