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Abstract. Today there is a large amount of unstructured data produced
by information systems from different domains. These sources may be an-
alyzed for different purposes. Existing approaches use string similarity
methods to search for valid words within a text, with a supporting dic-
tionary. However, they have two main drawbacks. First, they are not
rich enough to encode phonetic information to assist the search. Second,
the solutions may be inefficient in the presence of spelling errors. In this
paper, we present a novel approach for efficiently perform phonetic sim-
ilarity search over large data sources. We present a data structure called
PhoneticMap, which encodes language-specific phonetic information. The
phonetic maps are used by a novel fast similarity search algorithm to
find words with spelling errors. We validate our approach through an
experiment over a data set using a Portuguese variant of a well-known
repository, to automatically correct words with spelling errors.
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1 Introduction

Today there is a large amount of unstructured data being produced by different
kinds of information systems, in a variety of formats, due to the advancement
of communication and information technologies [12, 13]. One important kind of
unstructured data is free text of a particular domain, for instance, records from
the medical or avionic industries.

The extraction of information from these data sources is often performed
using string similarity comparison algorithms to identify concepts from the free
text [8] when text is loaded with misspellings. String similarity metrics can
measure similarity between two text strings. Edit Distance (ED) [14] and Jaro-
Winkler (JW) distance [25] are two well known functions found in literature.
These algorithms can be used to compare the elements from the input data source
with an existing dictionary to identify a possible valid word for a mispelling.

One of the most commonly used digital dictionaries is the Princeton WordNet
(PWN). PWN is a lexical database of the English language that provides a
more intuitive combination of dictionary and thesaurus, to support automatic
text analysis coupled with artificial intelligence applications [15]. However, PWN
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should be modified in the following aspects: (a) PWN contains a wide range of
common words and it was designed to be an underlying database for different
applications, not to cover domain-specific vocabulary; (b) PWN does not include
information about derivative words and the forms of irregular verbs; this problem
is even greater when considering the variation of verb conjugation in different
tenses, e.g., 67 variations for each verb in Brazilian Portuguese [6]; (c) PWN
does not offer a repository structure to support string similarity search.

The existing string similarity algorithms coupled with a supporting dictio-
nary may be very inefficient, in particular when the analyzed text has spelling
errors [16], because they do not necessarily handle specific application aspects
related to spelling errors. In these cases, it is necessary to use phonetic similar-
ity metrics. Phonetics are language-dependent [17] and solutions for this sort of
problems must be specially designed for each specific language.

In addition, similarity algorithms are often slow when executed over large
databases, although fast search algorithms have been implemented. Fast Simi-
larity Search (FastSS) [2] is an algorithm based on Edit distance (ED) designed
to find strings similarities in a large database. It finds similar words from an
input word with misspelling errors. However, the results are based only in the
ED metric, and it does not consider phonetic similarity.

In this paper, we present an approach of fast phonetic similarity search
(FPSS) over large repositories, coupled with a dictionary. Our solution has three
main contributions. First, we present an indexed data structure called Phonet-
icMap, which is used by our novel fast similarity search algorithm. Second, we
define a string similarity method that keeps the similarity higher for words with
low differences. In contrast, it adds the notion of penalty, in a way the similarity
value drops faster when the words have several differences. Finally, we integrate
the previous contributions with PWN to implement the fast phonetic search.
We validate our approach through an experiment using an extended version of
PWN for the Brazilian Portuguese language, over a large repository, in which we
try to find correct words given words that have errors, to promote an automatic
correction of spelling errors.

This article is organized as follows: Section 2 proposes a string similarity
function, a phonetic similarity function, and a method for searching for phonetic
similarities over PWN-based repositories; Section 3 describes the experiment
where the proposed methods was applied and shows the results obtained using
words from Portuguese language; Section 4 refers to the related work and Section
5 concludes with final considerations and future work.

2 Fast Phonetic Similarity Search

String similarity search methods are essential to be able to extract words from
repositories with spelling errors. We conducted a simple experiment over 126,812
words from a set of 4,748 medical records, which were submitted to an exact
match over a dictionary. Only 40,212 words (31,71%) were found. This small
value of exact matches took place due to spelling errors, and the use of abbre-
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viations and acronyms. Efficient inexact methods are important to be able to
improve such results.

