
AMW: a tool for multi-level specification of model
transformations

Marcos Didonet Del Fabroa,∗, Frédéric Jouaultb, Jordi Cabotb, Patrick
Valduriezc

aUniv. Federal do Paraná, Depto. de Informática, Centro Politécnico, Curitiba, PR, Brazil
bAtlanMod INRIA Team, EMN, Nantes, France

cINRIA - LIRMM, Montpellier, France

Abstract

Model transformations play a key role in any Model Driven Engineering
(MDE) approach. The central task when developing model transformations
consists in writing rules that implement a set of mappings between two meta-
models. Specification of model transformations is far from being a simple task.
For complex transformations, attempting to directly write the transformation
is an error-prone and time-consuming process. To simplify the development of
model transformations, we present a multi-level approach inspired on typical
software development processes where we first create higher level and abstract
mappings’ specifications and then we refine them into more precise transfor-
mation code. To support this multi-level transformation approach we have
developed the AMW (AtlanMod Model Weaver) tool. AMW facilitates the
specification of transformations in a three-level setting, from high-level map-
ping specifications to the generation of the final transformation code. A set of
extension points allow the configuration and adaptation of each refinement level
to the specific requirements of each application scenario, if desired. We present
the tool capabilities using two different settings: manual and semi-automatic
transformation generation.

Keywords: model transformations, model weaving, transformation
specification, AMW

1. Introduction

Model Driven Engineering (MDE) is a software engineering paradigm that
emphasizes the use of models in all software engineering activities. Therefore,

∗Corresponding author
Email addresses: marcos.ddf@inf.ufpr.br (Marcos Didonet Del Fabro),

frederic.jouault@inria.fr (Frédéric Jouault), jordi.cabot@inria.fr (Jordi Cabot),
patrick.valduriez@inria.fr (Patrick Valduriez)

Preprint submitted to Elsevier January 24, 2011



model transformations (for simulation, code-generation, reverse engineering,
testing and so on) are amongst the most used operations in MDE applications.

The central development task when writing model transformations consists
in manually writing transformation rules, where each rule define a partial map-
ping between two metamodels. Most transformation languages only support
the definition of unidirectional rules, i.e., rules that specify how a set of ele-
ments from an input model are translated into a set of elements of an output
model. Examples of transformation languages are ATL [1], QVT [2], Viatra [3],
or Kermeta [4] .

Unfortunately, developing and understanding large model transformations is
a difficult task, because many rules may require complex pattern expressions to
precisely define the mapping (e.g. a source pattern to filter the input model and
a target pattern to explain how the elements from the input model are combined
to create the elements of the target model).

In order to simplify the development of model transformations, we propose
to adopt a three-level approach inspired by software development processes [5].
In the third level, we create abstract transformation specifications as a set of
declarative element-to-element relationships. In the second level, these rela-
tionships are used as input to generate a partial model transformation (i.e., a
skeleton) using a specific model transformation language (ATL in our case). In
the last level, the developer is responsible for completing the transformation
with the patterns that could not be deduced in the previuos step.

In this paper, we present AMW 1, an Eclipse-based [6] tool to support this
multi-level specification of transformations. The abstract specifications (i.e.,
the declarative relationships) are created using a combination of manual def-
initions and heuristics that automatically estimate the similarity between the
model elements. The relationships are stored in a model, called weaving model
[7]. Then, the tool uses this weaving model for generating more specific (and
lower-level) transformation code in the ATL language. The tool architecture
follows the Eclipse paradigm of contributions: it is a generic workbench that
provides a set of extensions points for tailoring, when needed, each level to the
needs of a specific use case scenario. We present the tool capabilities using
two approaches: manual and semi-automatic transformation generation. To the
best of our knowledge AMW is the only tool providing this kind of support.

This article is organized as follows. Section 2 introduces basic MDE concepts.
Section 3 presents a motivating example. Section 4 defines what is multi-level
specification of transformations. Section 5 presents the AMW support for trans-
formation specification and generation based on a guiding example. Section 6
describes how the manual process can be combining with heuristics for auto-
matically discovering the relationships. Section 7 is the related work. Section 8
concludes.

1The tool web site, with download instructions and documentation is available at:
http://www.inf.ufpr.br/didonet/amw/

2



2. Model Driven Engineering

The primary software artifacts of any MDE approach are models, which are
considered as first-class entities. These models may be defined using Object
Management Group (OMG) [8] standards (e.g., UML [9]) or de facto standards
(e.g., Eclipse Modeling Framework (EMF) [10]).

A model represents a certain aspect of a system. Every model conforms to
a metamodel, which defines its abstract syntax. A metamodel is a model that
defines the type of the elements and relationships of a model. This relation is
called conformance. In the same way a grammar in a programming language
defines the possible programs that may written with it, a metamodel defines a
set of constraints that all models must conform to. In its turn, a metamodel con-
forms to a metametamodel (EMF Ecore [10] and OMG MOF [11] are examples
of metametamodels). A metametamodel is a model that specifies the base repre-
sentation for all models and metamodels in a given context. A metametamodel
conforms to itself .

