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Abstract

We present two approaches to time expres-
sion identification, as entered in to SemEval-
2015 Task 6, Clinical TempEval. The first
is a comprehensive rule-based approach that
favoured recall, and which achieved the best
recall for time expression identification in Clin-
ical TempEval. The second is an SVM-based
system built using readily available compo-
nents, which was able to achieve a competi-
tive F1 in a short development time. We dis-
cuss how the two approaches perform relative
to each other, and how characteristics of the
corpus affect the suitability of different ap-
proaches and their outcomes.

1 Introduction

SemEval-2015 Task 6, Clinical TempEval (Bethard et
al., 2015), was a temporal information extraction task
over the clinical domain. The combined University
of Sheffield/Federal University of Parana (UFPRSh-
effield) team focused on identification of spans and
features for time expressions (TIMEX3), based on
specific annotation guidelines (TS and TA subtasks).

For time expressions, participants identified ex-
pression spans within the text and their corresponding
classes: DATE, TIME, DURATION, QUANTIFIER,
PREPOSTEXP or SET.1 Participating systems had
to annotate timexes according to the guidelines for
the annotation of times, events and temporal rela-

1There was no time normalisation task in Clinical TempEval

tions in clinical notes – THYME Annotation Guide-
lines (Styler et al., 2014) – which is an extension of
ISO TimeML (Pustejovsky et al., 2010) developed
by the THYME project.2 Further, ISO TimeML ex-
tends two other guidelines: a) TimeML Annotation
Guidelines (Sauri et al., 2006), and b) TIDES 2005
Standard for the Annotation of Temporal Expressions
(Ferro et al., 2005). Clinical TempEval temporal ex-
pression results3 were given in terms of Precision,
Recall and F1-score for identifying spans and classes
of temporal expressions.

For Clinical TempEval two datasets were provided.
The first was a training dataset comprising 293 doc-
uments with a total number 3818 annotated time ex-
pressions. The second dataset comprised 150 docu-
ments with 2078 timexes. This was used for evalua-
tion and was then made available to participants, after
evaluations were completed. Annotations identified
the span and class of each timex. Table 1 shows the
number of annotated timex by class in each dataset.

We present a rule-based and a SVM-based ap-
proach to time expression identification, and we dis-
cuss how they perform relative to each other, and how
characteristics of the corpus affect outcomes and the
suitability of the two approaches.

This article is organised as follows: Sections 2
and 3 describe the rule-based system and the SVM
approach that we used in Clinical TempEval; and Sec-

2http://thyme.healthnlp.org/ (accessed 27 Mar.
2015)

3http://alt.qcri.org/semeval2015/task6/
index.php?id=results (accessed 27 Mar. 2015)



Class Training Evaluation
DATE 2583 1422
TIME 117 59
DURATION 433 200
SET 218 116
QUANTIFIER 162 109
PREPOSTEXP 305 172
Total 3818 2078

Table 1: Time expressions per dataset

tion 4 presents the final results and some discussion
comparing the results of both approaches.

2 HINX: A Rule-Based Approach

HINX is a rule-based system developed using
GATE4 (Cunningham et al., 2011). It executes a
hierarchical set of rules and scripts in an information
extraction pipeline that can be split into the 3 mod-
ules: 1) text pre-processing; 2) timex identification;
and 3) timex normalisation, which are described be-
low. These modules identify and normalise temporal
concepts, starting from finding basic tokens, then
grouping such tokens into more complex expressions,
and finally normalising their features. An additional
step was included to produce the output files in the
desired format.

2.1 Text Pre-processing

This module is used to pre-process the documents
and identify the document creation time (DCT).

HINX used GATE’s ANNIE (Cunningham et al.,
2011) – a rule-based system that was not specifically
adapted to clinical domain – to provide tokenization,
sentence splitting and part of speech (POS) tagging.
We used the Unicode Alternate Tokenizer provided
by GATE to split the text into very simple tokens
such as numbers, punctuation and words. The Sen-
tence Splitter identifies sentence boundaries, making
it possible to avoid creating a timex that connects
tokens from different sentences or paragraphs. POS
Tagging produces a part-of-speech tag as an annota-
tion on each word or symbol, which is useful in cases
such as identifying whether the word “may” is being
used as a verb or as a noun (name of the month).

We use rules written in JAPE, GATE’s pattern
matching language, to identify the DCT annotation

4http://gate.ac.uk (accessed 27 Mar. 2015)

reference within the “[meta]” tag at the beginning
of each document. The DCT value was split into
different features to be stored at the document level –
year, month, day, hour, minute, and second.

2.2 Timex Identification

This module uses a set of hierarchical JAPE rules to
combine 15 kinds of basic temporal tokens into more
complex expressions, as described in the sequence of
steps given below:

• Numbers: A set of rules is used to identify
numbers that are written in a numeric or a non-
numeric format, as numbers as words (e.g. “two
and a half”).

