
Transformation As Search

Mathias Kleiner2, Marcos Didonet Del Fabro1, and Davi De Queiroz Santos1

1 C3SL labs; Depto. de Informatica
Universidade Federal do Parana’, Curitiba, PR, Brazil

marcos.ddf,daqsantos@inf.ufpr.br
2 Arts et Métiers ParisTech ; CNRS, LSIS, 2 cours des Arts et Métiers, 13697

Aix-en-Provence, France
mathias.kleiner@ensam.eu

Abstract. In model-driven engineering, model transformations are con-
sidered a key element to generate and maintain consistency between re-
lated models. Rule-based approaches have become a mature technology
and are widely used in different application domains. However, in var-
ious scenarios, these solutions still suffer from a number of limitations
that stem from their injective and deterministic nature. This article pro-
poses an original approach, based on non-deterministic constraint-based
search engines, to define and execute bidirectional model transforma-
tions and synchronizations from single specifications. Since these solely
rely on basic existing modeling concepts, it does not require the intro-
duction of a dedicated language. We first describe and formally define
this model operation, called transformation as search, then describe a
proof-of-concept implementation and discuss experiments on a reference
use case in software engineering.

1 Introduction

In existing Model-driven Engineering (MDE) approaches, model transformations
are a key element for performing operations between different models. These
operations may be of different nature, such as migration, evolution, composition,
exchange, and others. Despite the existing solutions being very different on the
set of available capabilities (see [7] for a survey), most of them are rule-based
approaches.

These approaches have a simple and efficient principle: given a source meta-
model MMa and a target metamodel MMb, the developer defines a set of
pattern-matching rules to transform all the model elements from MMa into el-
ements of MMb. These transformation engines have a deterministic behavior,
i.e., one source model always produces the same target model. In addition, the
transformation rules are unidirectional and need to be fully-specified, i.e., it is
necessary to write rules that cover all the (relevant) elements of MMb.

These properties limit the scope of most transformation languages in various
scenarios [6]. For instance it may be hard to write rules that cover all the trans-
formation cases. Similarly, it is sometimes desirable to produce more than one
target model in order to study the alternatives. Bidirectional behavior requires

to write or derive a reverse transformation. Finally, these approaches hardly
allow to maintain models consistency without additional mechanisms.

Some of these limitations are directly linked to the fact that most tools do not
allow for disjunctions (i.e., choice points in the sense of combinatorial problems)
and take decisions solely on the basis of the source model. Indeed searching
for multiple target models requires non-deterministic properties: a given source
model may produce zero, one or multiple target models that satisfy a set of
constraints.

In this paper, we present a novel approach that uses constraint-based search
for executing model transformations and synchronizations. At this stage, our
challenge is to present this approach to the community and to integrate it at
its best in current MDE practices. To this aim, we reuse and extend a model
search operation proposed in previous work[21] as well as its notion of partial
model: a model whose known constituents actually conform to their correspond-
ing metamodel, but that should be interpreted with a weaker conformance than
the classical closed-world interpretation used in the MDE community.

The core idea is to create a unified metamodel containing source, transfor-
mation and target constraints. Different scenarios (creation of target model(s),
synchronization of existing models, and others) then mainly resolve to search-
ing for conforming model(s). First, we define a (potentially partial) set of cor-
respondences (i.e., transformation constraints) between the source and target
metamodels using basic modeling concepts. Second, we transform the input ar-
tifacts into a solver which executes the scenario through a generic model search
operation. As a result the engine produces none, one or several output models
that contain the solution(s) and its generation traces. The specifications are bi-
directional and flexible: they can be used to produce either the source or the
target model, or even propagate changes from one model to the other depending
on the chosen scenario. Another interesting property is that one could introduce
an optimization criterion that will be used by the search process to produce one
specific solution (the “best” one).

Plan of the article Section 2 briefly introduces the context of model-driven en-
gineering, constraint programming main principles, and recalls necessary defini-
tions from previous work on model search. Section 3 formally defines the trans-
formation as search operation, and describes a generic process for its realization
along with a running example. Section 4 proposes a prototype implementation
and discusses preliminary experiments on a reference use case. Finally, Section
5 discusses related work and Section 6 concludes.

