A model driven approach for bridging ILOG
Rule Language and RIF

Valerio Cosentino'-2, Macros Didonet del Fabro?, Adil El Ghali'**

1 IBM France
2 AtlanMod, INRIA & EMN, Nantes, France
3 Universidade Federal do Paran, Brazil
4 Lutin UserLab, France
valerio.cosentino@fr.ibm.com, marcos.ddf@inf.ufpr.br,
elghali@lutin-userlab.fr

Abstract. Nowadays many companies run their business using Busi-
ness Rule Management Systems (BRMS), that offer: a clear separation
between decision logic and procedural structure; the ability to modify
a rulebase set rather than processes and the reusability of rules across
applications. All these factors allow a company to quickly react and align
its policies to the ever-changing market needs. Despite these advantages,
different BRMSs can be found on the market, each of them implementing
a proprietary business rule language (ex.: JBoss uses Drools, IBM uses
Ilog Rule Language, etc.). Rule Interchange Format(RIF) is a W3C open
standard aiming at reducing the heterogeneity among business rule lan-
guages, which makes rules less reusable and interchangeable. Our work
is focused on providing an implementation based on a Model Driven
approach for bridging Ilog Rule Language to RIF.

1 Introduction

The field of BRMS is characterized by a number of normative, open source, or
proprietary systems and languages (Ilog JRules, JBoss Drools, etc.), allowing
the expression of various solutions to business problems at a high abstraction
level, but with heterogeneous sets of capabilities and languages. Rule Interchange
Format (RIF [1]) and Production Rules Representation (PRR [2]) are two stan-
dard proposals respectively developed at the W3C and at the OMG aiming at
providing a level of standardization to the domain. An important difference be-
tween RIF and PRR is that RIF is a standard for distribution of shared rules at
runtime, whereas PRR is a standard for interchanging design-time rules.

This work presents a case study of bridging a business rule language: the Ilog
Rule Language (IRL) to a standard format: the Rule Interchange Format (RIF)
and vice versa. We show how to make it possible with the help of Model Driven
Engineering (MDE [3]).

RIF is the W3C Rule Interchange Format and it is part of the infrastructure
composing the semantic web. It is an XML language for expressing rules that

computers can execute. One of the main goals of RIF is to promote a standard
format to interchange rules between existing rule languages.

Because of the serious trade offs in the design of rule language, RIF provides
multiple versions, called dialects:

— Core: it is the fundamental RIF language. It is designed to be the common
subset of most rule engines

— BLD: it adds to Core dialect logic functions, equality in the then-part, and
named arguments

— PRD: adds a notion of forward-chaining rules, where a rule fires and then
performs some action (adding, updating or retracting some information)

In this work we have implemented transformations for the Core and PRD
dialects. An example of a RIF example is shown in (Fig. 1).

Prefix (ex <http://example.com/2008/prdlf:>)
(* ex:rule 1 *)
Forall ?customer ?purchasesYTD (
If And(“?customer#ex:Customer
?customer[ex:purchasesYTD->?purchasesYTD]
External (pred:numeric-greater-than (?purchasesYTD 5000)))
Then Do (Modify(?customer[ex:status->"Gold"])))

Fig. 1. Example of a rule in RIF

IRL is a formal rule language used inside WebSphere ILOG JRules BRMS.
It supports the two different levels of a full-fledged BRMS: the technical level
targeted at software developers and the business action language targeted at
business users. The technical rules of JRules are written in IRL. The complete
specification of IRL can be found in the JRules documentation [4] an example
of an IRL rule is provided in (Fig. 2).

rule rule 1 {
when {
customer : customer.Customer (purchaseYTD : purchase YTD) ;
evaluate (purchase¥ID > supportPackIBM.RifUtil.toDecimal ("5000")) ;
}
then{
modify refresh customer {status = "Gold";}
}
}

Fig. 2. Example of a rule in IRL

2 Model Driven Engineering

The primary software artifacts of the MDE approach are models, which are
considered as first class entities. Every model defines a concrete syntax and
conforms to a meta-model (or grammar, or schema), which defines its abstract
syntax. One of the most common operations applied on models is transformation,
which consists in the creation of a set of target models from a set of source models
according to specific rules.

