
From Software Defined Network
To Network Defined for Software

Celio Trois
Departamento de Informatica

Universidade Federal do
Parana (UFPR)
Curitiba - Brazil

ctrois@inf.ufpr.br

Magnos Martinello
Departamento de Informatica

Universidade Federal do
Espirito Santo (UFES)
Espirito Santo - Brazil

magnos@inf.ufes.br

Luis C. E. de Bona
Departamento de Informatica

Universidade Federal do
Parana (UFPR)
Curitiba - Brazil

bona@inf.ufpr.br

Marcos D. Del Fabro
Departamento de Informatica

Universidade Federal do
Parana (UFPR)
Curitiba - Brazil

didonet@inf.ufpr.br

ABSTRACT
Nowadays, Big Data applications exchange huge amounts
of data, highly demanding network guarantees for band-
width and low latency. However, network equipments did
not provide a standard interface to control dynamically the
resources. Software-Defined Network (SDN) has emerged
to support network programmability, but it provides a pro-
gramming model devoted to network operators. This paper
presents the Network Overlay Framework (NoF), which en-
ables networks to be defined based on application require-
ments. NoF provides a programming language which al-
lows the application specialists to program the network. A
compiler translates NoF programs into instructions accord-
ing to the underlying network technology. To prove the ef-
fectiveness of NoF, programs were implemented to express
bandwidth guarantees on Hadoop traffic and also to route
Hadoop flows through overlay networks.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations; D.3.4 [Programming Languages]: Proces-
sors—Code generation, Compilers

Keywords
Software-Defined Networking, Network Overlay, Big Data

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SAC’15 April 13-17, 2015, Salamanca, Spain.
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-3196-8/15/04...$15.00.
http://dx.doi.org/10.1145/2695664.2696011

1. INTRODUCTION
Big Data processing takes advantages of cloud data cen-

ters to process large-scale data with high efficiency. Cloud
networks have particular requirements, such as end-to-end
quality of service and control over routing and latency. How-
ever, current network stack provides a best-effort service
model for hosts communication, which is not enough to sat-
isfy the on-demand data access requirements [5].

Software-Defined Networking (SDN) introduces new pos-
sibilities for network management and configuration. There
are different studies proposing high-level SDN programming
languages, but these works focus mostly on network policies
[3], providing higher-level abstractions targeted to network
operators. There are also works using SDN to optimize
the network for specific applications, by managing virtual
topologies and providing end-to-end communication [4, 7]
and by affording quality of service [2].

Unlike network operators, application specialists are, usu-
ally, not familiar with network definitions and concepts.
These professionals know exactly when the application will
exchange information, and which requirements are needed
for each communication phase. On one hand, there are high-
level languages, but they still require advanced networking
knowledge. On the other hand, there are punctual studies
to solve problems of specific applications. However, there
is a gap between these proposals to allow the specialists to
express their modifications on the network.

To overcome this gap, we present the Network Overlay
Framework (NoF). NoF was designed to provide high-level
abstractions, defining network according to the applications
on top of it. The abstractions include the (i) provisioning
and controlling virtual overlay network topologies. (ii) To
ensure bandwidth guarantees, (iii) to allow the scheduling
of the date/time and for how long the rules will affect the
network, and (iv) to exempt the need to know in which hosts
the application is being executed. These abstractions were
designed modularly to be activated on demand by applica-
tion specialists, in order to control the network resources at
runtime and according to the application needs. For NoF de-
sign, we assume that no modification is required on existing

user applications, and information from hosts and processes
can be used to trigger events to change the network state.
As a proof of concept, a set of NoF modules where im-

plemented to control a Hadoop cloud. A first experiment
demonstrated the expressiveness of NoF by managing Ha-
doop flows through overlapped topologies. In this experi-
ment, there was a reduction in Hadoop jobs execution time
above 27%. Other experiments were conducted to validate
bandwidth guarantees and application-based operations to
ensure quality of service (QoS). These experiments showed a
reduction in execution time varying between 18% and 66%.
This paper is organized as follow: Section 2 introduces

the motivation for this work. Section 3 presents the Net-
work Overlay Framework architecture, describing its lan-
guage, compiler and configuration engine. The experiments
and results are reported in Section 4 and finally, Section 5
presents the conclusion.