2 Context

2.1 Introduction to MDE and model transformation

Model Driven Engineering considers models, through multiple abstract repre-
sentation levels, as a unifying concept. The central concepts that have been
introduced are terminal model, metamodel, and metametamodel. A terminal

model is a representation of a system. It captures some characteristics of the
system and provides knowledge about it. MDE tools act on models expressed in
precise modeling languages. The abstract syntax of a modeling language, when
expressed as a model, is called a metamodel. The relation between a model and
the metamodel of its language is called conformsTo. Metamodels are in turn
expressed in a modeling language for which conceptual foundations are captured
in an auto-descriptive model called metametamodel. The main way to automate
MDE is by executing operations on models. For instance, the production of a
model Mb from a model Ma by a transformation Mt is called a model transfor-
mation. The OMG’s Query View Transform (QVT) [24] defines a set of useful
model operations languages. In particular, it defines a language called QVT-
operational which is restricted to unidirectional transformations scenarios, and
a language called QVT-relational which can be used for bidirectional and syn-
chronization scenarios. There are multiple model definitions in the literature (see
[22] for a deep study), we refine in this article the ones introduced in [18]3.

Definition 1 (model). A model M is a triple < G,ω, µ > where:

– G is a directed labelled multigraph,
– ω (called the reference model of M) is either another model or M itself (i.e.,

self-reference)
– µ is a function associating nodes and edges of G to nodes of Gω (the graph

associated to its reference model ω)

Definition 2 (conformance). The relation between a model and its reference
model is called conformance and noted conformsTo.

Definition 3 (metametamodel). A metametamodel is a model that is its own
reference model (i.e., it conformsTo itself).

Definition 4 (metamodel). A metamodel is a model such that its reference
model is a metametamodel.

Definition 5 (terminal model). A terminal model is a model such that its
reference model is a metamodel.

2.2 Constrained metamodels

The notion of constraints is closely coupled to MDE. Engineers have been us-
ing constraints to complete the definition of metamodels for a long time, as
illustrated by the popular combination UML/OCL [25]. Constraints can be, for
instance, checked against one given model in order to validate it. In our ap-
proach we will always consider metamodels with potential constraints attached.
We refine in this article definitions from [21] to formally define the combination:

3 Though these may not be the most precise on object-oriented concepts and different
model relationships, simple graph-based definition will prove useful in our context

Definition 6 (constrained metamodel). A constrained metamodel CMM is
a pair < MM,C > where MM is a metamodel and C is a set (a conjunction) of
predicates over elements of the graph G associated to MM . We will consider an
oracle that, given a model M , returns true (noted M ∈ C(MM) where C(MM)
is the set of all valid models) iff M satisfies all predicates from C.

The conformance relation between a model and its reference is then naturally
extended to constrained metamodels.

Definition 7 (constrained conformance). A model M conformsTo a con-
strained metamodel CMM iff it conformsTo MM and M ∈ C(MM).

Many languages can be used to define predicates (i.e., constraints) with different
levels of expressiveness. OCL supports operators on sets and relations as well as
quantifiers (universal and existential) and iterators. To ease the specification of
metamodel static constraints, we use in this article an OCL-compatible extension
(OCL+ [15]) that extends it with multi-context constraints.

2.3 Introduction to constraint programming

Constraint programming (CP) is a declarative programming technique to solve
combinatorial (usually NP-hard) problems. A constraint, in its wider sense, is a
predicate on elements (represented by variables). A CP problem is thus defined
by a set of elements and a set of constraints. The objective of a CP solver is
to find an assignment (i.e, a set of values for the variables) that satisfy all the
constraints. There are several CP formalisms and techniques [17] which differ by
their expressiveness, the abstractness of the language and the solving algorithms.

2.4 Introduction to model search

A solver-independent integration of constraint programming, called model search,
for the automatic generation (or completion) of constrained models has been de-
scribed in [21]. This article builds on those foundations to propose a generic
model transformation method based on constrained search. Therefore we need
to briefly recall here the main principles and definitions of the model search op-
eration.

Definition 8 (relaxed metamodel). Let CMM =< MM,C > (with MM =<
G,ω, µ >) be a constrained metamodel. CMMr =< MMr, Cr > (with MMr =<
Gr, ω, µ >) is a relaxed metamodel of CMM (noted CMMr ∈ Rx(CMM)) if and
only if GMMr

⊆ GMM and Cr ⊆ C.