However, when dealing with a large repositories, it is also required to support
a fast similarity search, i.e., for a given possible not well-written word, we want to
find phonetically similar words, but not performing a full search in the repository.

In this section we present our approach to perform fast similarity search using
phonetic information. First, we present a novel string similarity function. Then,
we describe a phonetic similarity function using PhoneticMaps, and a PWN
repository extension to support finding phonetically similar words.

2.1 String Similarity

We present a novel algorithm to calculate string similarity. The Stringsim func-
tion illustrated in Figure 1 measures similarity based on the percentage of char-
acters of one word that can be found in the other one, also considering the
position of matching characters and the difference in string sizes.

in: w1 (String), w2 (String)
out: similarity (Number)

0 = completely different
1 = exactly equal

1: g1 ← CharsFound(w1, w2);
2: g2 ← CharsFound(w2, w1);
3: Ω ← 0.975;

4: p1 ← ΩPositionPenalty(w1,w2);

5: p2 ← ΩPositionPenalty(w2,w1);
6: similarity ← avg(g1 × p1, g2 × p2);
7: Υ ← 0.005;
8: SMAX ←MAX(length(w1), length(w2));
9: smin ← min(length(w1), length(w2));

10: if (SMAX > smin) then
11: b← 1 + (SMAX − smin)× Υ ;
12: f ← ln(SMAX − smin + 1);

13: c← SMAX−smin
2

;
14: similarity ← similarity × ( 1

(bf )c
);

15: end if;
16: return similarity;

Fig. 1. Stringsim: A proposed string similarity function pseudocode

Stringsim function calculates the average between the percentage of w1 char-
acters found in w2 and the percentage of w2 characters found in w1 (lines 1–6).
CharsFound return the number of characters of first parameter found in the
second one, not taking into account the position in which the characters are
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found. For each character found, but not in the same string position, a reduc-
tion penalty is calculated based on the constant Ω (lines 3–5). PositionPenalty
returns the number of characters of first parameter found in the second one but
not in the same string position. Penalty calculated based on Ω guarantees, for
example, that strings “ba” and “baba” will NOT result a similarity = 100%.

When the lengths of both strings (SMAX and smin) are different, there is
a result adjustment in order to provide another penalty in the similarity level,
based on the difference on the length of words and the factor Υ (lines 7–15).

Ω (=0.975) and Υ (=0.005) were empirically defined after testing the pro-
posed function in an application that searches for similar names of people and
companies. Ω and Υ were manually adjusted based on a list of known pairs
of names that should or should not be considered similar in the result of each
search.

We compared Stringsim against normalized versions of Edit Distance (by
Levenshtein [14]) and Jaro-Winkler distance [3]. In Figure 2 we illustrate how
each function decreases the similarity as the words become more different from
each other (some similarity results are detailed in Table 1). In this case we
used only a combination of letters, for didactic purposes. Stringsim keeps the
similarity higher as there are more characters in common between strings with
small differences in size. Comparing strings “ab” and “abab”, Edit Distance
results in a similarity of 50% while Stringsim results in 96.9%. As the difference
in length of strings becomes larger, Stringsim tends to reduce the similarity more
sharply, getting close to 0% faster. Stringsim has also the ability to distinguish
different characters when comparing strings. For example, Edit Distance results
the same similarity (50%) when comparing (“ab” × “abab”) or (“ab” × “abcd”).
The same is not true when using Stringsim: Stringsim(“ab”, “abab”) = 96.9%
and Stringsim(“ab”, “abcd”) = 74.2%.

Table 1. Comparing similarity functions

# Word1 Word2 Levenshtein Jaro-Winkler Stringsim

1 ab ab 100.0% 100.0% 100.0%
2 ab abab 50.0% 86,0% 96.9%
3 ab ababab 33.3% 82.0% 91.0%

. . . . . . . . . . . . . . . . . .
10 ab ab . . . ab (10x) 10.0% 76.0% 9.1%
. . . . . . . . . . . . . . . . . .
20 ab ab . . . ab (20x) 5.0% 74.0% 0.0%

# = number of repetitions of “ab” in Word2

2.2 Phonetic Similarity

When considering phonemes, a straightforward string comparison of characters
may not be enough. In order to support indexing phonemes for a fast search, we
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Fig. 2. Similarity functions behaviour

present a structure called PhoneticMap and we define the PhoneticMap Simi-
larity.