Operations between different models are defined using model transforma-
tions. A model transformation is an operation that takes a set of models as in-
put, visits the elements of these models and produces a set of models as output.
There are several efforts that study model transformations; for instance, ATL
[1], QVT [2], VIATRA [3], and others. These solutions have an heterogeneous
set of characteristics: bidirectional × unidirectional; imperative × declarative
× hybrid; support to traceability; incrementality; rule-based × code-based (a
detailed classification is found at [12]).

Developing transformations is a common task in model-driven software sce-
narios. It is becoming complex and difficult to manage. However, there is
no ”transformation development method” that combines the benefits of these
different languages in a single framework. This can facilitate the definition of
transformation - and as we will see in the next section - presents some chal-
lenges. This means more effort is needed to improve the development of model
transformations.

In a pure MDE approach, model transformations can also be regarded as
models (conforming to a model transformation metamodel). Therefore, model
transformations can be used as input and/or output of other model transforma-
tions (what we call Higher-Order Transformations, [13]) for instance, as part of
a refinement process.

3. Motivating example

We illustrate the need for a three-level specification of model transforma-
tions using the ”UML to Java” transformation. The translation of a UML class
diagram (platform independent) into Java (platform specific) is a very common
scenario when developing software applications. Consider, for instance, the Pet

3



Figure 1: UML and Java metamodels. We show only the inheritance relationships for better
visualization.

Store application [14] 2. The Pet Store application can be defined in a UML
model, with UML classes such as Catalog, Item, Category, Product and associa-
tions between them 3. This example PetStore model conforms to a (simplified)
UML metamodel shown in Figure 1 and must be translated to a Java model
conforming to a (simplified) Java metamodel (Figure 1) 4.

This translation is implemented as a model to model transformation that
takes as input a UML model and produces as output a Java model. The trans-

2The Pet Store is a reference application used by Oracle-Sun to illustrate J2EE applications
3We do not describe the Pet Store UML model here because it is not relevant for the

definition of the transformation, which can be applied on any UML and Java models.
4Later on, this Java model can be translated into actual Java code by means of a model-

to-text transformation but this is out of the scope of this paper

4



formation consists of a set of transformation rules where each rule is in charge
of translating a (set of) UML element/s into a (set of) Java element/s as shown
below. We use the ATL transformation language [1] to write the rules. We
choose ATL because it’s a mature language, with good tool support, a user
community and it’s one of the most used transformation language nowadays.

ATL transformations are unidirectional (from source to target). The basic
construct in ATL are rules, which may be declarative or imperative (here we
focus on declarative rules). A declarative rule is composed of a source and a
target pattern (the from and to constructs, respectively). The source pattern
is the type of the input element that is matched and then transformed. It may
have a guard (i.e., a condition), which restricts the matched elements. The
target pattern is the type of the output element that is created. It contains
a set of attribute bindings, which define how to populate the attributes and
references of the output element.

The first rule specifies that each Class of the input model is transformed
into a JavaClass of the output model. It defines as well how the properties of
the class are translated. The second rule is similar, but for transforming UML
attributes into Java fields.

rule UMLClass2JavaClass {

from e : UML!Class

to out : JAVA!JavaClass (

name <- e.name,

isAbstract <- e.isAbstract,

fields <- e.ownedElement->select

(element | element.oclIsKindOf(IN!Attribute)),

isPublic <- (e.visibility = #vk_public),

package <- e.namespace

)

}

rule Attr2Field {

from e : UML!Attribute

to out : JAVA!Field (

name <- e.name,

isStatic <- (e.ownerScope = #sk_static),

isPublic <- (e.visibility = #vk_public),

isFinal <- (e.changeability = #ck_frozen),

owner <- e.owner,

type <- e.type

)

}

The ATL IDE [15] enables to develop the whole transformation manually,
i.e., in a single-level setting. However, a single-level approach is not always the
best solution, because the development of these rules requires a detailed compre-
hension of the transformation language, and of the input and output metamod-
els. A direct writing of all the patterns that may appear in the transformation

5



rule is very time-consuming and error-prone (e.g. the attribute bindings may
become very complex). We can easily observe this complexity in several sce-
narios just by browsing through the ATL transformation repository available at
[16].

On early phases, developers may not want to create the transformation with
all the rules complete and operational, but may want to have only a general
overview of the transformation where only some of the mappings are expressed
and in high-level view. For instance, the binding of the field reference contains
an expression that navigates through all elements in the e.ownedElement refer-
ence and it selects only Attribute’s. We may want to create a direct link between
fields and Attribute, and refine the transformation latter on.

In such cases, we should provide a different transformation specification lan-
guage, in the form of element-to-element mapping relationships, preferably using
graphical interfaces. This will help designers to explore different transformation
alternatives.

Only in subsequent phases, when the transformation scenario is clear, this
initial specification should be refined and used to produce the final executable
transformation.

4. Multi-level specification of model transformations

As we have discussed in the previous section, a direct (i.e. single-level) trans-
formation strategy may not the best option when dealing with complex transfor-
mation scenarios. Similarly to existing software development processes, design
of complex transformations should follow an iterative refinement process mov-
ing from a high-level transformation specification to a low-level transformation
code. This is what we call multi-level specification of model transformations.