In other words, a relaxed metamodel is a less constrained (and/or smaller) meta-
model. A simple one can be obtained by the removal of all constraints. Comput-
ing such a relaxed metamodel, a simple operation which can obviously be done
easily with existing techniques, is called relaxation in the following.

Definition 9 (partial model, p-conformsTo). Let CMM =< MM,C >
be a constrained metamodel and Mr a model. Mr p-conformsTo CMM iff it
conforms to a metamodel CMMr such that CMMr is a relaxed metamodel of
CMM (CMMr ∈ Rx(CMM)). Mr is called a partial model of CMM .

Informally, a partial model is simply understood as being an incomplete model.

Definition 10 (model search). Let CMM =< MM,C > be a constrained
metamodel, and Mr =< Gr,MMr, µr > a partial model of CMM . Model search
is the operation of finding a (finite) model M =< G,MM,µ > such that Gr ⊆ G,
µr ⊆ µ (embedding i.e, ∀x ∈ Gr, µ(x) = µr(x)), and M conformsTo CMM .

In other words, model search extends a partial model into a “full” model con-
forming to its constrained metamodel (or generates one when an empty request
Mr is given). An example process to achieve this operation in a MDE framework

ECORE
C2

MDE (EMF)

CMM

M
SE
Solution

C2

M2SEP

CMM

C2

 Search
 Engine
Language

SE
Program

C2

CMM2SPC2

SES2M

EBNF
C2

Search engine

SEP.g

SE
Program

C2

C2

SES.g

SE
Solution

C2

Projection Run SE

Relaxation

Projection

Model Search

Model Transformation

Model Transformation

Model projection

C2

 Search
 Engine
Language

r

rM
(request)

C2 C2

Fig. 1. Model search: example process

is illustrated in Figure 1. Briefly, the request Mr and the metamodel CMM are
transformed into the search engine input format where search takes place. The
solutions, if any, are then transformed back into the modelling paradigm.
We may thus consider model search as a model transformation where the source
(metamodel and model) is an instance of a non-deterministic (combinatorial)
problem and the target model is a solution (if any exists). From the CP point
of view, the target metamodel acts as the constraint model whereas the source
model (the request) is a given partial assignment that needs to be extended.
For deeper information on how this operation is formalized, achieved and inte-
grated as a first-class MDE operation, the reader is kindly referred to [21].

3 Transformation As Search

The following proposes to generalize model search to constraint-based model
transformation/synchronization by considering different source and target meta-
models. The main idea is to define the transformation/synchronization as a set
of relations and constraints between elements of the metamodels that are to be
related (these may be called weaving links). All these artifacts are then uni-
fied into a transformation metamodel. By applying model search on this unified
metamodel, a model which contains valid solution model(s) is created.
In the following, we first introduce a running example of a classic transformation
scenario (creation of a single target model out of a single source model) which
is then used to illustrate the generic process. Its adaptation to other scenarios
is then briefly discussed.

3.1 Running example

The chosen use case is a transformation of a class schema model (MMA) into
a relational schema model (MMB), known as the Class2Relational transforma-
tion. This use case is well-known due to its large applicability and it has been
studied in other works to demonstrate different aspects about transformation
languages, such as [24], [23], and others. The initial metamodels are extracted
from the public transformation repository at [3] and illustrated at both sides of
Figure 2 (some elements have been omitted to improve readability).
The main scenario, which process is described in the following is the creation of
a target model (a relational schema) from a source model (a class schema).

NamedElt
name : String

Classifier

DataType

Class
isAbstract : Boolean

Attribute
multiValued : Boolean

Named
name : String

Table

Column

TypeDataTypeAndType

ClassAndTable

AttributeAndColumn

AttributeAndTable

cdtat1

super0..*

attr0..*

ccat1

ctype1

cowner1

caac0..1

caat0..1
col0..*key0..*

tcat0..1

taat0..1

towner1keyOf0..1

ttype1

taac0..1

tdtat1
wdatatype1

wtype1

wclass1

wtable1

wattribute1

wcolumn1
wtattribute1

wttable1

Fig. 2. Extract of the running example transformation metamodel (V1) as an ecore
diagram. Initial metamodels are on the sides, weaving metamodel is in the middle.

