
Integrating approximate string matching
with phonetic string similarity

Junior Ferri1, Hegler Tissot1, and Marcos Didonet Del Fabro1

C3SL labs, Universidade Federal do Paraná, Curitiba, Brazil
junior.ferri@ufpr.br, hegler@gmail.com, marcos.ddf@inf.ufpr.br

Abstract. Well-defined dictionaries of tagged entities are used in many
tasks to identify entities where the scope is limited and there is no need
to use machine learning. One common solution is to encode the input
dictionary into Trie trees to find matches on an input text. However,
the size of the dictionary and the presence of spelling errors on the in-
put tokens have a negative influence on such solutions. We present an
approach that transforms the dictionary and each input token into a
compact well-known phonetic representation. The resulting dictionary is
encoded in a Trie that is about 72 percent smaller than a non-phonetic
Trie. We perform inexact matching over this representation to filter a
set of initial results. Lastly, we apply a second similarity measure to fil-
ter the best result to annotate a given entity. The experiments showed
that it achieved good F1 results. The solution was developed as an en-
tity recognition plug-in for GATE, a well-known information extraction
framework.

Keywords: Entity Recognition, Metaphone, Text Tagging, Trie, Active Nodes,
Fast Similarity Search

1 Introduction

An Information Extraction (IE) pipeline is composed by tasks aiming at extract-
ing information from unstructured sources and making it available in specific and
structured formats [1,12]. The Named Entity Recognition (NER) task aims at
finding and classifying specific entities within a text, such as organizations, cities
or drug names [4,14].

Several approaches use well-defined dictionaries as input for NER tasks [16].
The dictionaries contain lists of classified entities. They are appropriate solutions
either when the scope is limited and when there is no need to use machine
learning techniques, or when they could be used as input for a machine learning
solution. Existing solutions often use indexing structures such as suffix trees
and arrays, q-grams or q-samples. However, it is not enough to use only index-
like structures to support string exact matching algorithms. It is necessary to
take into account the existence of spelling/typing errors in the input text, thus
supporting Approximate String Matching [10]. The size of the dictionary may
also be an issue, specially if there are several dictionaries used by the same task.

2 Junior Ferri, Hegler Tissot, Marcos Didonet Del Fabro

Approximate String Matching (ASM) has been widely studied in different
contexts, including Information Extraction (IE) and in the Named Entity Res-
olution (NER) task. One of the central studies was the survey by Navarro et.
al [10]. In this paper, however, we do not intend to be exhaustive in this con-
text, but to narrow the scope with recent approaches that provide Trie-based
solutions for Approximate String Matching.

Recent studies coupling Tries with inexact matching are the works from [5]
and [7]. They introduce the notion of valid (also called active) nodes while search-
ing through the tree nodes. The active nodes have a calculated Edit Distance
(ED) value which is lesser or equal than a max allowed ED value. They experi-
mentally showed that these approaches were superior than q-Grams based solu-
tions. In [8], the authors improve the active nodes computation, by incrementally
computing them and storing them in a cache, creating the ICAN/ICPAN algo-
rithms. The IncNGTrie [17] algorithm maintains a smaller set of active nodes,
improving the performance. The META approach [3] presents a solution based
on matching over compact indexes and that supports top-k queries. The most
recent work from [15] handles approximate matching using efficient Trie imple-
mentations, though in the context of abbreviations, not full words. However,
these approaches, or similar solutions, have not experimented using phonetic in-
formation from the text and dictionary, such as applying conversion using the
Soundex [18] or Metaphone [11] algorithms. There are approaches that com-
bine different similarity measures into a super-metric [6], though using distinct
solutions than the Trie-based encoding, which has been shown to be effective.

In this paper we present an approach that couples a phonetic conversion al-
gorithm with a Trie-based encoding in a NER task. First, we transform the given
dictionary into a phonetic representation using the Metaphone algorithm using a
well-known API. The phonetic representation is encoded in a Trie, and the Trie
approximate matching is developed based on the active nodes algorithm from
[5]. Each input token is also converted and than matched. The main advantage
of this encoding is the reduced size, which may be important when using several
dictionaries. It produces a Trie around 72 per cent smaller than a Trie with the
complete strings. In order to avoid a low precision, since the representation is
smaller, we apply a second string similarity metric to return the best result, this
time over the original string, linked by the Trie structure.

We have executed a set of experiments showing the applicability of this two-
phase matching solution. The approach is implemented as a Gazeteer plug-in1

for the GATE suite [2], a known information extraction framework. The imple-
mentation enables setting execution parameters, including the string metrics.