Multi-level specification of model transformations consists in a set of steps
MT that produces a set of model transformationsMT = {MTL,MTL−1, ...,MT1},
L = [N..1], such that:

• MTL is the transformation with the highest abstraction level.

• for each level L = [N..2], there is a function Φ(L,L−1) : MTL → MTL−1.
This means MTL is used as input to produce MTL−1.

• MT1 is the final executable transformation that is (optionally) manually
refined.

The number of levels can be arbitrary, however, we recommend to adopt a
three-level approach :

• Abstract representation of transformations. For instance, graphically cre-
ating the relationship Class ↔ JavaClass.

• Incomplete transformation generation from the relationships information.
For instance, producing a skeleton rule UMLClass2JavaClass with the
from and to parts and one-to-one links between the attributes (e.g., fields ↔
e.ownedElement).

6



• Manually-refined transformation from the skeleton. For instance, adding
the equality expressions for the attributes and adding the navigation and
selection expression for the fields ↔ e.ownedElement relationship.

In the following sections we explain the AMW capabilities for supporting these
three levels, using the UML2Java application as illustrative example. Note
that the illustrations present excerpts of the generated artifacts, due to space
restrictions. The full implementation can be found on the AMW site.

5. Multi-level specification of model transformations with AMW

AMW implementation of the previous three level transformation specifica-
tion can be summarized as follows:

• Level 3 : Abstract mapping relationships are created, modified and stored
in a weaving model using the AMW graphical interface (creation, modifi-
cation, storage).

• Level 2 : Transformation skeletons targeting the ATL language are gener-
ated from the weaving model.

• Level 1 : Generated ATL transformations are manually refined using the
ATL IDE.

AMW produces the models for levels 3 and 2. Level 1 uses the ATL IDE.
In the following sections, we explain the AMW support (concepts and tooling)
for levels 3 and 2, respectively.

5.1. Abstract specification of transformations : level 3

We use weaving models for capturing the relationships between model ele-
ments. In this section, first we explain the weaving model concepts. Second,
we explain how to initialize weaving models using the AMW tool. Third, we
explain how to edit these models.

5.1.1. Weaving model concepts

AMW is based on the concept of weaving model. A weaving model is a model
that stores relationships (i.e., links) between elements belonging to different
models. A weaving model conforms to a weaving metamodel. The weaving
metamodel defines the kinds of links that may be created between elements as
shown in Figure 2.

The core metamodel has metaclasses to specify information about links
types, their identification and the elements they link to. The weaving model
conforming to this metamodel will contain the actual links.

More specifically, WElement is the base element from which all other ele-
ments inherit. It has a name and a description. WModel represents the root
element that contains all model elements. WLink denotes the link. WLink has a

7



Figure 2: The core weaving metamodel

reference end to associate it with a set of link endpoints (WLinkEnd). The car-
dinality of the reference shows it supports linking 0:N elements, i.e, more than
only 1-to-1 relationships. WLink can also have children links. For instance, a
link between two attributes can be child of a link between two classes, creating
nested links. Every WLinkEnd references one WElementRef. The attribute ref
contains a unique identifier of the linked elements. It is possible to refer to
the same model element by different link endpoints, e.g., one model element
may participate in more than one linking expression. WModelRef is similar to
WElementRef, but it contains references to the models as a whole.

This metamodel has been designed to be generic. All the classes in it are
abstract, and thus, these classes need to be specialized to tailor the metamodel to
the needs of transformation specification. This metamodel can also be refined to
various scenarios. For instance, we can define links adapted to (the cardinalities
are between parenthesis):

• Transformation specification : Rule (1:N), Binding (1:1);

• Data integration: Concatenation (1:N), Equality(1:1), IntToStr (1:1);

• Traceability: OriginSource (N:N), Modified (1:N), Added (0:1);

• Composition: Override (1:1), Merge (N:1), Delete (1:0).

We define an extension specialized to the abstract specification of trans-
formations, as listed below. It is written using KM3 [17], which is a textual

8



language for defining metamodels. KM3 has similar semantics to the Ecore
metametamodel [10]. Ecore is the standard format of the Eclipse Modeling
Framework (EMF) [10] to define metamodels.

package mmw_transformation {

class Module extends WModel{

reference inputModels [1-*] container : InModelRef;

reference outputModels [1-*] container : OutModelRef;

reference rules [1-*] container : Rule;

}

class Rule extends WLink {

reference input container : InputElement;

reference output [1-*] container : OutputElement;

}

abstract class TModelRef extends WModelRef { }

class InModelRef extends TModelRef { }

class OutModelRef extends TModelRef { }

class InputElement extends WLinkEnd {

attribute varName : String;

}

class OutputElement extends WLinkEnd {

attribute varName : String;

}

class Binding extends WLink {

reference target container : ReferredElement;

reference source container : ReferredElement;