3.2 Process

ECore
C2

M3

Eclipse Modeling Framework (EMF)

CMMM2 T

CMMA

CMMB

CMMW

appliesTo

appliesTo

weaving
 links

describedBy

C2

C2

union

class schema
 structure

rel. schema
 structure

 class - rel.
 weaving

Fig. 3. Obtaining the transformation metamodel by unification (application on the
running example shown in italics)

Obtaining the transformation metamodel by unification Figure 3 shows
how to obtain a transformation metamodel, called CMMT , by unification of
the source (CMMA), target (CMMB) and weaving (CMMW) metamodels. In
our example these inputs are respectively the class schema structure (left part
of Figure 2), the relational schema structure (right part), and a set of weaving
elements and constraints (middle part, constraints are not shown in the Figure).
This operation, consisting merely in copying and combining the sources, can
be done with existing transformation techniques. Formal definitions of CMMW

and CMMT are given below:

Definition 11 (weaving metamodel). We call weaving metamodel between
metamodels CMMA and CMMB, a constrained metamodel CMMW defined
by CMMW =< MMW , CW >, where MMW and CW are respectively a set
of metamodel elements and constraints that define the weaving relationships be-
tween the elements of CMMA and CMMB (it requires the use of inter-model
references).

Definition 12 (transformation metamodel). We call transformation meta-
model between metamodels CMMA =< MMA, CA > and CMMB =< MMB , CB >,
using a weaving metamodel CMMW , a constrained metamodel CMMT defined
by CMMT =< MMT , CT >, where MMT = MMA ∪ MMB ∪ MMW and
CT = CA ∪ CB ∪ CW .

Obviously, unification turns inter-model references in the weaving metamodel
into intra-model references in the transformation metamodel.

ECore

C2

M3

Eclipse Modeling Framework (EMF)

CMM CMM

M
(request)

M

C2C2

M2

M1

Relaxation

p-conformsTo
r

r

T T

TT

CMM

 M

C2

A

A

CMM

 M

C2

B

B
(target)(source)

(solution)

Transformation As Search

Model Search cutcopy

C2

class schema
 structure

rel. schema
 structure

 family
class schema

 family
rel schema

Fig. 4. Transformation as search operation (application on the running example shown
in italics)

Searching for a target model Figure 4 shows how a target model can be
created by applying model search to the transformation metamodel. In this sce-
nario we have an exogenous unidirectional transformation from one source model
(MA) to a target model (MB).
The first step is to define the model search request. In this scenario it is simply
a copy of the source model. In our running example, it corresponds to the “Fam-
ily” class schema at the top of Figure 5. From definition 10, a valid request must
be a partial model of the transformation metamodel (CMMT). This property
is ensured by the following proposition:

Proposition 1. For all model MA that conformsTo CMMA, MA is a partial
model of (or p-conformsTo) CMMT .

Proof. From definition 9 of p-conformsTo, it resolves to finding a relaxed meta-
model CMMT

r =< MMT
r , C

T
r >∈ Rx(CMMT) such that MA conformsTo

CMMT
r . From definition 7 of conformance, this requires that (1)MA conformsTo

MMT
r and (2) MA ∈ C(MMT

r).
Let CMMT

r be the relaxed metamodel of CMMT such that MMT
r = MMT

and CT
r = ∅ (i.e., the one obtained by removing all constraints). (2) is obvi-

ously true as there are no predicates to satisfy. (1) requires that MMT
r can be

a reference model of MA, i.e., its graph GT
r contains all nodes (meta-elements)

targeted by the graph GA of MA. This is clearly true since by definition 12 of

Fig. 5. Input and ouput from the running example (scenario 1) as instance diagrams

CMMT we have MMA ⊂ MMT (in particular GA ∈ GT), and on the other
hand MMT

r = MMT (in particular GT
r = GT).

The second step is to perform the model search. This operation extends any
model MA that conforms to CMMA into a model MT that conforms to CMMT

(when there are solutions). By extending the source model, search produces a
model MT which contains both the target elements and the weaving elements
(these can be understood as the transformation traces). Additionally, model
search ensures that the target elements satisfy their metamodel constraints, and
optimization or preferences may be applied to discriminate between different
solutions. To avoid adding source elements to the produced model, as usually
expected in classical target creation scenarios, a set of model-level constraints
can be added to CMMT in order to “freeze” the source model.
The final step is to isolate the target model MB that conforms to CMMB . This
can easily be obtained by removing from MT any element that is not associated
to CMMB . In our example, a sample result is the “Family” relational schema
illustrated at the bottom of Figure 5.