2. MOTIVATION
This work was motivated by the lack of artifacts that allow

specialists to define the network characteristics according
to application requirements. The existing works follow two
different approaches: raise the level of SDN programming
languages and tune the network for one specific application.
SDN has emerged to enable the network programmabil-

ity. Some controllers offer an API to enable the applications
to modify the network. Floodlight, POX, and Beacon are
examples of controllers that provide these APIs. There also
exist different higher-level SDN languages such as Frenetic,
FML and Procera [3].
SFNet [9] introduces an API allowing to query the con-

gestion state of the network and providing services such as
bandwidth reservation and multicast. PANE [1] provides
an SDN controller and an API to request network resources,
query the state of the network, or provide hints about future
traffic patterns. Merlin [6] framework implements logical
topologies and a high-level language that generates instruc-
tions for different switches and controllers.
All these approaches allow applications to modify the net-

work behavior. But they require advanced knowledge in
network operations, not providing adequate abstractions to
application specialists. Furthermore, the applications must
be modified to call the specific APIs to adjust the network.
There are also works focusing on network optimization

for specific applications. Wang et al. [7] studied Big Data
traffic patterns and proposed network configurations to opti-
mize Hadoop job scheduling by modifying the topology and
routing configuration mechanisms. Monga [4] proposed the
use of a virtual switch to provide end-to-end virtual circuit.
An API for QoS management in real-time interactive ap-

plications (multiplayer online games and simulation-based
e-learning) was implemented in [2]. Some network require-
ments were specified: update QoS in a flexible way; spec-
ify different network requirements for different data flows;
should allow QoS on data flows; and should be able to place
timing-based requirements on the network.
The development of NoF was motivated by two main fac-

tors not completely addressed in previous works: (i) the
absence of languages that can be used directly by applica-
tion specialists, and (ii) there exist few studies to improve
the application performance by programming the network.

3. NETWORK OVERLAY FRAMEWORK
Network Overlay Framework (NoF) is composed by a pro-

gramming language, a compiler and a mechanism to config-
ure the equipments. Figure 1 presents an overview of NoF
architecture, showing the interaction between these mod-
ules. The NoF language provides high-level building blocks
to control network topologies, forwarding paths and band-
width guarantees.

NoF
program

Compiler

Configuration Engine

NCOs*

NoF

Network/
Hosts

* NCOs = Network Configuration
Objects

Figure 1: NoF architecture overview.

The Compiler transforms NoF programs in Network Con-
figuration Objects (NCOs). These objects contain instruc-
tions to configure the network. The module called Config-
uration Engine is responsible for receiving the objects gen-
erated by NoF Compiler and installing the NCOs’ rules on
network equipments.

NoF Programming Language
NoF presents a high-level language composed by sets of op-
erations and services. The keywords used in the language
attempt to get closer to the nomenclature used by applica-
tion specialists.

Operations were divided into three groups: (i) Matching
operations can be done on traditional network fields (MAC
address, IP address, TCP port), but also on host informa-
tion such as hostname, system load, bandwidth usage or
the names of processes wherein new network connections
will be monitored. (ii) Timing operations allow services to
be scheduled; these operations specify when (date/time) the
configurations will be installed and for how long they will act
on the network. (iii) Query operations provide abstractions
to read network state, for example, link state, transmission
errors and bandwidth usage.

Services define the modifications that will be implemented
on the network. We have implemented a prototype of NoF
to attend the requirements presented in Section 2. These
services ensure bandwidth guarantee, manage overlay net-
works, and flow based forwarding. New services can be
added to attend other requirements such as latency or mul-
ticasting.

Figure 2 presents some examples of NoF programs. Figure
2.a shows one example where all hosts are monitored. When
the system load of any host gets higher than 90% so, the
new connections to process apache2 receive low priority on
QoS queues, and the HTTP traffic is redirected to other
instances of apache2. In the second example (Figure 2.b)
all hosts monitor new connections to processes hadoop and
hdfs. When new connections are received, NoF redirects
the flows of these connections through the specified virtual
topology.

Compiler
The Compiler is responsible for receiving NoF programs,
compiling and generating the NCOs. The Compiler is com-

a)NoF : {
operations(process name = (“apache2”) &&

system load =(“> 90”)),
services(qos = (“LOW”));

}
————————————————————————
b)NoF : {

operations(process name = (“hadoop”, “hdfs”)),
services(virt topo = (“spanning tree 1”));

}

Figure 2: Examples of NoF programs

posed by four main modules: Intent Manager, Topology
Manager, Network Abstraction and Host Information.
Intent Manager is responsible for managing the abstrac-

tions for different SDN languages or controllers APIs. This
module implements a generic interface and uses design pat-
terns with adapters to allow NoF to be extended with new
components. The adapters contain skeleton codes to trans-
late the NoF language services into specific controllers code.
Topology Manager maintains all network topology infor-

mation, including switches, links and hosts. This module
is responsible for identifing which equipment shall be con-
figured. For example, to perform QoS between two hosts,
Topology Manager identifies all equipements involved in com-
munication, applies the right fields in the skeleton received
from Intent Manager, and finally, generates the NCOs.
The Network Abstraction Module is responsible for man-

aging virtual network topologies and also for implementing
flow delivery mechanisms to provide end-to-end communi-
cation. When new virtual topologies are instantiated, this
module keeps track of which flows has to be redirected to
which virtual port, allowing different matches to be for-
warded through different virtual topologies. This module
also generates NCOs to collect information from hosts.