This paper is organized as follows. Section 2 presents our solution integrating
inexact matching and a Trie-based ASM solution. Section 3 shows the experi-
ments. Section 4 has the final conclusions and future work.

1 http://gitlab.c3sl.ufpr.br/faes/asm/tree/master

http://gitlab.c3sl.ufpr.br/faes/asm/tree/master

Integrating approximate string matching with phonetic string similarity 3

2 Inexact matching and phonetic encoding in a NER task

In the following sections we describe the tree major steps on how we integrate
inexact matching with phonetic encoding.

2.1 Input tokens extraction

We define the NER task as the following, adapting the definition from [14] to add
the input dictionary. Given a document D, composed by a sequence of tokens
T={t1, ..., tn}, the NER task extracts from D a set of fields F = {f1, ..., fk},
where each field is an attribute-value pair fi = 〈a, v〉. The value v is a token or
a set of tokens matched with a key k, which has a corresponding label value lv,
both available in entries from an input dictionary ID = {〈k1, lv1〉, ..., 〈kj , lvj〉}.
For instance, we could have a field fi = 〈City, London〉, where the City label is
extracted from a dictionary after matching an input token with the London key.
In other words, it produces a list with annotated input tokens with labels from
the input dictionary.

A token is a finite sequence of characters representing a subset of another
finite sequence of characters, both conforming to the same alphabet. A token is
extracted through the definition of delimiters dstart, dstop to identify its start
and end positions within a given sequence. Given a sequence of characters S,
with size |S|, the size of each token t from T , is 0 < |t| ≤ |S| and the sum of
all tokens size is

∑
|T1..n| ≤ |S|. The tokenizing rules depend on the tokenizer

chosen. In our case study, we will use an existing tokenizer which is a plugin
from the GATE framework.

Before the matching process, each individual token and the keys from the in-
put dictionary are converted into a phonetic representation. We apply a phonetic
conversion function:

CF (x : String) : String = tph (1)

where tph is a new phonetic token. In a large part of dictionary-based NER solu-
tions, there is no CF function, so they perform exact or approximate matching.
In our solution, the matching process is done using only the newly produced pho-
netic tokens. The phonetic conversion function could be existing phonetic con-
version algorithms, such as the Metaphone algorithm, which provides a compact
phonetic representation for the English language. Table 1 presents some exam-
ples on how the Metaphone algorithm phonetically represents English words. We
included samples in two common utilization of Gazeteers: cities and medication
names.

2.2 Phonetic Approximate String Matching

The matching process to find a named entity considers only full tokens or set of
full tokens. For example, if we have an input key Brazil and the current input

4 Junior Ferri, Hegler Tissot, Marcos Didonet Del Fabro

Table 1. Examples of phonetic representations resulting from Metaphone.

Word Phonetic representation

medroxalol MTRKSLL
amoxicillin AMKSSLN
bromfenac BRMFNK
New York NYRK

Avondale Estates AFNTLSTTS
Washington WXNKTN

token is Brazilian, the matching process does not consider this dictionary entry
as a valid matching, if it is not within an Edit Distace (ED) limit.

We implement an algorithm that uses a Trie tree to encode the dictionary
and to perform the inexact matching with the input tokens, using the phonetic
converted versions of the tokens and the dictionary. Our algorithm implements
the idea from [5], having a set of active nodes while searching the tree nodes,
which have an Edit Distance lesser than a given threshold value. Briefly, the
algorithm checks whether each character from an input token matches with
a given Trie node and its descendents. If it does not match, the node ED is
increased by 1. This search process stops when a node has the ED value larger
then the given limit, when it is then deactivated. This need to be done for
each previously activated node. The core algorithm is the same, with two main
differences. First, the data structure has additional information to support NER
matching, containing the following fields:

– character: the current character representing the node;
– child: an array containing the child nodes;
– entryEnd: defines if a given node identifies the end of a dictionary entry. It

is used for composed entries;
– activeNode: identifies if the node is an active node, i.e., its assigned ED

value is within a given threshold;
– currentEd: the current ED value;
– entries: stores the dictionary entries for a given node. One node may contain

more than one dictionary entry. In this case the input token is annotated
more than one time;

– dictionaryEntry: it contains the complete entry and the label used to
annotate the input tokens.

As second difference, we add an extra step to allow the matching with entities
composed with more than one token, for instance, a composite city name such
as New York. This means that the matching is not performed only token by
token, but after an unsuccessful token match, the algorithm continues to verify
if it could match as a composed token. The result of the matching process is a
list of candidate entities to be annotated. Utilizing compact phonetic structures
diminishes the size of the Trie, however, it has the drawback of increasing the
number of matchings. For this reason, it is necessary to add a filtering step,
which is explained in the following section.