In the work presented in this paper three main tools have been used:

— Ecore allows to handle and create meta-models in Eclipse Modeling Frame-
work (EMF) [5]

— TCS (Textual Concrete Syntax) ([6],[7]) is a bidirectional mapping tool be-
tween meta-models and grammars. It is able to perform both text-to-model
(injections) and model-to-text (extractions) translations from a single speci-
fication. TCS is used to map context-free concrete syntaxes to meta-models.

— ATL (Atlas Transformation Language) [9] is a model transformation lan-
guage specified as both a meta-model and a textual concrete syntax. It al-
lows developers to produce a number of target models from a set of source
models by writing rules that define how to create target models from source
model elements.

3 Transformations

The RIF2IRL transformation takes as input a RIF file, a BOM file (Business
Object Model [4]) and a Dictionary model. The output generates an IRL model
and the related IRL file, generated by a TCS parser.

From the first input, using a TCS parser, a model conforming to an imple-
mentation of the RIF meta-model is extracted. A BOM file is passed to the trans-
formation to resolve the domain information declared inside the RIF file/model.
The related BOM model is extracted out of the BOM file by a TCS parser and
it conforms to the BOM meta-model implemented in [10]. A Dictionary is added
as input parameter in the transformation in order to provide a translation from
the element names declared in the RIF file to the corresponding ones appearing
in the IRL file. The transformation has been implemented in ATL [8] and it
defines how to convert RIF to IRL.

The IRL2RIF transformation takes as input a IRL file and two BOMs and
returns a RIF file. From the first input, a model conforming to the IRL meta-
model is extracted by means of a TCS parser. The first BOM contains the
information of the domain model, while the second one is used to map IRL
functions to the built-in RIF functions for handling dates, numbers, strings, etc.
The output is a RIF model, that is translated into a RIF file by a TCS parser.

4 The demonstration

The TRL2RIF and RIF2IRL transformations will be first demonstrated using a
set of simple examples (Appendix A) that illustrate the main functionalities of

the transformation. We will then show a real world application of the transfor-
mation using data from the Arcelor use-case studied in the ONTORULE project
[11]. In the context of the Rule Xchanger application depicted in the (Fig. 3),
we will focus on the transformation of IRL rule edited using JRules into RIF
rules that will be executed using the Tight engine.

Caoil
assignment Ul

] l|| - cuses» .
loana

By H E |
WebSphere impart 1BM
ILOG JRules r Tight engine

Ruleset
(Tight)

Ruleset
(BAL/IRL)

import

A
Model

(BOM) impart

Alice

Fig. 3. Rule Xchanger scenario

5 Conclusion

The transformation we intend to demonstrate is a key component in the inter-
operability between two rule languages that has been used in some real world
applications such us the Arcelor use-case. it shows that rule application devel-
oped using commercial BRMS such as JRules can be exported to other platforms
that support the RIF standard.

References

1. Rule Interchange Format http://www.w3.org/TR/rif-overview/
2. Production Rules Representation http://www.omg.org/spec/PRR/1.0/
3. Schmidt, D.C. Model-Driven Engineering. IEEE Computer 39 (2), Feb. 2006.

JRules documentation http://pic.dhe.ibm.com/infocenter /dmanager/v7r5/index.jsp

Eclipse Modeling Framework http://www.eclipse.org/modeling/emf/

Textual Concrete Syntax http://wiki.eclipse.org/TCS

Jouault F., Bézivin J., Kurtev 1., TCS: a DSL for the Specification of Textual

Concrete Syntaxes in Model Engineering. In proc. of GPCE’06, Portland, Oregon,

USA, pp 249-254

Atlas Transformation Language http://www.eclipse.org/atl

9. Jouault F, Allilaire A, Bézivin J, Kurtev I. ATL: a Model Transformation Tool. Sci-
ence of Computer Programming 72(3, Special Issue on Second issue of experimental
software and toolkits EST):31-39, 2008

10. Didonet Del Fabro M., Albert P., Bézivin J., Jouault F., Industrial-strength Rule
Interoperability using Model Driven Engineering, Technical report 6747, INRIA,
Nov. 2008. http://hal.inria.fr/docs/00/34/40/13/PDF /RR6747.pdf