Configuration Engine
The Configuration Engine is in charge of receiving and exe-
cuting the configurations contained in the NCOs. This mod-
ule was implemented as a client/server architecture. One
host runs the server that is called Coordinator process, and
all other hosts run the Client processes. This paper focuses
only demonstrating the operation of NOF. The overhead im-
posed by architecture, as well as performance measures, will
be presented in future work.
The Coordinator process is responsible for receiving the

NCOs and applying their configuration commands on net-
work equipments. Both Coordinator and Client processes
implement locally an array of NCOs.
Clients only receive NCOs generated by the Host Infor-

mation Module, whose are specific to get host information
(NCOh). The NCOh specifies a command line to be exe-
cuted in the host console. The command line is executed
periodically, and if the result fits the specified match, the
Client generates a new NoF program to apply the services
specified in NCOh. This program is compiled, and the new
NCOs are sent to the Coordinator process.

4. EVALUATION
Experimental results were conducted using Hadoop as data-

intensive computing platform. Hadoop relies on a distributed

filesystem called HDFS to store and manage data in the
cloud. The evaluation methodology was structured in two
parts. The first part consisted of analysing the impact on
jobs execution time when redirecting Hadoop flows through
overlay networks controlled by NoF. The second part was
devoted to study the bandwidth allocation effect on end-to-
end flow communications.

A fully virtualized testbed was created with hosts running
Hadoop. These hosts (Virtual Machines - VMs) were inter-
connected through a virtual network topology with spine
and leaf switches. The virtual topology contains two spine
switches (ovs1 and ovs2) and four leaf switches (ovs3, ovs4,
ovs5 and ovs6). Each leaf switch was connected to three
VMs. All virtual links were configured to 1Gbps. The spine
switches links were numbered 1 to 4, from left to right. The
link from ovs1 to ovs3 was named link1, the link between
ovs1 and ovs4 was named link2, and so forth.

Testbed Configuration
OpenVSwitch v1.4.6 was used to create the virtual switches,
and a POX controller (v0.2.0) was used to configure the
switches by using OpenFlow v1.0. VirtualBox v4.1.12 was
used for machine virtualization. For cloud management,
Cloudera 5.1.1 was installed in the VM called CloudMaster
(CM). Hadoop (v2.3.0) Yarn ResourceManager and HDFS
NameNode were installed on HadoopMaster (HM). In the
VMs named Slave[1-10] (S[1-10]), the Hadoop clients Yarn
NodeManager and HDFS DataNode were installed.

This virtual environment was configured on a SuperMi-
cro H8QG6 server (AMD Opteron 6136, 800MHz, 24 cores,
94GB RAM, 2x1TB HDDs SATA2) running Ubuntu 12.04,
64 bits. All VMs ran Ubuntu 12.04 64 bits, configured as
following: CloudMaster with 6 virtual processors and 12GB
RAM; HadoopMaster with 6 virtual processors and 9GB
RAM; and all Slave with 2 virtual processors and 3GB RAM.

Experiments
To generate Hadoop traffic used in the experiments, two
programs were used: TeraGen and TeraSort. They are often
used to benchmark and test network bottlenecks on Hadoop
clouds [8]. TeraGen generates random data to be written in
HDFS DataNodes and TeraSort conducts the sorting.

In the first experiment (exp0) TeraGen was used to gener-
ate 1GB of data. In the first step, only one spine switch was
used so, all leaf switches communicate through only ovs1.
In the second step a NoF program (nofp0) was executed to
create an overlapped topology by enabling the second spine
switch ovs2, and to modify flows generated by Hadoop con-
nections, dividing them through both spine switches (ovs1
and ovs2). Once again TeraGen was used to generate 1GB
of data. Figure 3 shows the cumulative throughput of this
experiment. The cumulative throughput represents the sum
of inbound and outbound traffic of all links of the switch.

In this experiment, it was also measured the execution
time. In the first step, the execution time was 210 seconds.
The second step, using two spine switches, TeraGen took 152
seconds. After the changes effected by NoF, it was possible
to perceive that the traffic was divided between both spine
switches resulting in a reduction of 27.6% in execution time.