Definition 1 (PhoneticMap). Given a word (string) w consisting of a se-
quence of letters (as symbols and digits usually fall outside this scope), the
generic function PhoneticMap(w) is a function that results a PhoneticMap tu-
ple M = (w,P,D), where: w is the word itself, P = {p1, p2, . . . , pn} is a set of n
phonetic variations of word w, and D = {d1, d2, . . . , dn} is a set of n definitions,
where di is the definition of variation pi.

Definition 2 (PhoneticMap Similarity). Given two PhoneticMaps M1 and
M2, PhoneticMapSim(M1,M2) is a generic function that results a similarity
value (ranging from 0=different to 1=equal) between PhoneticMaps M1 and
M2.

As PhoneticMap(w) and PhoneticMapSim(M1,M2) are language-dependent,
it is also possible to create more than one instance to each function for different
languages.

Brazilian Portuguese consonant phonemes can be classified according to the
articulation manner and the articulation point of vocal chords. Articulation man-
ner codes comprise: A for {/m/, /n/, /nh/}; B for {/b/, /k/, /d/, /g (gue)/, /p/,
/t/}; C for {/s/, /f/, /j/, /v/, /x/, /z/}; D for {/l/, /lh/}; and E for {/r/, /R/}.
Articulation point codes comprise: A for {/m/, /p/, /b/}; B for {/f/, /v/}; C
for {/t/, /d/}; D for {/l/, /lh/, /z/, /s/, /n/, /nh/, /r/}; E for {/j/, /x/}; and F
for {/k/, /R/, /g (gue)/}. Such codes were used to generate phonetic variations
7–10 based on variation 5 (Table 2).
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We develop two variations for the PhoneticMap and PhoneticMap Simi-
larity functions to support the Brazilian Portuguese: PhoneticMapPT (w) and
PhoneticMapSimPT (M1,M2).

The function PhoneticMapPT (w) returns a map of 11 entries. Table 2 de-
scribes each entry and shows an example generated for a Brazilian Portuguese
word. This structure can be adapted for different languages.

Table 2. A result sample for the PhoneticMapPT function

PhoneticMapPT (”arrematação”)

Entry i Definition di Phonetic variation pi
w Word arrematação
1 Word with no accents arrematacao
2 Word phonemes aRematasao
3 Vowel phonemes only aeaaao
4 Vowel phonemes (reverse) oaaaea
5 Consonant phonemes Rmts
6 Consonant phonemes (reverse) stmR
7 Articulation manner EABC
8 Articulation manner (reverse) CBAE
9 Articulation point FACD
10 Articulation point (reverse) DCAF

The function PhoneticMapSimPT (M1,M2), as defined in Formula 1, calcu-
lates the phonetic similarity between PhoneticMaps M1 and M2 as the string
similarity weighted average between some phonetic variations of M1 and M2. We
defined weights used in PhoneticMapSimPT empirically, in order to give more
importance to similarities of consonant phonemes.

PhoneticMapSimPT (M1,M2) =

1× Sw + 2× S(1) + 5× S(2) + 1× S(3) + 3× S(5) + 2× S(7) + 2× S(9)

1 + 2 + 5 + 1 + 3 + 2 + 2
(1)

where:
Sw = Stringsim((M1.w,M2.w)
S(i) = Stringsim((M1.pi,M2.pi)

2.3 Phonetic Search

To perform a fast phonetic similarity search (FPSS), we propose a method for
indexing PhoneticMaps (using single column indexes in a relational database)
and phonetically searching the words. FPSS must locate phonetically similar
words in the repositories based on the indexed phoneme variations, returning
not only similar words but also the similarity level of each one.
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Definition 3 (Fast Phonetic Similarity Search). Given a word w and a
minimum desirable similarity level l, PhoneticSearch(w, l) is a generic function
that results a set of tuples (r, s), where r is a phonetically similar word, and s
is the similarity level resulted between PhoneticMap(w) and PhoneticMap(r),
where s ≥ l. Similarity level ranges from 0 to 1.

To support FPSS, we extended the PWN repository with the PhoneticMap
table that stores PhoneticMap entries for a specific language (Figure 3). Each
Phonetic Variation (1–10) is indexed, to support a fast search over each column.