}

class ReferredElement extends WLinkEnd { }

class TransformationElementRef extends WElementRef { }

}

Module is the root element that stores references to the input and out-
put models, i.e., they are links to the models as a whole. A module sup-
ports one or more input/output models. A module contains one or more
rules. The Rule element is a link, which connects one input element to one
or more output elements. The information about the link endpoints are stored
in the InputElement and OutputElement elements. For instance, a Rule can
denote a link between two endpoints (e.g., UMLClass ↔ JavaClass). The
varName attribute enables assigning a symbolic name to the linked elements,
used on a latter stage on the generation of transformations. The output el-
ements can have one or more Binding. A Binding denotes a 1:1 link be-
tween attributes or references and ReferredElement is the endpoint of each
link. This way we can have nested links between Rule and Bindings. For
instance, the link UMLClass/name ↔ JavaClass/name is child of the link
UMLClass ↔ JavaClass). ReferredElement has a reference to the Transfor-
mationElementRef. It contains the ref attribute, which stores the real addresses
(pointers) of the elements.

9



5.1.2. Initialization of the weaving model in AMW

AMW is a set of plug-ins built on top of the Eclipse platform [6]. It exten-
sively uses the EMF (Eclipse Modeling Framework) API [10] for models ma-
nipulation, i.e., for creating, editing and serializing the (weaving) models and
metamodels. It is also dependent of the ATL plug-ins, because the transforma-
tion skeletons are generated in the ATL language. In addition, the higher order
transformations are as well written using ATL.

The main design decision behind the implementation is to have a simple user
interface for AMW, based on the core weaving metamodel already presented
but independent of the AMW extensions used. The interface is dynamically
generated.

The interface is designed as a three-panel editor, as illustrated in Figure 3.
The left panel shows the input metamodel. The right panel shows the output
metamodel (the Java metamodel) and the middle panel shows the relationships
between the model elements. These relationships are stored as a weaving model.

Figure 3: The three panels of AMW

The weaving models need to be configured the first time they are created.
The first step is to choose the metamodel extensions, the models that are go-
ing to be linked and the panels that are used. The panels are responsible for
loading the linked models. The default panel is a tree-based panel, but graph-
ical interfaces could be chosen as well, if available. These configurations are
done with the help of a three-page wizard. This wizard can be called in the
”File-New-Model Weaver-Weaving Model” menu. The weaving model can be
created in any Eclipse perspective, however, it is recommended that it is loaded
in the ”ATL Perspective” specially because the models need to have been cre-
ated as part of an ATL Project to facilitate the generation of the transformation
skeleton later on.

In the first page (see Figure 4), the developer chooses the metamodel ex-
tension. The file containing the appropriate extension for our scenario is the

10



mmwqatl.km3, which is an implementation of the extension presented in section
5.1.1.

Figure 4: Wizard first page

The wizard second page (see Figure 5) has three main parts. First, we specify
the containing project and the name of the weaving model, with the extension
.amw.

Second, we choose the implementation of the panel that manipulates the
weaving model (called weaving panel). The standard implementation is a tree-
based panel, called DefaultWeavingPanelExtension. This weaving panel has
menus for creating and modifying the weaving elements, such as the property
editor, or the creation of links, compositions and references.

We need to choose the TransformationWeavingPanel implementation, be-
cause it contains functionalities targeted to the transformation specification
scenario, in addition to the model manipulation adaptive menus.

This panel can be easily replaced, because AMW publishes an extension

11



Figure 5: Wizard second page

point that enables plugging different panels. An extension point is the Eclipse
mechanism that defines how plug-ins can be plugged into other plug-ins. A
plug-in which defines an ”extension” contributes (can be plugged) to the defined
”extension point”. The definition of the extension (as shown below) uses the
org.eclipse.weaver.weavingPanelID extension point, and the plugged panel is
implemented by the class
org.eclipse.gmt.weaver.transformation.panel.TransformationWeavingPanel.

<extension point="org.eclipse.gmt.weaver.weavingPanelID"

id="TransformationWeavingPanelExtension">

<weavingPanel

name="Transformation weaving panel extension"

class="org.eclipse.gmt.weaver.transformation.

panel.TransformationWeavingPanel"/>

</extension>

12



Third, we choose the root element that is created (an extension of WModel).
In our particular application, the AMW extension has only the Module element
that extends WModel but in general we could have several ones.

The third wizard page (see Figure 6) configures the to-be linked (woven)
metamodels. Similarly to the weaving model, AMW provides a standard panel
implementation for manipulating the linked metamodels (or models). The pan-
els are plugged by using to the org.eclipse.weaver.wovenPanelID extension point.
The standard implementation is the class named org.eclipse.weaver. exten-
sion.panel.DefaultWovenModelPanel. AMW enables linking as many models
as defined in the Module element. The UML2Java scenario has only one in-
put and one output metamodel, however, we could have more than one output
metamodel, as defined in the cardinality of the outputModels reference. The
names of the metamodels are shown on the top of the corresponding panels.

Figure 6: Wizard third page

For each metamodel (or model), the pop-up window enables defining the

13



WModelRef extensions that are used and the path of the metamodels (or mod-
els). The elements that extend WElementRef are associated with the deref-
erencing classes. These classes read/write the value of the ref property and
return the corresponding model element. This way, AMW can link elements
with different identification mechanisms. For instance, the default provided im-
plementation uses the XPointer value produced by the EMF API. However, it
is also possible to use the XMI:ID.