3.3 Other scenarios

The described scenario is a unidirectional one-to-one operation, but the approach
is naturally bidirectional and can be used for different scenarios by varying the

search request. Indeed, it suffices to use MB as the request to obtain the reverse
transformation (production of a model MA). Additionally, the synchronization
scenario (propagating source or target model modifications to the other one)
can also be achieved with the same specifications: by using the union of the
two models (MA and MB) as the request, model search will extend them to
satisfy the transformation constraints, and thus update source, target or both
models (depending on the desired behaviour). Note that many CP solvers are
restricted to constructive modifications since allowing for removal of elements
from the request may yield tractability issues. However the approach itself does
not prevent it and is only limited in this sense by the capabilities of the chosen
underlying solver. All these scenarios are described and experimented on the
running example in the next Section.
Finally, though these are not studied nor experimented in this paper, multi-
source and/or multi-target transformations could also be achieved: it suffices
to add the corresponding metamodels and weaving constraints to CMMT , and
corresponding models to the request. Indeed, constraints may have any arity
(i.e., a single constraint may weave multiple metamodels elements).
In all these scenarios, the preceding propositions naturally hold as long as re-
quests are partial models of CMMT .

4 Implementation and experiments

In this section we first present the components used for implementing a prototype
software chain. Second, we further describe the chosen use case and its realization
on different scenarios. Finally, we summarize the experimentation results.

4.1 Implementation

The transformation as search (TAS) components were implemented using:

– the Eclipse Modeling Framework (EMF) [8] for defining, viewing and ma-
nipulating the various (meta)models presented in the preceding Section.

– the ATL engine [19] for writing/executing the rule-based transformations
of the process (unifying into CMMT , projecting Ecore-OCL+ to/from the
solver language, isolating the target model from the solution model).

– Alloy/SAT [16] as the constraint language/solver.

The software chain is freely available from a single package at [28].

4.2 Use case

We have defined 3 scenarios:

1. (1) the forward transformation presented in the running example (from class
to relational)

2. (2) the reverse transformation (from relational to class)

3. (3) a synchronization scenario (propagation of changes from one model to
another after adding new elements to the class schema).

The first goal was to experiment whether one single specification could handle
different scenarios. The specification consists of a weaving metamodel, shown
in the middle of Figure 2, which provides the basic correspondences between
left and right metamodels. The figure shows correspondences between first-class
elements (e.g., classes ”Class” and ”Table”, classes ”Attribute” and ”Column”,
etc.). We defined a set of additional constraints, written in OCL+ (as illustrated
in the code listing below), to further specify the weaving. Similarly to other
transformation techniques, these specifications may be written in different ways.
We provide results with two versions of the specifications, each of them used
throughout all scenarios, to test the capabilities and behavior of the search. The
first version (V1) mimics the behavior of the original (ATL) use case, in partic-
ular it creates simple integer columns for foreign keys. The second version (V2)
has a more explicit (and better) handling of table primary/foreign keys. It also
defines different weaving tables for each connected elements, allowing to write
more specific constraints. Both versions can be found in package [28].

As an example, the (V1) OCL+ excerpt below depicts 4 different kind of
constraints attached to the weaving metamodel from Figure 2.
Constraint (1) specifies equality between the “name” attribute of weaved “Datatype”
and “Type” (similar constraints are given for “Attribute”, “Class”, “Table” and
“Column”).
Constraint (2) maps mono-valued attributes to columns (a similar constraint is
given for multi-valued attributes/tables and classes/tables).
Constraint (3) ensures that weaved attributes/columns have a weaved datatype/type
(a similar constraint handles classes and integer key columns).
Constraint (4) ensures that attributes cannot have both a weaved table and a
weaved column (a similar constraint handles tables with classes and attributes).