11. Gonzalez-Moriyon G., Final steel industry public demonstrators, ONTORULE De-

liverable D5.5, Jan. 2012

N o

®

A Annex

Forall ?x (

If And (?x#ex:Customer
?x[ex:status->"normal"]
?x[ex:discount->10])

Then Do (Retract(?x[ex:discount->10])
(Assert ?x[ex:discount->0])))

rule p0_r0 {

when {
X : customer.Customer ()
evaluate ((X.status == "normal" && X.discount == 10));
} e ~
then{ BOM
X.discount = 0;
} package customer;

}
public class Customer
Hkk ok ok {

public int discount;

Forall ?x (
If And (?x#ex:Customer

?x[ex:status->"normal"]

Then Do (Modify

rule pO_r0 {
when{

X : customer.Customer ();
evaluate ((X.status
}

then{
modify X {discount = 0;}
}

}

(?x[ex:discount->01)))

public java.lang.String status;
public Customer() ;

== "normal"));

Fig. 4. Example 1

(* calculateFibl *)
Group (
Forall ?f such that (2f #ex:Fib)

(If Exists ?n ?v (And (?f[ex:number->?n]
2f[ex:value->?v]
pred:numeric-equal(?n 1)
pred:numeric-equal (?v 0)))

Then Do (Modify (2f[ex:valuel->1))))

package calculateFibl (
rule calculateFibl_r0 {

v N
when{
£ : £ib.Fib (n : number; v : value); BoM
evaluate(n == 1 && v == 0); ;
) package fib;
then({) .
modify £ {value = 1;}) 7“h11c class Fib
o public int number;
(* calculateFib2 *) public int value;
Group (public Fib(int arg) ;
Forall ?f such that (?f #ex:Fib) public Fib(int argl, int arg?);
(If And (Exists ?n ?v (And (2£[ex:number->?n] public Fib();
2f[ex:value->?v] }
pred:numeric-equal(?n 2) \ J

pred:numeric-equal(2?v 0))))
Then Do (Modify (2f[ex:value]l->1))))

package calculateFib2 {
rule calculateFib2_z0 {

when{
£ : fib.Fib (n : number; v : value);
evaluate(n == 2 && v == 0);

}

then{

modify £ (value = 1;}
1283

P
(* MakeRecursiveGoal *)
Group (
Forall ?f ?fl such that (?f #ex:Fib)
(If And (Exists ?n ?v ?nl (And (?f[ex:number->?n]
2f[ex:value->?v]
pred:numeric-greater-than(?n 1)
numeric-equal(2?v 0)

(INeg (Exists ?f1 (And (2?f1 #ex:Fib
?f1[ex:number->?nl]
pred:numeric-equal (?nl pred:numeric-subtract(?n 1))
1)))
Then Do(Assert (ex:Fib (pred:numeric-subtract(?n 1))))))
package MakeRecursiveGoal {
rule MakeRecursiveGoal_r0 {

when{
f1 : fib.Fib (nl : number);
£ : f£ib.Fib (v : value; n : number);
evaluate(n > 1 && v == 0 &&!((nl ==n - 1)));
then{

insert(new £ib.Fib (n - 1));
1283
Kk Ak
(* computeValue *)
Group (
Forall ?f ?fl1 ?£2 such that (2f #ex:Fib)
(If And (Exists ?n ?v (And (?f£[ex:number->?n]
?f[ex:value->2?v]
pred:numeric-greater-than(?n 2)
pred:numeric-equal (?v 0)
?£1 #ex:Fib
?f1[ex:number->?n1]
?fl[ex:value->?vl]
pred:numeric-equal(?nl pred:numeric-subtract(?n 1))
pred:numeric-not-equal(?vl 0)
?£2 #ex:Fib
?f[ex:number->?n2]
2f[ex:value->?v2]
pred:numeric-equal(?n2 pred:numeric-subtract(?n 2))
pred:numeric-not-equal(?v2 0))))
Then Do (Modify (2f[ex:value]->pred:numeric-add(?2vl 2v2)))))