Fig. 3. PWN repository extended to support fast phonetic similarity search

FPSS is performed using the pseudocode described in Figure 4. We develop
PhoneticSearchPT (w, l, p, s) function, an extended version of the PhoneticSearch
function that returns a set of similar words in Portuguese, considering the min-
imum desirable similarity level l. Additional parameters p and s set the number
of extended consonant phonemes that can be considered as prefix and suffix
when searching for similar words. p and s have default values 0 (zero). When
p > 0, then PhoneticSearchPT uses the reverse indexed PhoneticMaps entries
to locate similar words (entries 4, 6, 8 and 10 described in Table 2). Figure 4
shows PhoneticSearchPT pseudocode.

Function DBPhoneticMapSearch(column, value, extension) finds records
in the PhoneticMap table, searching for column equals to value (exact match),
or column like value with up to extension characters added (“like” match),
when extension is set > 0. PhoneticSearchPT results a exact match when
minSimLevel = 1 (lines 2–3). Otherwise, it creates a dataset combining results
of different DBPhoneticMapSearch executions (line 5). In lines 6–8, phonetic
variations 4, 6, 8, and 10 are used whether it is necessary to perform search
over the reverse PhoneticMap entries (prefix > 0). After creating a result set of
candidate words, the phonetic similarity between each found word and the search
word is calculated (line 10). Words that does not satisfy the minSimLevel are
removed from the result set (lines 10-11).

Even it is presented as an instance for Brazilian Portuguese language, this
approach is tailored to adapt phonetic matching to use over large reposito-
ries and for different languages, as English and Spanish, since one can define
a new PhoneticMap structure for an specific language, and instantiate the
PhoneticMapSim and PhoneticSearch functions for such language.
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in: word String, minSimLevel Number, prefix Integer default 0,
suffix Integer default 0

out: result Dataset

1 : wm← PhoneticMapPT (word);
2 : if minSimLevel = 1 then
3 : result← DBPhoneticMapSearch(0, wm.w);
4 : else;
5 : result←

DBPhoneticMapSearch(1, wm.p1) ∪
DBPhoneticMapSearch(2, wm.p2) ∪
DBPhoneticMapSearch(3, wm.p3, suffix) ∪
DBPhoneticMapSearch(5, wm.p5, suffix) ∪
DBPhoneticMapSearch(7, wm.p7, suffix) ∪
DBPhoneticMapSearch(9, wm.p9, suffix);

6 : if p > 0 then
7 : result← result ∪

DBPhoneticMapSearch(4, wm.p4) ∪
DBPhoneticMapSearch(6, wm.p6, prefix) ∪
DBPhoneticMapSearch(8, wm.p8, prefix) ∪
DBPhoneticMapSearch(10, wm.p10, prefix);

8 : end if;
9 : foreach (fWord in result)

10 : if PhoneticMapSimPT (wm,PhoneticMapPT (fWord))
< minSimLevel then

11 : result.remove(fWord);
12 : end if;
13 : end if;
14 : return result;

Fig. 4. PhoneticSearchPT pseudocode

3 Experiments

In this section we describe the experiments conducted to validate our approach.
First, we compare our String Similarity algorithms with two well-known ones.
Second, we compare the performance of our full search method with a search
using the indexed PhoneticMaps. Finally, we describe precision and recall results
of our fast phonetic search solution. We implemented our solution using an in-
stance of Oracle database version 11g running over a Intel(R) Core(TM) i5 2.50
GHz with 8GB RAM.

3.1 String Similarity

We performed an experiment to verify the efficiency of Stringsim in automatic
error correction compared with other functions, comprising the following steps:
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– We extracted a set of 3,933 words containing spelling errors from a sample
of medical record texts in Portuguese. Each word was manually annotated
with the correct spelling form. We call these words reference words.

– We used the Stringsim function to search for the 10 most similar words
for each incorrect word, based on the returned similarity values. We used
a Brazilian Portuguese version of PWN dictionary (containing 798,750 dis-
tinct words, verb conjugation derivatives). The resultsets for each word were
ranked from 1 (most similar) to 10 (less similar).

– We store the rank in which each reference word is found in each resultset —
Rank = NotFound when the reference word is not in the resulted recordset.