1- context dtt : DataTypeAndType inv:

dtt.wdatatype.name = dtt.wtype.name;

2- context att : Attribute inv:

not att.multiValued implies att.caac.size() = 1;

3- context ac : AttributeAndColumn inv:

ac.wattribute.ctype.oclIsTypeOf(DataType)

and not ac.wattribute.multiValued

implies ac.wcolumn.ttype = ac.wattribute.ctype.cdtat.wtype;

4- context att : Attribute inv:

att.caac.size() + att.caat.size() = 1;

4.3 Experiments

We experimented on the Family use case [3], which class schema is illustrated
on the top of Figure 5. This application is used as a proof-of-concept of our
approach.The Alloy solver needs a specified pool of available elements: we set
a maximum of 25 instances. We executed the model operations on an Intel
Core Duo machine with 2.4GHz and 4GB of RAM. We used the Alloy Analyzer
4.2 with the MiniSat solver for generating search solutions. We summarize the
results in Table 1. The given execution times correspond to the search of the
first satisfying instance. They do not include the problem generation (projections
from/to Ecore/Alloy, Alloy’s compilation into SAT) since these are negligible in
all our experiments and the metamodel projection only has to be done once for
a given specification.

scenario-version #variables #constraints execution
(primary) (unfolded) time (ms)

(1) - V1 9956 845357 3432
(1) - V2 7179 866894 2483

(2) - V1 10114 791167 5529
(2) - V2 5725 866894 1655

(3) - V1 6496 505227 324
(3) - V2 5448 1231787 666

Table 1. Summary of the experiments (Family model)

Alloy does not natively support strings as datatypes, we thus used predefined
atoms and scalar equality (i.e., “nameS” is the string “name”). Both versions
of the specifications generate the relational schema illustrated on the bottom of
Figure 5. However, if we cycle through the solutions, V1 also proposes solutions
with additional “orphan” tables. This can be prevented with a constraint that
forbids creation of elements without a weaving association.
In the reverse transformation scenario (2), we used the exact generated target
model (the Family table schema) as input request, freezing again the initial
model through the pool of 25 available instances. Both versions generate the
original class schema. However in V1, it is not the first found solution. Indeed, the
first proposition is a class schema with an “EmailAdresses” class (referenced by
“Person”) and a “Members” class (referenced by “Family” and with an outgoing
reference to “Person”). This is a valid but nevertheless surprising solution at first.
If desired, it is possible to prevent such behaviour with a weaving constraint that
forces tables to become attributes whenever possible. This is done in V2 using
the (explicit) table keys as conditions.
In the synchronization scenario (3), we used the whole transformation result from
scenario 1 to create the input request: the class and relational schemas (as shown

in Figure 5), plus the generated weaving elements between them (transformation
traces, not shown in the Figure). We then added to the class schema an “Animal”
class and its outgoing “owner” reference to the “Person” class. The goal was
to test the propagation of changes to the table schema. Both versions update
accordingly the relational schema, adding an “Animal” table with an “owner”
(foreign) key column. The lower execution times are easily explained: search
space is reduced since most of the model is given as input (only a limited number
of SAT variables have to be assigned).

4.4 Analysis and future work

Experiments on these examples show that valid models can be created in dif-
ferent scenarios using single specifications, and that different solutions can be
proposed to the designer. Although it is only a first step to assess the poten-
tial and flexibility of the approach, this prototype implementation can serve as
a proof of feasibility. It is obvious that the produced models could already be
obtained using existing transformation techniques, though this may require to
write (or derive) additional specifications to handle all scenarios. Also, these ex-
periments raise a number of modeling and operational challenges that will be
considered in future work.
From the modeling point of view, defining specifications as weaving elements
and constraints can be confusing for a designer used to traditional rule-based
engines. For a given set of constraints, cycling through solutions or testing differ-
ent scenarios may reveal a need to incrementally narrow some constraints, but
also exhibit unexpected valid solutions. To ease the writing of specifications, a set
of weaving templates can be provided as guidelines. Similarly, a mapping from a
more specific language (such as QVT-relations [24]) to an equivalent set of weav-
ing templates can be studied. Also, additional scenarios can be considered. For
instance, two independently-obtained models can be given to test (and exhibit)
whether a valid mapping is able to relate them. The optimization/preferences
capabilities of the approach are also to be experimented more deeply. Overall,
an extensive evaluation on different sets of examples is necessary to confirm and
exhibit the benefits that can be envisioned compared to existing techniques.
From the operational point of view, this prototype implementation will be ex-
tended and experiments conducted to assess tractability on larger models. Early
experiments on a larger application, a graduate course management system ex-
tracted from a real-world system, show that the current Alloy-based implemen-
tation does not easily scale to medium-size models. The size of the instance
pool is a major factor, and SAT compilation rapidly induces a combinatorial
explosion in transformation scenarios (about 30000 variables and 10 minutes ex-
ecution time). The propagation scenario seems more tractable (about 1 minute).
Source and details of these experiments are also included in the package for
reference. It is obvious that constraint solving is more (time) expensive than
rule-based approaches (both theoretically and practically). However the con-
straint programming community has developped a large set of techniques to

counter combinatorial explosion (structure-based symmetry breaking, decompo-
sition, heuristics, etc.). The current implementation uses none of these.
Clearly, our aim is not to replace techniques that have proven suitable in many
applications, but to show that the properties inherent to this approach are rele-
vant for various problems, and how to integrate it in current MDE practices.