Integrating approximate string matching with phonetic string similarity 5

2.3 Filtering the results

The results from the matching phase are filtered by applying a similarity function
Sim(t : String, e : String) : Float = s, where t is the input token, e is the
dictionary entry and s is a similarity value between both parameters, with 0 <
s ≤ 1. However, to avoid any information loss, the parameters t and e are the
original input token and entry, not the phonetic representation used along the
previous step. The approach does not define a new similarity function, but it
uses existing ones, such as the Jaro-Winkler or StringSim [13] metrics.

The result of the similarity function is used in two filtering rules. First, we
set up a similarity threshold, called minimum similarity, to be considered (e.g.,
0.7). Second, we rank the remaining entries and we choose only the best result.

The result of the filtering phase is a list with the annotated entities. Each
entity contains the start and end positions in the input text, so it can be inte-
grated with NER frameworks, the annotation labels associated and the final ED
value.

3 Experiments

We have implemented a plug-in for the GATE suite to evaluate our approach,
which is freely available for download2, as well as the dictionary, the input text
and the complete raw results. In addition to the matching algorithm, we took
special attention on providing a fully configurable plug-in, which means sev-
eral configuration parameters can be easily modified. The main parameters are
the following: maxEditDistance, minSimilarityAccepted, similarityClass/Method,
conversionClass/Method (their names are self explanatory). We also provide pa-
rameters for setting up the tokenizer and the format of the dictionary, though
we do not detail them here.

The input dictionary is a list with 76,912 English words obtained from the
WordNet [9] database. The input entities with errors are randomly selected from
a collection of common misspellings from Wikipedia3. It contains the correct
word and a version with a misspelling error. We used 1,000 input words, all with
at least one misspelling error.

We applied our approach using two main settings. First, we used the Meta-
phone4 conversion function prior to the matching. Second, we used the original
tokens. We used the Jaro-Winkler metric for filtering the results.5 We have used
the StringSim metric as second similarity metric, which keeps the similarity
values higher for words with lower differences.

We used three different Edit Distance values: 0, 1 e 2. The 0 value was used
to evaluate the effect of the conversion function on already eliminating errors.

2 https://gitlab.c3sl.ufpr.br/faes/asm/tree/master
3 https://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings
4 Implementation from the commons-codec-1.10.jar library, available at https://

commons.apache.org/proper/commons-codec/download_codec.cgi
5 Implementation from lucene-suggest-5.2.1.jar, at http://lucene.apache.org/

https://gitlab.c3sl.ufpr.br/faes/asm/tree/master
https://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings
https://commons.apache.org/proper/commons-codec/download_codec.cgi
https://commons.apache.org/proper/commons-codec/download_codec.cgi
http://lucene.apache.org/

6 Junior Ferri, Hegler Tissot, Marcos Didonet Del Fabro

The limit of 2 was chosen because a higher value would produce a too low recall.
For each ED value, we used 3 minimum similarities: 0.7, 0.8 and 0.9. Values
smaller than 0.7 returned too many results. We evaluated the results in terms
of: a) precision - the fraction of the relevant annotations among all the returned
ones; b) recall - the fraction of relevant annotations among the total; and c) the
F1 measure - the harmonic average between both. We used the list with the
correct words to verify these results.

3.1 Trie construction

Table 2 shows a comparison between the size of the produced Trie using the
original text (no phonetic conversion) and using the Metaphone function.

Table 2. Trie size for 76,912 entries

Original text Metaphone

Input chars 658.774 372.226
Avg. entries size 8,6 4,8

Trie nodes 240.484 67.602

The utilization of the Metaphone conversion on the list of 76,912 entries
diminished the number of the input characters by 43%, from 658,774 to 372,226.
After encoding the Trie, the number of nodes was 72% smaller, from 240,484 to
67,602. We do not measure the performance results on the Trie creation, since
it is constructed only once. However, the reduced size yields loss of information.
The impact of such codification is explained in the next section.

3.2 Phonetic approximate matching

The resulting scores are presented in Tables 3(a) to 4(b). First, we present the
results when using the Metaphone conversion. Second, the results without a
conversion function.

The choice of good parameters values is important to achieve good results.
For instance, choosing a low ED value may minimize the choice of higher simi-
larity thresholds, since it affects a lesser number of entries. Combined variations
of ED and minimum similarity results yield results with a large variation. For
instance, the recall values vary from 64.2% to 89.4%. The experiments results
may be used to guide on the choice of the metrics and this threshold.