– The two previous steps were repeated using Edit distance and Jaro-Winkler
functions — thus, for each misspelled word, we store the rank of the reference
word for each one of the functions.

– Lastly, we compared the results of Stringsim against Edit distance and Jaro-
Winkler, as shown in Tables 3 and 4. These tables show that Stringsim
had more reference words with top-1 ranking, which is the objective of the
approach.

Table 3. Stringsim (SS) x Edit Distance (ED)

SS ED Rank Not
Rank 1 2 3 4-5 6-10 Found

1 2970 420 51 30 25 26
2 127 51 37 15 18 13
3 32 12 8 8 3 7

4-5 17 8 7 4 6 3
6-10 14 1 2 4 4 0

Not Found 2 0 0 1 1 6

Table 3 compares Stringsim and Edit Distance. In 75.5% of cases (2,970
words), both functions find the reference word in the dictionary as a top-1 rank-
ing (the most similar). For the remaining cases, Stringsim performs better (finds
the reference word in a better rank) than Edit Distance in 16.9% of cases (666
searches with better ranking) while Edit Distance is better than Stringsim in
only 5.8% (230 searches).

Table 4 compares Stringsim and Jaro-Winkler distance. In 68.0% of cases
(2,675 words), both functions find the reference word as a top-1 ranking. For
other cases, Stringsim performs better than Jaro-Winkler in 23.7% of cases
(934 searches) while Jaro-Winkler is better than Stringsim in only 4.9% (193
searches).

3.2 Full and Fast Similarity Search

We compared the performance of full and fast similarity search methods, using
a set of words extracted from Aurélio [6] (a Brazilian Portuguese dictionary).
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Table 4. Stringsim (SS) x Jaro-Winkler (JW)

SS JW Rank Not
Rank 1 2 3 4-5 6-10 Found

1 2675 360 119 107 92 169
2 102 49 25 19 22 44
3 20 19 11 8 4 8

4-5 14 8 4 8 4 7
6-10 4 9 3 1 3 5

Not Found 1 1 1 1 2 4

The steps to perform the experiment are described as follows: (1) A WordNet
repository was created in a relational database and it was populated with a total
amount of 798,750 distinct words and verb conjugation derivatives; (2) one Pho-
neticMap for each dictionary entry was created with function PhoneticMapPT ,
populating the PhoneticMap table. The table was indexed with 11 single-column
indexes – one for the Word column and 10 for each Phonetic Variation; (3) The
same set of 3,933 words containing spelling errors used in the previous experi-
ment was applied in the search methods; (4) A Full Search was executed – each
input word was compared with each dictionary entry using the Stringsim (Figure
1), searching for words with a similarity level ≥ 0.8; the spent search time and
the number of found words were computed in the result – PhoneticMapSimPT

function was not used in the Full Search due to its high processing time (60 sec-
onds in average to perform each search). (5) A Fast Search was executed – each
input word was submitted twice to PhoneticSearchPT (Figure 4), with two dif-
ferent set of parameters: 5a) similarity level ≥ 0.9, and parameters p and s both
equal to 0 (similar words might have the same number of consonant phonemes);
and 5b) similarity level ≥ 0.8, and parameters p and s both equal to 1 (similar
words could have one additional consonant phonemes as prefix or suffix); (6) Full
Search and Fast Search results were compared based on (6a) the total amount
of spent time to execute each search, and (6b) the number of words obtained as
the search result.

Table 5 shows that Fast Search can be 10-30 times faster than Full Search.
However, it should be clear that Fast Search does not return the same number of
similar words. Although a Full Search is complete in terms of the resulting words,
both search methods did not use the same similarity function — Full Search was
performed with Stringsim, and Fast Search used the phonetic similarity metric
PhoneticMapSimPT , i.e., using the PhoneticMaps.