5 Related work

There are several approaches studying model transformations. A classification
can be found at [7]. In particular, the OMG standard QVT [24] has defined
specifications for different type of model operations. Its QVT-operational part
has been implemented by various tools such as the popular ATL [19], TEFKAT
[23], VIATRA [9], and others. These approaches allow for fast and efficient uni-
directional transformations. QVT-relations defines a broader set of capabilities,
such as incremental transformations, but has fewer (and only partial) implemen-
tations such as [1].

Further studies have tackled bidirectional model transformations or synchro-
nizations (see [6] for a survey), often through mechanisms which require addi-
tional specifications to an existing rule-based transformation. For instance, [14]
proposes, based on abductive reasoning, to reverse an unidirectional transfor-
mation in order to provide synchronization of the source model with the pre-
viously obtained target model. In particular, it shares our ability to compute
different alternative solutions through combinatorial logic inference. A number
of so-called incremental approaches [13, 29, 4] allow to update a target model
by taking into account incremental changes to the source model. Triple Graph
Grammars (TGGs) [27] are an approach for defining correspondences between
two graphs. The TGG definition is similar to our model unification (i.e., a unique
graph created from one left, one right and one correspondence graph) though
not grounded in usual metamodelling principles. TGGs are also used for gener-
ating transformations (e.g., the [11] tool), but without search capabilities. [2, 10]
also expore the notion of weaving relationships but do not use them as direct
transformation specifications. However, the described patterns may be useful in
our context as specifications templates. Due to the high number of other ex-
isting transformation approaches and their spreading among different research
communities, this overview can hardly be exhaustive. Clearly, many of these
techniques have their own benefits over our approach, such as easier removal
of elements or faster execution times. However, non-deterministic constrained
search offers an original combination of properties: flexibility of having a single
specification for different scenarios, ability to provide various solutions, auto-
matic checking/optimizing capabilities, and in our case the sole use of existing
modeling concepts.
Finally, the MDE community has also been using constraint-based solvers for
various model operations such as model checking [12, 5, 30], finding optimized
transformations [20], or extending transformation capabilities [26]. Although

there are definitely similarities in the use of constraint tools, and in particu-
lar alternative mappings to solver languages, the pursued goals are different.

6 Conclusion

As model transformations have gained maturity in the past years, novel scenarios
have arised that cannot be handled using classical rule-based solutions, mainly
because of their non-deterministic nature. In this paper we described an original
approach in which the core idea is to search for a solution model by satisfying a
set of weaving relations and constraints. The approach is built on a previously
defined operation, called model search, for the automatic generation of complete
valid models conforming to a metamodel and its constraints. Both model search
and transformation as search operations are based on the concepts of partial
model and partial conformance.
The paper also describes how this model transformation technique is formalized
and automated as a first-class model operation, independently from the solving
engine, in order to fit in current MDE practices. The nature of the operation
provides original properties: bidirectionality, ability to explore and discriminate
different target alternatives based on optimization criteria, synchronization of
existing models, etc. However a larger set of examples and an extensive evalu-
ation are required to assess practical benefits. Indeed, the provided prototype
implementation on a reference usecase is only a first step that raises a number
of modeling and operational challenges for future research.

Acknowledgements this article was partially funded by project CNPq Universal
(481715/2011-8) and Convênio Fundação Araucária/INRIA.

References

1. Medini: http://projects.ikv.de/qvt, 2012.

2. D. H. Akehurst, S. Kent, and O. Patrascoiu. A relational approach to defining
and implementing transformations between metamodels. Software and System
Modeling, 2(4):215–239, 2003.

3. ATL Class to Relational transformation, eclipse.org, Mar 2005.

4. G. Bergmann, A. Ökrös, I. Ráth, D. Varró, and G. Varró. Incremental pattern
matching in the viatra model transformation system. In Proceedings of the third
international workshop on Graph and model transformations, GRaMoT ’08, pages
25–32, New York, NY, USA, 2008. ACM.