We can see that the highest precision (87.8%) from Table 3(a) was obtained
with the ED value equals to 0. This means that the choice of this phonetic rep-
resentation also had an impact and it absorbed partially the misspelling errors,
since every word had at least 1 error. However, the recall was smaller, 62.7%,
obtaining an F1 score of 73.2%. Increasing the ED by 1 had a positive impact
on the recall, since we had 84.4% of recall. This combination yielded the best

Integrating approximate string matching with phonetic string similarity 7

Table 3. Metaphone conversion

(a) Jaro-Winkler

ED Min Sim Precision Recall F1

0 0.7 81.3% 64.2% 71.7%
0 0.8 84.4% 64.2% 72.9%
0 0.9 87.8% 62.7% 73.2%
1 0.7 81.5% 84.4% 82.9%
1 0.8 81.5% 84.4% 82.9%
1 0.9 82.6% 82.8% 82.7%
2 0.7 78.3% 82.3% 80.3%
2 0.8 78.7% 82.3% 80.4%
2 0.9 79.7% 81.5% 80.6%

(b) StringSim

ED Min Sim Precision Recall F1

0 0.7 86.7% 66.5% 75.3%
0 0.8 90.7% 66.3% 76.6%
0 0.9 94.9% 51.9% 67.1%
1 0.7 85.7% 89.5% 87.6%
1 0.8 86.4% 89.3% 87.8%
1 0.9 89.3% 72.9% 80.3%
2 0.7 84.0% 88.7% 86.3%
2 0.8 84.0% 88.5% 86.2%
2 0.9 87.3% 73.0% 79.5%

F1 score, 82.9%. The precision diminished on about 2% when augmenting the
ED. In addition, the execution time of the search in the tree started on around
15 ms, raising gradually for higher EDs.

Without the phonetic conversion, as shown in Table 4(a), the best precision
was obtained with ED ≤ 1 (86.6%), with the same result with 3 filtering sim-
ilarity metrics. The best precision was obtained with ED ≤ 2. The best recall
was obtained with a similar configuration than with the conversion. Finally, the
best F1 results were obtained with ED ≤ 2 and with filtering similarity ≥ 0.7
and ≥ 0.8. A higher filtering value yielded a too low precision. We do not con-
sider ED equals to 0, since the result is an exact matching. The execution times
have a similar order of magnitude, independently from using the Metaphone or
without conversion. This is an interesting result since we could argue that the
phonetic conversion could be chosen without additional time cost.

The results from StringSim were obtained with a very similar choice of pa-
rameters, for both cases. However, the filtering metric yielded a better precision
in both cases, 87.8% with conversion and 88.2% without conversion. The perfor-
mance results were slightly worse, though not very significant.

Table 4. No phonetic conversion

(a) Jaro-Winkler

ED Min Sim Precision Recall F1

1 0.7 86.6% 72.0% 78.6%
1 0.8 86.6% 72.0% 78.6%
1 0.9 86.6% 70.7% 77.9%
2 0.7 82.6% 84.4% 83.5%
2 0.8 82.6% 84.4% 83.5%
2 0.9 82.6% 82.8% 82.7%

(b) StringSim

ED Min Sim Precision Recall F1

1 0.7 89.3% 74.3% 81.1%
1 0.8 89.5% 74.3% 81.2%
1 0.9 91.8% 65.3% 76.3%
2 0.7 87.0% 89.4% 88.2%
2 0.8 86.9% 89.2% 88.1%
2 0.9 88.8% 73.1% 80.2%

8 Junior Ferri, Hegler Tissot, Marcos Didonet Del Fabro

We have also conducted experiments using the Double Metaphone conversion.
This method has an even more compact representation: the Trie size is about
95% smaller, with 10,325 nodes, since in this representation the tokens have only
4 characters. However, it increases too much the number of the matched entries,
thus the filtering metrics need to be executed over too many entries. For this
reason, we discarded such approach.

To summarize, we can see from these tables that the parameters with better
F1 were obtained with ED equals to 1 and 2, and with a small variation in the
filtering similarity threshold. Comparing the three methods, the best F1 scores
were better with the StringSim metric. This indicates that a phonetic approach
with filtering is a valid solution when choosing the right parameters and filtering
function. The performance results were similiar from both metrics and conversion
methods. Considering the phonetic conversion, the increase on precision was not
very high and the performance results were similar. However, the smaller size of
the Trie justifies the choice of a conversion method. These findings shows that
the initial matching on the phonetic version acts like an initial filter, in order to
reduce the size of the entries.