Even with a different number of words in the fast method result, PhoneticSearchPT

is able to find the reference word for each spelling error. Table 6 compares
accuracy between Stringsim (SS) and PhoneticSearchPT (PS). In 80.6% of
cases (3.170 words), both functions find the reference word as a top-1 ranking.
Stringsim performs better in 10.2% of cases (402 searches) while PS is better
in 8.1% (317 searches). Tables 6 shows in bold the amount of cases in which
PhoneticSearchPT result was better than Stringsim.
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Table 5. Average spent time (in secods) to execute word search

Similarity Spent Time Words Found
Method Level (average) (average)

Full ≥ 0.80 4.92 seconds 29.95
Fast ≥ 0.80 0.49 seconds 62.31
Fast ≥ 0.90 0.17 seconds 6.28

Table 6. PhoneticSearchPT x Stringsim

PS SS Rank Not
Rank 1 2 3 4-5 6-10 Found

1 3170 189 50 31 14 5
2 143 37 10 7 1 0
3 57 13 1 2 0 1

4-5 46 9 6 4 5 0
6-10 47 6 0 0 2 1

Not Found 59 7 3 1 3 3

3.3 Comparing Results: Precision and Recall

We analyze our results through precision and recall relevance measures. Precision
is equivalent to the amount of retrieved instances that are relevant, while recall
is equivalent to the amount of relevant instances that are retrieved. For classifi-
cation and search tasks, the terms true positives (TP) and true negatives (TN)
represent the correct result and the correct absence of result respectively, while
the terms false positives (FP) and false negatives (FN) correspond to the unex-
pected result and the missing result respectively. These terms are used to define:
Precision = TP

TP+FP and Recall = TP
TP+FN . In addition, we also present the

result of F-measure (or F1-score) which is a measure of accuracy that considers
both the precision and the recall to compute the score: F1 = 2× Precision×Recall

Precision+Recall .
F-measure result can be interpreted as a weighted average of the precision and
recall, where an score reaches its best value at 1 and worst score at 0 [4].

In our experiment, the concepts TP, FP e FN can be defined according to
the results obtained by the Fast Search with respect to the results previously
performed by the Full Search. It means that, for each word w submitted to the
PhoneticSearchPT , we define:

TP (w) = count
(
FastSearch(w,α) ∩ FullSearch(w, β)

)
(2)

FP (w) = count
(
FastSearch(w,α) /∈ FullSearch(w, β)

)
(3)

FN(w) = count
(
FullSearch(w, β) /∈ FastSearch(w,α)

)
(4)

where FastSearch(W,α) represents the list of words returned by a Fast
Search method performed to a given word w using a similarity level α, and
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FullSearch(W,β) is equivalent to the list of words returned by a Full Search
method performed to a given word w using a similarity level β.

Table 7 shows the average precision and recall, calculated based on the pre-
cision and recall of each word submitted to the Fast Search, compared to the
result of Full Search with β = 0.9. Lower values are observed in column Avg
Precision for α < 0.95 (value of FP is high). It means that FastSearch results
more similar words then FullSearch, even considering α > β. Column Avg Re-
call highlights the fact of FN is, in average, around 25% of TP , what means that
25% of words returned by FullSearch do not appear in the FastSearch result.
This loss also draws that not all words returned as “similar” by the Stringsim
function in the Full Search method are considered phonetically similar by the
PhoneticMapSimPT function in the Fast Search method.

Table 7. Precision, Recall and F-measure Results (β = 0.9)

α Avg Precision Avg Recall F-measure

0.80 0.1838% 0.8616% 0.3029
0.85 0.3014% 0.8529% 0.4454
0.90 0.4836% 0.7923% 0.6006
0.95 0.7342% 0.7028% 0.7182

The results obtained with full (string similarity) and fast (phonetic similarity)
methods are complementary. A hybrid approach can generate better results than
using one single alternative.

4 Related Work

Edit Distance (ED) (or Levenshtein Distance) [14] – ED(w1, w2) – calculates
the minimum number of operations (single-character edits) required to transform
string w1 into w2. ED can be also normalized to calculate a percentage similarity
instead of the number of operations needed to transform one string to another.

[9] presents a survey with the existing works on text similarity through par-
titioning them into three approaches. In addition, examples of string similarity
applications can be found in the literature:

– [18] used the Levenshtein distance to measuring differences on dialects pro-
nunciations over 27 Dutch dialects in a database.

– Hamming Distance calculates the number of bits (or characters) that are
different between two vectors (or strings) [11].

– Longest Commom Subsequence (LCS) finds the longest subsequence of two
strings that is as long as any other common subsequence [19, 1]. ROUGE-L
is an automatic method for machine translation evaluation based on LCS,
which empirical results showed that method is correlated with human judg-
ments [20]. AckSeer is “a search engine and a repository for automatically
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extracted acknowledgments in the CiteSeerX digital library”, using LCS to
evaluate disambiguation of abbreviations in the proposed dataset [21].