The dereferencing classes must implement the IIdentifierAdapter interface
shown below. The setId(Object obj) method assigns a unique identifier to a given
model element. The getId() method returns the identifier of a given element.

public interface IIdentifierAdapter extends Adapter {

public void setID(Object obj);

public Object getID();

}

The association between the dereferrncing classes and the model elements
are set up using an extension point (an example is shown below). The attribute
adapterClassName contains the name of the type of the model element. This
means that every time the setID and getID operations are called over an element
with type ElementRef, it calls the wrapped methods from the ElementRefItem-
Provider class.

<extension point="org.eclipse.weaver.itemProviderID"

id="ItemProviderExtension">

<itemProviderAdapter

name="Base Item provider extension"

class="org.eclipse.weaver.extension.providers.

ElementRefItemProvider"

adaptedClassName="TransformationElementRef"/>

</extension>

The wizard is only executed when the weaving model is created for the first
time. To open an already configured model, the developer can just double-
click on the appropriate AMW file. The interface will show up with the right
panels, metamodels and weaving model as indicated. AMW is ready to edit the
transformation specification.

5.1.3. Editing the weaving model

In this section, we describe how to edit the weaving models previously con-
figured. There are two main mechanisms to edit a weaving model: using the
dynamically generated menus or drag-and-drop of elements.

The weaving model initially contains only the root element Module. We
use the pop-up contextual menus available for every element to create other
elements, as shown in Figure 7. First, we add a Rule using the menu. For
each Rule, we drag and drop the elements from the left and right metamodels
over the corresponding Rule link. AMW suggests which link endpoints can be

14



created. In our scenario, we create one InputElement for the UML class and
one OutputElement for the Java Class. For every output element, we create
bindings between the UML structural features (attributes or references) and
the corresponding Java fields. Other rules can be created in the same way. In
addition, the rules can also be created by copying and pasting other rules. In
this case, we need only to redefine the linked elements accordingly.

The menus are dynamically generated based on the elements of the weaving
metamodel extension. For instance, AMW creates menu items for all elements
that inherit from WModel, WLink and WLinkEnd. Consequently, it provides
menus for creating the Module, Rule, Binding and ReferredElement. Since the
implementation is based on the reflective API of EMF, more kinds of links can
be added. This is very important to obtain the appropriated level of abstraction.
For instance, we could add a new kind of link that represents the concatenation
between model elements, and call it Concatenation. AMW will generate the
menus accordingly.

Figure 7: Menus for creating elements

After the rules are created, we can browse the weaving model by 1)expand-
ing/collapsing rules and bindings and 2) clicking on the links. When we click
on the links, the linked elements from the left and right panels are highlighted.
Once the specification is completed, the weaving model is used to produce the
transformation skeleton in ATL.

5.2. Producing the transformation skeleton : level 2

In this section, we present how we implement the operation of derivation
of weaving models into transformation skeletons. First, we present the concept
of Higher-Order Transformations, which are used to implement the derivation
operation. Them, we show how they are plugged and executed by AMW.

15



5.2.1. Higher-Order Transformations (HOTs)

The operations that transform one abstract representation (a weaving model)
into a more concrete one (a transformation skeleton) are implemented using
Higher-Order Transformations (HOT). A higher-order transformation is a model
transformation, such that the input and/or the output models are transforma-
tion models [7].

We show below an excerpt of an HOT in ATL (the full HOT has 278 lines).
In the scenario of transformation specification, a HOT is a model transforma-
tion that takes the weaving model (IN ), the left and right metamodels as input
and that produces the ATL skeleton (OUT ) as output. The left and right meta-
models conform to the Ecore metametamodel (we use the MOF word to keep
compatibility with ATL). The output skeleton conforms to the ATL metamodel
[15].

module WeavingSpecToATL;

create OUT : ATL from IN : AMW, left: MOF, right: MOF;

rule TransformRule {

from

amw: AMW!Rule

to

atl : ATL!MatchedRule (

name <- amw.name,

isAbstract <- amw.isAbstract,

inPattern <- amw.input,

outPattern <- amw.output

}

rule InPatternElement {

from -- source element

amw: AMW!InputElement

to

atl: ATL!InPattern (

elements <- element

),

element : ATL!SimpleInPatternElement(

varName <- amw.getVarName(’in_’),

type <- amw.left.element.ref

)

}

rule OutPatternElement {

from -- target element

amw: AMW!OutputElement

to

outelement : ATL!SimpleOutPatternElement(

varName <- amw.getVarName(’out_’),

type <- amw.left.element.ref

)

16



}

This HOT has three rules. The first rule transforms every Rule element of
a weaving model into an ATL MatchedRule. It assigns a value to the isAbstract
attribute. It also implicitly assigns the references (input and output patterns).
These elements are transformed by the second and third rules. The second
rule matches an AMW InputElement and produces an ATL input pattern. The
second rule matches an AMW OutputElement and produces an ATL output
pattern. For instance, if we have one relationship between two elements, this
rule produces one ATL rule, with the (to - InPattern) and (from - SimpleOut-
PatternElement) parts.