In the next three experiments (exp1, exp2 and exp3) Ter-
aGen was used to generate respectively, 100MB, 500MB and
1GB. After that, TeraSort was executed to sort the gener-
ated data. The experiments exp4, exp5 and exp6 show the

ovs1 ovs2
second step

 link4
 link3
 link2
 link1

ovs1
0,0

500,0M

1,0G

1,5G

2,0G
cu

m
ul

at
iv

e
th

ro
ug

hp
ut

 (b
ps

)

first step

Figure 3: Cumulative throughput using overlaid
topologies with one and two spine switches.

results for sorting, respectively, 100MB, 500MB and 1GB.
Iperf was used to create a TCP background congestion traf-
fic during all these experiments.
A NoF program (nofp1) was created to prioritize network

traffic for new Hadoop and HDFS connections. When hosts
received new connections to these processes, new rules for
traffic prioritization were installed. In the first step (s1) the
Hadoop jobs ran without any NoF program so, no connec-
tions were prioritized. In the second step (s2), the program
nofp1 was called before the execution of Hadoop jobs and,
upon each new connection, QoS rules were installed to pri-
oritize Hadoop traffic.
The experiments were repeated thirty times and the exe-

cution time was measured. The relative percentage change
of each experimenti (rpcexpi) was calculated by using s̄1
and s̄2 mean values. s̄1 was used as the reference value
(rpcexpi = (s̄1−s̄2)∗100

s̄1
). Relative percentage change and

standard deviation are presented in Figure 4.

exp1 exp2 exp3 exp4 exp5 exp6
0

20

40

60

80

100

re
la

tiv
e

pe
rc

en
ta

ge
 c

ha
ng

e(
%

)

experiments

Figure 4: Relative percentage change of Hadoop ex-
ecution time without prioritization compared with
NoF applying bandwith guarantee.

In all experiments, there was a significant reduction in
execution time after running the NoF program. The best
values were obtained when Hadoop generated data (exp1,
exp2 and exp3). The measured gain ranged from 30% to
66%. This fact occurred because there was a more intensive
use of the network when HDFS writes data. In experiments
where the data were sorted, there was improvement on ex-
ecution time, but not too expressive, varying from 18% to
21%. The difference is explained because HDFS move Ha-
doop jobs closer to where the data is located [8], avoiding
unnecessary transfers.

These experiments showed that NoF can be used to mod-
ify network at runtime, according to application require-
ments. The NoF programs created to perform this evalu-
ation are similar to those presented in Figure 2. These ab-
stractions offered by NoF can be easily used by specialists
to meet their application requirements.

5. CONCLUSION
In this paper, we presented the Network Overlay Frame-

work (NoF), which provides a high-level language designed
to be used by application specialists. A prototype of NoF
was implemented to demonstrate that the abstractions pro-
vided by NoF enable managing virtual topologies, setting
the communication paths and the prioritizing the traffic.
We conducted experiments in a Hadoop cloud, using NoF
programs to modify network behavior, based on techniques
employed by other authors to improve the Hadoop [4, 7].

As future work, NoF can be extended, and new abstrac-
tions can be developed, for example, to manage virtual ma-
chine migration and network function virtualization. An
API can also be provided to allow NOF functionalities to be
used directly from user applications, providing more power
and flexibility in managing the network resources.

Acknowledgments: The authors would like to thanks
CAPES that is providing partial funding to this research.

6. REFERENCES
[1] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and

S. Krishnamurthi. Participatory networking: An api for
application control of sdns. In Proc of the ACM
SIGCOMM 2013 conference on SIGCOMM, pages
327–338. ACM, 2013.

[2] T. Humernbrum, F. Glinka, and S. Gorlatch. A
northbound api for qos management in real-time
interactive applications on software-defined networks.
Journal of Communications, 9(8), 2014.

[3] D. Kreutz, F. Ramos, P. Verissimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig. Software-defined
networking: A comprehensive survey. arXiv preprint
arXiv:1406.0440, 2014.

[4] I. Monga, E. Pouyoul, and C. Guok. Software defined
networking for big-data science. SuperComputing, 2012.

[5] S. Sakr, A. Liu, D. M. Batista, and M. Alomari. A
survey of large scale data management approaches in
cloud environments. Communications Surveys &
Tutorials, IEEE, 13(3):311–336, 2011.

[6] R. Soulé, S. Basu, P. J. Marandi, F. Pedone,
R. Kleinberg, E. G. Sirer, and N. Foster. Merlin: A
language for provisioning network resources. arXiv
preprint arXiv:1407.1199, 2014.

[7] G. Wang, T. Ng, and A. Shaikh. Programming your
network at run-time for big data applications. In Proc
of the first workshop on Hot topics in software defined
networks, pages 103–108. ACM, 2012.

[8] T. White. Hadoop: the definitive guide: the definitive
guide. ” O’Reilly Media, Inc.”, 2009.

[9] K.-K. Yap, T.-Y. Huang, B. Dodson, M. S. Lam, and
N. McKeown. Towards software-friendly networks. In
Proc of the first ACM asia-pacific workshop on
Workshop on systems, pages 49–54. ACM, 2010.