package computeValue {
rule computeValue_r0 {
when{
£2 : fib.Fib(n2 : number; v2 : value);
f1 : fib.Fib(nl : number; vl : value);
£ : £ib.Fib(v : value; n : number);
evaluate(n > 2 && v==0 & nl == n - 1 && vl '= 0 & n2 == n - 2 && v2 !'= 0);
}
then{
modify refresh f {value = vl + v2;}
1283
KkkAhk
(* setResult *)
Group (
Forall ?f such that (?f #ex:Fib)
(If And (Exists ?n ?v (And (?f£[ex:number->?n]
?f[ex:value->2?v]
pred:numeric-not-equal (?v 0))))
Then Do (pred:print(pred:concat("Fib" ?n "=" ?v)))))

package setResult {
rule setResult_r0 {

when{
£ : fib.Fib(v : value; n : number);
evaluate(v = 0);
}
then{
out.println (supportPackIBM.RifUtil.concat ("Fib", n, "=", v));

b}

Fig. 5. Example 2

(* startSort ¥*)
Group (
Forall ?c
(If Exists ?Id (And (?c #ex:Control

?c[ex:id->?I1d] 7
pred:numeric-equal (?Id 0)))
Then Do (Modify (?cl[ex:id->11)))) BOM
package startSort { package sort;
rule startSort_r0 {
when{
¢ : sort.Control(Id : id); public class Control
evaluate(Id == 0); {
} public int id;
then{ public Control(int arg);
modify refresh c {(id = 1;}}}} public Control();
*kkkokk }
(* startDisplay *)
Group (public class Element
Forall ?c {

(If Exists ?Id (And (?c #ex:Control public int position;
?c[ex:id->?Id] public int value;
pred:numeric-equal (?Id 1))) public Element(int argl, int arg2);

Then Do (Modify (2c[ex:id->21)))) public Element();

}
package startDisplay { L
rule startDisplay r0 {
when{

c : sort.Control(Id : id);
evaluate(Id == 1);
}
then{
modify refresh c {id = 2;}}}}
Hokkkkk
(* switchPosition ¥)
Group (
Forall ?first ?second ?c
(If And (Exists 2Id ?pl ?p2 ?vl ?v2 (And (?c #ex:Control
?c[ex:id->?1Id]
pred:numeric-equal (?Id 2)
?first #ex:Element
?2first[ex:position->?pl]
?first[ex:value->?vl]
?second #ex:Element
?second[ex:position->?p2]
?second[ex:value->?v2]
pred:numeric-greater-than(?v2 2vl)
pred:numeric-less-than(?p2 ?pl))))
Then Do (Modify (?first[ex:position->?p2])
Modify (?second[ex:position->?pll)))

package switchPosition {
rule switchPosition_r0 {
when{
second : sort.Element(v2 : value; p2 : position);
first : sort.Element(pl : position; vl : value);
c : sort.Control(Id : id);

evaluate(Id == 2 && v2 > vl && p2 < pl);
}
then{
modify refresh first {position = p2;}
modify refresh second {position = pl;}}}}
Fkkkkk

(* incrementPosition *)
Group (
Forall ?el ?e2 ?c
(If And (Exists ?Id ?pl ?p2 ?vl ?v2 (And (?c #ex:Control
?clex:id->?Id]
pred:numeric-equal (?Id 1)
?el #ex:Element
?el[ex:position->?pl]
?el[ex:value->?vl]
?e2 #ex:Element
?e2[ex:position->?p2]
?e2[ex:value->?v2]
pred:numeric-greater-than (?v2 2?vl)
pred:numeric-equal(?p2 ?pl))))
Then Do (Modify (?e2[ex:position->pred:numeric-add(?pl 1)1)))

package incrementPosition {
rule incrementPosition_r0 {
when{
e2 : sort.Element(v2 : value; p2 : position);
el : sort.Element(vl : value; pl : position);
c : sort.Control(Id : id);

evaluate(Id == 1 && v2 > vl && p2 == pl);
}
then{
modify refresh e2 {position = pl + 1;}}}}
Sk kdkk

(* displayElement %)
Group (
Forall ?c ?e
(If And (Exists ?Id (And (?c #ex:Control
?c[ex:id->?Id]
pred:numeric-equal (?Id 2)
?e #ex:Element
Then Do (?v ?e[ex:value]->?v
?p ?el[ex:position]->?p
pred:print (pred:concat ("value" 2?v "is at position" ?p)))))

package displayElement {
rule displayElement_r0 {
when{
e : sort.Element();
¢ : sort.Control(Id : id);
evaluate (Id 2);