• Temporal tokens: Every word that can be used
to identify temporal concepts is annotated as a
basic temporal token, such as temporal granular-
ities, periods of the day, names of months, days
of week, names of seasons, words that represent
past, present and future references, and words
that can give an imprecise sense to a temporal
expression (e.g. the word “few” in “the last
few days”). Additionally, as a requirement for
the Clinical TempEval task, we also included
specific rules to identify those words that corre-
sponded to a timex of class PREPOSTEXP (e.g.
“postoperative” and “pre-surgical”).

• Basic expressions: A set of rules identifies the
basic temporal expressions, including explicit
dates and times in different formats (e.g. “2014”,
“15th of November”, “12:30”), durations (e.g.
“24 hours”, “the last 3 months”), quantifiers, and
isolated temporal tokens that can be normalised.

• Complex expressions: Complex expressions
are formed by connecting two basic expressions
or a basic expression with a temporal token.
These represent information corresponding to
ranges of values (e.g. “from July to August
this year”), full timestamps (e.g. “Mar-03-2010
09:54:31”), referenced points in time (e.g. “last
month”), and precise pre/post-operative periods
(e.g. “two days postoperative”).

• SETs: Temporal expressions denoting a SET
(number of times and frequency, or just fre-
quency) are identified by this specific set of
rules (e.g. “twice-a-day”, “three times every
month”, “99/minute”, “every morning”).



• Imprecise expressions: These kinds of ex-
pressions comprise language-specific structures
used to refer to certain imprecise periods of
time, including imprecise expressions defined
with boundaries (e.g. “around 9-11 pm yester-
day”), imprecise values for a given temporal
granularity (e.g. “a few days ago”, “the com-
ing months”), precise and imprecise references
(e.g. “that same month”, “the end of last year”,
“the following days”), imprecise sets (e.g. “2
to 4 times a day”), and vague expressions (e.g.
“some time earlier”, “a long time ago”).

2.3 Timex Normalisation
As the above identification process is run, the ba-
sic temporal tokens are combined to produce more
complex annotations. Annotation features on these
complex annotations are used to store specific time
values, for use by the normalisation process. Such
features comprise explicit values like “year=2004”,
references to the document creation time/DCT (e.g.
“month=(DCT.month)+1” for the expression “in
the following month”, and “day=(DCT.day)-3” in
“three days ago”), and a direct reference to the
last mentioned timex in the previous sentences (e.g.
“year=LAST.year” for the timex “April” in “In Febru-
ary 2002,... Then, in April,...”).

The normalisation process uses these features to
calculate corresponding final values. It also captures
a set of other characteristics, including the precision
of an expression, and whether or not it represents a
boundary period of time. This last one is used to split
the DURATION timexes into two different DATE
expressions, as explicitly defined in the THYME An-
notation Guidelines (e.g. “between November/2012
and March/2013”).

3 Using an SVM-Based Approach

GATE provides an integration of LibSVM (Chang
and Lin, 2011) technology with some modifications
and short cuts enabling effective rapid prototyping
for the task of locating and classifying named entities.
This was used to quickly achieve competitive results.
An initial system was created in a few hours, and al-
though a couple of days were spent trying parameter
and feature variants, the initial results could not be
improved. No development effort was required, the
system being used as “off the shelf” software.

State of the art machine learning approaches to
timex recognition often use sequence labeling (e.g.
CRF) to find timex bounds (UzZaman et al., 2013),
then a use separate instance-based classification step
(e.g. with SVM) to classify them (Sun et al., 2013).
Our approach uses SVM to implement separate
named entity recognizers for each class, then makes
a final selection for each span based on probability.
GATE’s LibSVM integration incorporates the uneven
margins parameter (UM) (Li et al., 2009), which
has been shown to improve results on imbalanced
datasets especially for smaller corpora. In position-
ing the hyperplane further from the (smaller) positive
set, we compensate for a tendency in smaller cor-
pora for the larger (negative) class to push away the
separator in a way that it doesn’t tend to do when suf-
ficient positive examples exist for them to populate
their space more thoroughly, as this default behaviour
can result in poor generalization and a conservative
model. Since NLP tasks such as NER often do in-
volve imbalanced datasets, this inclusion, as well as
robust default implementation choices for NLP tasks,
make it easy to get a respectable result quickly using
GATE’s SVM/UM, as our entry demonstrates. The
feature set used is:

• String and part of speech of the current token
plus the preceding and ensuing five.

• If a date has been detected for this span using
the Date Normalizer rule-based date detection
and normalization resource in GATE, then the
type of date in this location is included as a
feature. The mere presence of such a date anno-
tation may be the most important aspect of this
feature. Note that this Date Normalizer was not
used in HINX, where a bespoke solution was
developed.

• As above, but using the “complete” feature on
the date, to indicate whether the date present in
this location is a fully qualified date. This may
be of value as an indicator of the quality of the
rule-based date annotation.