4 Conclusions

We presented an hybrid approach that integrates approximate string matching
with phonetic string similarity. We have implemented a version of an existing
algorithm to encode a Trie and to apply inexact string matching. We changed
the input of the algorithm by using a compact phonetic representation, using the
Metaphone algorithm. The size of the Trie was 72% smaller, thus having a large
impact on the Trie size. The Trie inexact phonetic matching acts like an initial
filter of similar words, and a second similarity metric, applied on the original
text, does the final filtering. The best F1 scores were achieved with the StringSim

metric. This means it can be used when the size of the Trie is important (for
instance, when there are several dictionaries used on a desktop application). We
have seen that the choice of the right parameters is also important, otherwise
the F1 scores may decrease. The phonetic conversion did not have a significant
impact on performance, making it a good choice.

We have implemented the approach as a Gazeteer plug-in for GATE, a well-
known information retrieval framework, with setup parameters that can be mod-
ified, including the metrics presented. This flexibility can be used to conduct
further experiments with different settings, from the initial tokenizer, the exe-
cution parameters, up to the phonetic algorithm and the similarity measure, in
order to obtain better final F1 scores in a future work. All the results and the
plug-in are freely available.

Acknowledgments This work was partially funded by Project Sistema de
Monitoramento de Poĺıticas de Promoção da Igualdade Racial (SNPPIR).

Integrating approximate string matching with phonetic string similarity 9

References

1. H. Cunningham. Information Extraction, Automatic. Encyclopedia of Language
and Linguistics, 2nd Edition, 2005.

2. Hamish Cunningham, Valentin Tablan, Angus Roberts, and Kalina Bontcheva.
Getting more out of biomedical documents with gate’s full lifecycle open source
text analytics. PLOS Computational Biology, 2013.

3. D. Deng, G. Li, H. Wen, H. V. Jagadish, and J. Feng. Meta: An efficient matching-
based method for error-tolerant autocompletion. Proc. VLDB Endow., 9(10):828–
839, June 2016.

4. R. Grishman and B. Sundheim. Message understanding conference-6: A brief his-
tory. In COLING, volume 96, pages 466–471, 1996.

5. S. Ji, G. Li, C. Li, and J. Feng. Efficient interactive fuzzy keyword search. In
Proceedings of the 18th WWW, WWW ’09, pages 371–380, Madrid, Spain, 2009.
ACM.

6. L. Lamontagne and I. Abi-Zeid. Advances in Case-Based Reasoning: 8th ECCBR
2006 Fethiye, Turkey, September 4-7, chapter Combining Multiple Similarity Met-
rics Using a Multicriteria Approach, pages 415–428. Springer, 2006.

7. G. Li, S. Ji, C. Li, and J. Feng. Efficient type-ahead search on relational data: A
tastier approach. In Proceedings of the 2009 ACM SIGMOD, SIGMOD ’09, pages
695–706, Providence, Rhode Island, USA, 2009. ACM.

8. G. Li, S. Ji, C. Li, and J. Feng. Efficient fuzzy full-text type-ahead search. The
VLDB Journal, 20(4):617–640, August 2011.

9. George A. Miller. Wordnet: A lexical database for english. Commun. ACM,
38(11):39–41, November 1995.

10. G. Navarro. A guided tour to approximate string matching. ACM Comput. Surv.,
33(1):31–88, March 2001.

11. L. Philips. Hanging on the metaphone. Computer Language Magazine, 7(12):38–44,
1990.

12. S. Sarawagi. Information extraction. Found. Trends databases, 1(3):261–377, March
2008.

13. H. Tissot, G. Peschl, and M. Didonet Del Fabro. Fast phonetic similarity search
over large repositories. In 25th , DEXA 2014, Munich, Germany, September 1-4,
pages 74–81. Springer, 2014.

14. A. Culotta; T. Kristjansson; A. McCallum; P. Viola. Corrective feedback and
persistent learning for information extraction. Artificial Intelligence, 170(14):1101–
1122, 2006.

15. M. Stonebraker W. Tao, D. Deng. Approximate string joins with abbreviations.
Proc. VLDB Endow., 11(1).

16. D. C. Wimalasuriya and D. Dou. Ontology-based information extraction: An in-
troduction and a survey of current approaches. Jour. of Information Science, 2010.

17. C. Xiao, J. Qin, W. Wang, Y. Ishikawa, K. Tsuda, and K. Sadakane. Efficient
error-tolerant query autocompletion. VLDB Endow., 6(6):373–384, April 2013.

18. J. Zobel and P. Dart. Phonetic string matching: Lessons from information retrieval.
In the 19th SIGIR, SIGIR ’96, pages 166–172, Zurich, Switzerland, 1996. ACM.

	Integrating approximate string matching with phonetic string similarity