5.2.2. Plugging and executing the HOT’s in AMW

AMW provides an extension point for plugging and executing more than
one HOT. This brings the possibility of writing different HOTs for generating
different output transformations. This is particularly important for generating
more than one skeleton and when new kinds of links are added into the weaving
metamodel.

The extension point configuration (i.e., the parameters defining where the
transformation is plugged) is illustrated below. The id attribute has an unique
identifier. The point attribute contains the name of the extension point. The
hot element configures the HOT transformation. It contains the transformation
path and a menu group and a label that will be shown in th user interface. The
bindings define the correspondences between the transformation signature (left,
right, MOF ) and the references from the weaving metamodel (inputModels,
outputModels from the Module element).

<extension id="Weaving2ATL"

point="org.eclipse.gmt.weaver.transformation.transformationID">

<hot transformation="transformations/WeavingSpecToATL.asm"

description="Weaving specification to ATL" file_suffix="atl"

category="AMW to ATL" >

<binding weavingReference="inputModels" header="left"

metamodelHeader="MOF"/>

<binding weavingReference="outputModels" header="right"

metamodelHeader="MOF"/>

</hot>

</extension>

The interface generates an entry in the pop-up menu for executing the HOT,
as shown in Figure 8. When the user clicks on it, the HOT generates and
stores an ATL transformation, in the same folder of the weaving model. The
transformation is stored using its textual format (i.e., an .atl file). We show
below two ATL rules that are generated. The full transformation definition is
available in the AMW web site.

17



Figure 8: Generation of the transformation skeleton

module uml2java;

create OUT_model : OUT from IN_model : IN;

rule Namespace2Pkg {

from

in_namespace : IN!Namespace

to

out_package : OUT!Package (

name <- in_namespace.name

)

}

rule UMLClass2JavaClass {

from

in_class : IN!Class

to

out_javaclass : OUT!JavaClass (

name <- in_class.name

)

}

rule Primitive_2_PrimitiveType {

from

in_primitive : IN!Primitive

18



to

out_primitivetype : OUT!PrimitiveType (

name <- in_primitive.name

)

}

Once the skeleton is generated, the last step (level 1 ) is the refinement of this
skeleton for producing the final ATL code 5. After that, the transformation can
be executed in the ATL engine to transform UML classes into Java elements.

6. Extending AMW with link discovery techniques

The manual creation of the weaving models may become a tedious task
when the metamodels have similar structure and/or are big. A large part of the
relationships are often simple links between model elements with similar seman-
tics. This can be seen on links such as Class ↔ JavaClass, Class/name ↔
JavaClass/name or DataType ↔ Type.

In this section, we present how we extend AMW to semi-automate the cre-
ation of links between model elements. The process of semi-automating the
creation of relationships is called matching [18]. The matching process con-
sists of combining different methods that estimate a similarity value between
the model elements and determine that the elements constitute a match when
this value goes over a given threshold. A simple matching process is typically
composed by three steps:

1. Creation of links between all pair of elements from the input and output
metamodels (this can be seen as a Cartesian Product).

2. Assignment of a similarity value between elements, e.g. focusing on those
that have similar names and using a String-distance method to calculate
the similarity.

3. Filtering and selection of the links that have a similarity higher than a
given threshold.

There is extensive work about matching of database/XML schemas or on-
tologies (see [18] for a detailed survey). We take advantage of these approaches
when extending AMW with a semiautomatic matching support.

The extension of AMW with semiautomatic matching involves two main
tasks: 1 - definition of a new weaving metamodel extension that enables the
storage of a similarity value between two linked elements and 2 - the implemen-
tation of different predefined matching methods for creating and refining the
weaving models conforming to this extension.

5We don’t show how to edit the transformation in ATL because the ATL IDE is
an independent plug-in, with its own interface, documentation and user community:
http://www.eclipse.org/atl

19



6.1. Metamodel extension for automatic link discovery

We define a weaving metamodel extension that enables the establishment
of links with a similarity value between classes, attributes and references (as
illustrated below).

package mmw_match {

class MatchModel extends WModel {

reference leftM container : WModelRef;

reference rightM container : WModelRef;

}

abstract class Equal extends WLink {

attribute similarity : Double;

reference left container : WLinkEnd;

reference right container : WLinkEnd;

}

class ElementEqual extends Equal {}

class AttributeEqual extends Equal {}

class ReferenceEqual extends Equal {}

class LeftElement extends WLinkEnd {}

class RightElement extends WLinkEnd {}

datatype Double;

}

MatchModel is the root. It contains two metamodels (leftM and rightM ).
The three extensions to the Equal links store relationships between two elements
with the same type. The similarity attribute stores a float value that is an
estimation of the proximity. The links can contain child links (using the child
reference from the WLink element), for instance, a ReferenceEqual link can be
contained by a ElementEqual link.

We do not reuse the metamodel described in section 5.1.1 due to two reasons.
First, the new metamodel has a similarity value that is only applicable to the
semi-automatic process. Second, using different link types - independent of the
transformation language - shows that the interface can be dynamically adapted.