A probabilistic polynomial SVM is used with an
order of 3. Probabilistic SVMs allow us to apply con-
fidence thresholds later, which further permits us: 1)
to tune to the imbalanced dataset and task constraints,
2) to use the “one vs rest” method for transforming
the multiclass problem to a set of binary problems,



SVM Threshold P R F1
Linear 0.2 0.68 0.59 0.63
Linear 0.4 0.76 0.55 0.64
Poly (3) 0.2 0.64 0.61 0.63
Poly (3) 0.25 0.69 0.61 0.65
Inc. hinx feats 0.25 0.72 0.54 0.62

Table 2: SVM Tuning Results

and 3) to select the final class for the time expression.
In the “one vs rest” approach, one classifier is cre-
ated for each class, allowing it to be separated from
all others, and the class with the highest confidence
score is chosen. An UM of 0.4 is selected on the
basis of previous work (Li et al., 2005).

Two classifiers are trained for each class; one to
identify the start of the entity and another to iden-
tify the end. This information is then post-processed
into entity spans first by removing orphaned start or
end tags and secondly by filtering out entities with
lengths (in number of words) that did not appear in
the training data. Finally, where multiple annota-
tions overlap, a confidence score is used to select the
strongest candidate. A separate confidence score is
also used to remove weak entities.

Table 2 shows negligible difference between a lin-
ear and polynomial SVM (degree 3). A confidence
threshold of 0.25 was selected empirically. Task train-
ing data was split 50:50 to form training and test sets
to produce these figures. An additional experiment
involved including the output from the HINX rule-
based system as features for the SVM. This did not
improve the outcome.

4 Results and Discussion

We submitted 5 runs using the HINX system and 2
runs using our SVM approach to Clinical TempEval.
Results of both systems are shown in Table 3. For
completeness, both SVM runs submitted are included.
However the only difference between the two is that
SVM-2 included the full training set, whereas SVM-1
included only the half reserved for testing at develop-
ment time, and submitted as a backup for its quality
of being a tested model. As expected, including more
training data leads to a slightly superior result, and
the fact that the improvement is small suggests the
training set is adequate in size.

The 5 HINX runs shown in Table 3 correspond

Span Class
Submission P R F1 P R F1
HINX-1 0.479 0.747 0.584 0.455 0.709 0.555
HINX-2 0.494 0.770 0.602 0.470 0.733 0.573
HINX-3 0.311 0.794 0.447 0.296 0.756 0.425
HINX-4 0.311 0.795 0.447 0.296 0.756 0.425
HINX-5 0.411 0.795 0.542 0.391 0.756 0.516
SVM-1 0.732 0.661 0.695 0.712 0.643 0.676
SVM-2 0.741 0.655 0.695 0.723 0.640 0.679

Table 3: Final Clinical TempEval Results

to the following variants: 1) using preposition “at”
as part of the timex span; 2) disregarding timexes
of class QUANTIFIER; 3) using full measures span
for QUANTIFIERs (e.g. “20 mg”); 4) considering
measure tokens as non-markable expressions; and
5) disregarding QUANTIFIERs that represent mea-
sures. The TIMEX3 type QUANTIFIER was targeted
in different submitted runs as it was not clear how
these expressions were annotated when comparing
the training corpus to the annotation guidelines.

The HINX system got the best Recall across all
Clinical TempEval systems in both subtasks. The
low precision of the rule-based system was, however,
a surprise, and led us to examine the training and
test corpora in detail. While we would expect to
see inconsistencies in any manually created corpus,
we found a surprising number of repeated inconsis-
tencies between the guidelines and the corpora for
certain very regular and unambiguous temporal lan-
guage constructs. These included: a) timex span and
class inconsistencies, b) non-markable expressions
that were annotated as timexes, c) many occurrences
of SET expressions that were not manually annotated
in the corpus, and d) inconsistencies in the set of
manually annotated QUANTIFIERs. Had these in-
consistencies not been present in the gold standard,
HINX would have attained a precision between 0.85
and 0.90 (Tissot et al., 2015).

We suggest that inconsistent data such as this will
tend to lower the precision of rule-based systems.
To illustrate our point, we used the HeidelTime sys-
tem (Strötgen et al., 2013) to produce a result on this
year’s dataset, and found that precision/recall were
low (0.44; 0.49) despite this being a demonstrably
successful system in TempEval-3. Similar low re-
sults can be observed from the ClearTK-TimeML
(0.593; 0.428), used to evaluate the THYME Cor-
pus (Styler et al., 2014). Both systems were not



adapted to the clinical domain and run “as-is”. Styler
et al. (2014) suggest that clinical narratives introduce
new challenges for temporal information extraction
systems, and performance degrades when moving
to this domain. However, they do not consider how
much the performance can be impaired by the incon-
sistencies found in the annotated corpus.

The appearance of a superior result by our machine
learning system, which is agnostic about what infor-
mation it uses to replicate the annotators’ assertions,
is therefore not to be taken at face value. A machine
learning system may have learned regularities in an
annotation style, rather than having learned to ac-
curately find time expressions. This is an example
of data bias (Hovy et al., 2014). Machine learning
systems have a flexibility and power in finding non-
obvious cues to more subtle patterns, which makes
them successful in linguistically complex tasks, but
also gives them a deceptive appearance of success
where the irregularity in a task comes not from its
inherent complexity but from flaws in the dataset.
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