5. J. Cabot, R. Clarisó, and D. Riera. Umltocsp: a tool for the formal verification of
uml/ocl models using constraint programming. In Proceedings of the International
Conference on Automated Software Engineering, pages 547–548, 2007.

6. K. Czarnecki, J. N. Foster, Z. Hu, R.Lämmel, A. Schürr, and J. F. Terwilliger.
Bidirectional transformations: A cross-discipline perspective. In Proceedings of the
International Conference on Model Transformations, pages 260–283, 2009.

7. K. Czarnecki and S. Helsen. Feature-based survey of model transformation ap-
proaches. IBM Syst. J., 45:621–645, July 2006.

8. EMF : http://www.eclipse.org/modeling/emf/, 2009.
9. K. Ehrig, E. Guerra, J., L. Lengyel, T. Levendovszky, U. Prange, G. Taentzer,

D. Varró, and S. Varró-Gyapay. Model transformation by graph transformation:
A comparative study. In MoDELS Satellite Events, 2005.

10. M. Didonet Del Fabro. Metadata management using model weaving and model
transformations. PhD thesis, University of Nantes, 2007.

11. Fujaba Tool Suite. http://www.fujaba.de/, 2011.
12. M. Gogolla, F. Büttner, and M. Richters. Use: A uml-based specification environ-

ment for validating uml and ocl. Sci. Comput. Program., 69(1-3):27–34, 2007.
13. D. Hearnden, M. Lawley, and K. Raymond. Incremental model transformation for

the evolution of model-driven systems. In Proceedings of the MoDELS conference,
pages 321–335, 2006.

14. T. Hettel, M. Lawley, and K. Raymond. Towards model round-trip engineering:
An abductive approach. In Proceedings of the International Conference on Model
Transformations, pages 100–115, 2009.

15. OCL+ usecase: http://www.lsis.org/kleinerm/MS/OCLP mm.html, 2010.
16. D. Jackson. Automating first-order relational logic. In FSE, pages 130–139, 2000.
17. J. Jaffar and M. J. Maher. Constraint logic programming: A survey. J. Log.

Program., 19/20:503–581, 1994.
18. F. Jouault and J. Bézivin. KM3: A DSL for metamodel specification. In FMOODS,

volume 4037 of LNCS, pages 171–185. Springer, 2006.
19. F. Jouault and I. Kurtev. Transforming models with ATL. In MoDELS Satellite

Events, pages 128–138, 2005.
20. M. Kessentini, H. A. Sahraoui, and M. Boukadoum. Model transformation as an

optimization problem. In Proceedings of the MoDELS conference, pages 159–173,
2008.

21. M. Kleiner, M. Didonet Del Fabro, and P. Albert. Model search: Formalizing and
automating constraint solving in MDE platforms. In Proceedings of the ECMFA
conference, pages 173–188, 2010.

22. T. Kühne. Matters of (meta-)modeling. Software and System Modeling, 5(4):369–
385, 2006.

23. M. Lawley and J. Steel. Practical declarative model transformation with tefkat.
In MoDELS Satellite Events, pages 139–150, 2005.

24. Object Management Group. Meta Object Facility (MOF) 2.0
Query/View/Transformation (QVT) Specification, version 1.1, 2011.

25. OCL 2.0 specification: http://www.omg.org/spec/OCL/2.0/, 2008.
26. A. Petter, A. Behring, and M. Muhlhauser. Solving constraints in model transfor-

mations. In Proceedings of the International Conference on Model Transformations,
pages 132–147, 2009.

27. A. Schürr and F. Klar. 15 years of triple graph grammars. In Proceedings of the
International conference on Graph Transformations, pages 411–425, 2008.

28. Class-Relational usecase: http://www.lsis.org/kleinerm/TAS/TAS-CLAR-
usecase.html, 2013.

29. T. Vogel, S. Neumann, S. Hildebrandt, H. Giese, and B. Becker. Incremental model
synchronization for efficient run-time monitoring. In MoDELS Workshops, pages
124–139, 2009.

30. J. White, D. C. Schmidt, D. Benavides, P. Trinidad, and A. Ruiz-Cortez. Auto-
mated diagnosis of product-line configuration errors in feature models. In Proceed-
ings of the Software Product Lines Conference, 2008.