To use this metamodel extension, in the first wizard page, it is necessary
to choose the following three files: mmwmatch.km3, mwbaseextension.km3 and
mmwcompare.km3 : they contain links used in the automatic discovery process.
In the second weaving page, the settings are the same as for the manual creation.
In the third wizard page, the linked models are pre-configured into leftM and
rightM. It is not necessary to add new model, but just to edit the proposed ones
(the proposition is based on the cardinality of the references).

6.2. Configuration of the matching process

The matching process is separated in several steps, which are sequentially
executed. Each step is implemented by a specific model transformation, called
matching transformation [19]. A matching transformation takes a weaving

20



model, a left and a right metamodel as input and produces a new weaving
model as output.

Each matching transformation refines the previous similarity value (if exist-
ing). Consider for instance three matching transformations T1, T2 and T3. T1
produces a weaving model; T2 takes the result of T1 and produces a new weav-
ing model with new similarity values; T3 takes the result of T2 and produces a
new weaving model as well. All these weaving models conforms to the weaving
metamodel with the mmwmatch extensions.

AMW provides an extension point where different matching transforma-
tions can be plugged. The configuration screen (as shown in Figure 9) enables
combining different transformations for the matching process and sets up their
execution parameters.

Figure 9: Configuration of the matching transformations

The configuration window has one group for each different kind of match-
ing transformation. Each group shows the set of available parameters. The
parameters are:

• execute: selects the execution of a transformation

• weight : assigns the influence of the matching transformations on the over-
all similarity estimation;

• threshold : selects only the links with the estimation higher than its value.

21



The ”? (question mark)” button shows the required metamodels for executing
the transformation. The ”Save intermediate models” button saves a new weav-
ing model after the execution of each matching transformation. This enables
the comparison of the intermediate results.

The configuration shown in Figure 9 is an example setting we use for a typ-
ical matching process. It executes the following transformations: a restricted
Cartesian product (i.e., it matches only elements with the same type); a com-
parison over the elements names, with a weight of 0.8; a comparison over the
elements cardinality, with weight 0.1; a comparison of the type, with weight 0.2;
a selection of the links with similarity value higher than 0.4; and the rewriting
of links with better similarity values. The weights are set up empirically, i.e.,
we assume that elements with the same name have a higher probability of being
similar than elements that have the same cardinality or type.

The transformations are executed following the sequence indicated. The
result is a weaving model with a set of links. Generally, this set of links is
smaller than the initial one, because we discard links with low similarity values.
In order to improve the accuracy of this process, the value of the weights can
be changed and new matching transformations can be plugged. The choice of
the right weight values and transformations is a trial-and-error process, based
on several executions.

This weaving model can be manually refined, by adding new links or deleting
existing ones. Finally, it is used to produce an ATL skeleton as well, following
the same process described on section 5.2.2.

7. Related Work

Several research works have addressed the simplification of the specification
of model transformations. However, they are not based on an explicit separation
of the transformation development into several steps at different abstraction
levels and most of them do not provide adequate tool support (specially with
respect to tools that can be easily installed and integrated within the Eclipse
platform).

QVT relations [2] are bidirectional mappings between model elements. A
QVT relation may also have a guard to restrict the elements that are mapped.
QVT relations are part of the QVT specification as a high-level definition of
operational mappings, which are the executable transformations. It differs from
our approach because the metamodel is fixed and the language is purely textual.
There are different tools implementing QVT-R, such as Declarative QVT [20],
MediniQvt [21], however, these tools are on early development stages.

UML-QVT [22] and Operational QVT [23] are the operational specifications
of the QVT standard. However, the transformation from QVT Relations to
QVT Operational Mappings remains unsolved [24]. To the best of our knowl-
edge, there is not a QVT-like tool that supports the complete transformation
specification process.

The solution from [25] presents a graphical transformation language. In-
stead of explicitly separating all the three specification levels, the graphical

22



constructions are combined with textual expressions. For that reason, the spec-
ification is complete. This means the final transformation (level 1) is generated
directly from these specifications, without having a skeleton. The authors have
also developed ModeLink [26], which is used to establish relationships between
model elements. The principle is similar to the three-panel interface of AMW.
However, this tool is targeted essentially to traceability scenarios.

The work from [27] presents a solution to help on the creation of model
transformations separated in three levels. However, the relationships are be-
tween terminal models, not metamodels. MTBE (Model Transformation By
Example)[28] also uses relationships between terminal models. The model trans-
formation is derived from these relationships. These approaches can be effective
when using terminal models with reasonable size. They must have at least one
sample of the input and output models. In [29], the authors derive the approach
of MTBE, but the transformations are specified using two levels (complete spec-
ification and transformation into executable format). The tool is not available
for comparison.

Triple Graph Grammars (TGGs) [30] are a solution for defining correspon-
dences between two models, similar to our weaving models. Fujaba [31] is a tool
that provides an implementation of TGGs. The TGGs act as specifications to
the Fujaba’s executable format. The TGGs have a concrete graphical syntax,
where the correspondences are established manually.

8. Conclusions

In this paper we have presented AMW, a tool for the multi-level specification
of model transformations and shown its usefulness when dealing with complex
transformation scenarios, using the UML2Java transformation as illustrative
example.