– Smith-Waterman distance was originally designed to identify similarities be-
tween linked DNA and protein sequencies [23]. The Smith-Waterman algo-
rithm compares segments of all possible lengths and optimizes the similarity
measure. In [24] we can find an application that uses the Smtih-Waterman
algorithm and Levenshtein Distance to detect plagiarism in academic papers.
Monge-Elkan distance [22] is a recursive variant of the Smith-Waterman dis-
tance function which assigns a relatively lower cost to a sequence of insertions
and deletions to identify equivalent data in multiple sources (“field matching
problem”).

– Jaro-Winkler distance is generally used to compare prefix of strings [3]. For
example, [7] adopted the Jaro-Winkler distance to compare the similarities
of Geography Markup Language (GML) nodes and ontology tree node.

– [3] compares different string distance metrics for name-matching tasks, in-
cluding edit-distance like functions, token-based distance functions and hy-
brid methods, concluding Monge-Elkan distance performed best among sev-
eral metrics.

Soundex is a phonetic matching scheme initially designed for English that
uses codes based on the sound of each letter to translate a string into a canonical
form of at most four characters, preserving the first letter [26]. For example,
“reynold” and “renauld” are both reduced to ”r543“. As the result, phonetically
similar entries will have the same keys and they can be indexed for efficient
search using some hashing method. However, Soundex fails to consider only the
initial portion of a string to generate the phonetic representation, which impairs
the phonetic comparison when words have more than 4-5 consonant phonemes
[10]. More commonly, Soundex also makes the error of transforming dissimilar-
sounding strings such as “catherine” and “cotroneo” to the same code, and of
transforming similar-sounding strings to diffrent codes.

State Set Index (SSI) [5] as an efficient solution for finding strings in a string
set that are similar to the query string. SSI is based on a trie (prefix index) that
is interpreted as a nondeterministic finite automaton and it implements a novel
state labeling strategy making the index highly space-efficient.

Fast Similarity Search (FastSS) [2] is an algorithm designed to find strings
similarities in a large database. This algorithm is based on ED metric. According
to the authors, in a dictionary that cointais n words, and given a maximum
number e of spelling errors, the FastSS algorithm creates an index of all n words
containing up to e deletions. Each query is mutated, at search time, to generate
a deletion neighborhood, which is compared to the indexed deletion dictionary.
The algorithm was tested and compared with NR-grep, a keyword tree, dynamic
programming, n-grams, and neighborhood generation using entries of the English
Dictionary, English Wikipedia and a chapter from the book Moby Dick.

The more important difference of our approach from these solutions is the
utilization of phonetic information in an indexed structure. This structure is well
adapted for calculating string similarity between misspelled words, since not all
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the characters may be relevant. In addition, non phonetic approaches may result
in high similarity values, but for different words with distinct phonetic.

5 Conclusions and Future Work

We presented an approach of fast phonetic similarity search coupled with an ex-
tended version of the WordNet dictionary. Our main contribution is the definition
of an index structured, called PhoneticMap that stores phonetic information to
be used by a novel string similarity search algorithm, which is described in detail.
We adapted the Wordnet dictionary to support this structure. We implemented
our approach using a relational database. The experiments showed that the al-
gorithm has good precision results, and that it executes faster than one version
of the algorithm that does not use the PhoneticMap. We also presented a string
similarity algorithm based on the notion of penalty. We compared this algo-
rithm with other string similarity solutions: it keeps the similarity values higher
for words with less than 4–6 differences. In contrast, it decreases and converges
to zero the similarity values for strings with more than 10 differences.

As future work, we plan to use our solution as the initial component of Med-
ical Records Information Extraction System to address the problem of dealing
with spelling errors in such extracting process. The approach is tailored to adapt
phonetic matching to use over large repositories and easily adaptable to different
languages, as English and Spanish, to create new instances for the PhoneticMap
structure, and the PhoneticMapSim and PhoneticSearch function. We plan to
explore the usage of machine learning methods to optimally tune the parameters
involved in the proposed hybrid similarity metrics, and to compare our proposed
solution with other phonetic search approaches.
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