AMW is composed by a set of plug-ins on top of the Eclipse framework. The
integration in Eclipse enables using it in parallel with a rich set of modeling plug-
ins. The AMW site 6 provides extensive documentation, the source code, a set
of predefined metamodel extensions and a set use cases to quickly install and
test the tool.

As future work, we plan to study new extensions of the weaving metamodel.
In particular, we would like to provide ”packaged extensions” of the metamodel
that include predefined sets of relationship types for specific application scenar-
ios (e.g. refines, complements,...), to use AMW in a forward-engineering process
management scenario as requested by interested industrial partners. We also
plan to empirically validate the limits of the graphical interface specification of
the mappings depending on the kinds of links and model size. Finally, we plan
to use the AMW extension points to plug several algorithms for link discovery
that help in the semi-automatic creation of weaving models.

6http://www.inf.ufpr.br/didonet/amw/

23



References

[1] F. Jouault, I. K. I, Transforming Models with ATL, in: MoDELS Satellite
Events, 2005, pp. 128–138.

[2] Object Management Group, Meta Object Facility (MOF) 2.0
Query/View/Transformation (QVT) Specification, version 1.0 (2008).

[3] K. Ehrig, E. Guerra, J., L. Lengyel, T. Levendovszky, U. Prange,
G. Taentzer, D. Varró, S. Varró-Gyapay, Model transformation by graph
transformation: A comparative study, in: MTiP 2005, International Work-
shop on Model Transformations in Practice (Satellite Event of MoDELS
2005), 2005.

[4] Kermeta language. Reference Manual. http://www.kermeta.org/docs/KerMeta-
Manual.pdf (2009).

[5] R. S. Pressman, Software Engineering: A Practitioner’s Approach, 5th
Edition, McGraw-Hill Higher Education, 2001.

[6] Eclipse Foundation : http://www.eclipse.org (2010).

[7] M. D. D. Fabro, Metadata management using model weaving and model
transformations, Ph.D. thesis, University of Nantes (2007).

[8] OMG: Object Managment Group (2010).

[9] UML 2.1.2 specification: http://www.omg.org/spec/UML/2.1.2/ (2007).

[10] EMF : http://www.eclipse.org/modeling/emf/ (2010).

[11] MOF 2.0 Specification: http://www.omg.org/spec/MOF/2.0/ (2006).

[12] K. Czarnecki, S. Helsen, Feature-based survey of model transformation
approaches, IBM Syst. J. 45 (2006) 621–645.

[13] M. Tisi, F. Jouault, P. Fraternali, S. Ceri, J. Bézivin, On the use of higher-
order model transformations, in: ECMDA-FA, 2009, pp. 18–33.

[14] Oracle, The Java Pet Store reference application.
http://java.sun.com/developer/releases/petstore/ (2010).

[15] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, Atl: A model transformation
tool, Sci. Comput. Program. 72 (1-2) (2008) 31–39.

[16] ATL Transformation repository : http://www.eclipse.org/m2m/atl/ atl-
Transformations/ (2010).

[17] F. Jouault, J. Bézivin, Km3: A dsl for metamodel specification, in:
FMOODS, 2006, pp. 171–185.

24



[18] P. Shvaiko, J. Euzenat, A survey of schema-based matching approaches
(2005) 146–171.

[19] M. D. D. Fabro, P. Valduriez, Towards the efficient development of model
transformations using model weaving and matching transformations, Soft-
ware and System Modeling 8 (3) (2009) 305–324.

[20] Eclipse, Declarative QVT. http://www.eclipse.org/m2m/ (2011).

[21] ikv++, Medini QVT. http://projects.ikv.de/qvt/ (2011).

[22] UML-QVT. http://umt-qvt.sourceforge.net/ (2011).

[23] Borland, Operational QVT, http://www.eclipse.org/m2m/qvto/doc/
(2011).

[24] R. Romeikat, S. Roser, P. Müllender, B. Bauer, Translation of qvt relations
into qvt operational mappings, in: ICMT, 2008, pp. 137–151.

[25] E. Guerra, J. Lara, D. Kolovos, R. F. Paige, A visual specification language
for model-to-model transformations, in: In VL/HCC, 2010, pp. 119–126.

[26] ModeLink : http://www.eclipse.org/gmt/epsilon/doc/modelink/ (2010).

[27] D. Varró, Model transformation by example, in: MoDELS, 2006, pp. 410–
424.

[28] M. Wimmer, M. Strommer, H. Kargl, G. Kramler, Towards model transfor-
mation generation by-example, in: Proceedings of the 40th HICSS, IEEE
Computer Society, Washington, DC, USA, 2007, pp. 285b–.

[29] Y. Sun, Supporting model evolution through demonstration-based model
transformation, in: Proceeding of the 24th OOPSLA, OOPSLA ’09, ACM,
New York, NY, USA, 2009, pp. 779–780.

[30] A. Schürr, F. Klar, 15 years of triple graph grammars, in: ICGT, 2008, pp.
411–425.

[31] Fujaba Tool Suite. http://www.fujaba.de/ (2011).

25


