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Abstract—Data analytics and scientific computing are two
modern applications that in recent years have substantially
changed their computation and communication needs, requiring
additional processing capability and bandwidth to be able to keep
pace with current demands. These applications are commonly
processed within data centers, exchanging enormous volumes of
data, rapidly stressing existing network infrastructures. Thus,
it is crucial for data center operations and management to be
able to understand and classify the communication demands
of these applications. The traditional approaches for classifying
application traffic are port-based and Deep Packet Inspection,
both presenting issues with current network technology. Some
recent works propose using machine learning plus statistical
information collected from application flows to classify traffic.
Applications running in data centers present communication
patterns which can be recognized through their traffic matrices.
So, the main contribution of this paper is a method that explores
the textural information extracted from these matrices to classify
the data center traffic using machine learning techniques. As a
proof-of-concept, we implemented this method in a system named
DCTraCS. The experimental dataset was gathered from two real
data centers, collecting the traffic matrices of MapReduce and
a set of scientific applications every second for a period of 30
minutes. For assessing our proposal, we compared it with other
machine learning techniques for classifying application traffic
found in current literature. Results show that our approach
achieved the highest accuracy, classifying correctly over 99%
of our data center applications.

I. INTRODUCTION

In recent years, enterprises and universities are increasingly
employing data centers and large clusters for running a variety
of applications. These range from social networking and
gaming to computation-intensive applications such as indexing
Web content, data analysis, and scientific computing [1]. Sci-
entists are using these applications to create and predict com-
plex phenomenas, for example, weather forecasting, prediction
of natural disasters, bacterial profiling, animal genotyping, and
so forth. Applications running on data centers have also a
wide range of business areas, such as, analyzing large volumes
of customer data or logs from monitoring real-time network,
simulating product designs, modeling complex workflows, and
exploring many aspects of social networks.

An interesting aspect is that the vast majority of these
applications express similar computation and communication

patterns [2], meaning that they tend to transmit the same
amount of data across the same computing nodes regardless
of the input data. These patterns are intensely researched and
were used for optimizing the communication on networks-on-
chip [3], graphics processing units (GPUs) [4], multiprocessor
architectures [5], and ameliorating the performance of appli-
cations [6].

For improving the quality of the results, these applications
are increasingly demanding computational power, being ex-
ecuted in dedicated computing systems, taking many hours
or even days to complete their executions, and moving huge
volumes of data across the computing nodes, quickly stressing
the capabilities of modern networks. So, the understanding
of the communication demands and classifying the applica-
tions within data centers has become a major challenge in
networking research [7]. The correct identification of which
applications are using the data center resources is essen-
tial in several management activities, such as scaling and
expansion planning [8], traffic engineering [9], detection of
anomalies [10, 11], monitoring [12], virtual machine (VM)
placement [13], and energy saving [14].

Existing proposals for classifying data center communica-
tions fall into three categories where each one has its own
Achilles’ heel. The first approach uses port-based classification
process and has been recognized as being inaccurate as many
applications adopted dynamic port numbering to overcome
the performance limitations of networks. Also, to bypass the
security policies imposed by firewalls, some applications use
standard port numbers assigned by IANA (eg, 80-HTTP or
22-SSH) on their own communication protocols [15].

Another approach is based on Deep Packet Inspection
(DPI) which consists of examining the payloads of the pack-
ets for classifying traffic. This approach not only imposes
significantly higher computational complexity but also re-
quires specific knowledge of the application protocols [16].
Furthermore, many applications are adopting cryptographic
methods to ensure security in the communication between
their computational nodes and therefore preventing DPI from
classifying any traffic.

In a third category, Machine Learning (ML) techniques are
used for traffic classification [17, 18, 19, 20]; these methods



work by exploiting intrinsic and statistical flow information for
feeding the ML classifiers. For instance, packet size average
and variance, total number of packets or bytes, flow duration,
server and client port numbers, and many others. All of
these ML methods use the same type of representation (flows
statistics) and, to get out of this local minimum, it is necessary
to investigate other information that allows discriminating the
different types of network traffic.

Unlike existing traffic classification techniques, we propose
a novel method employing characteristics (features) extracted
from the applications’ traffic matrices (TMs), as an input for
the classifiers. A TM can be formalized as a matrix M , where
each position M[i][j] holds the number of bytes transmitted
during a time t, from node i to node j. For classifying, we
consider the application TM as an image where every pixel
(pij) represents the amount of bytes of M[i][j]. The image is
drawn in a gray gradient, where black means most intensive
communication and white means no communication.

The problem is that the data center task scheduler can
randomly allocate the processes on the computing nodes, thus
generating a different visual pattern for each execution. To
remedy this problem, we developed a function for “unscram-
bling” the TMs. This function creates a visual texture for each
application, regardless of the processes allocation order.

Our method was implemented in a system named DCTraCS
(Data Center Traffic Classification System) and, for assess-
ing it, we applied two well-known textural representations,
Uniform LBP (ULBP) [21] and Robust LBP (RLBP) [22] for
extracting the feature vectors. Then we used different machine
learning classifiers and the best results, though, have been
achieved by Gaussian Support Vector Machines (SVM) [23]
and Random Forest (RF) [24].

We carry out a comparison of classification performance us-
ing our method and other ML approaches, described in current
literature. Our experimental dataset has been gathered from
MapReduce [25] and a set of scientific applications running
on real data centers, collecting the TMs every second for a
period of 30 minutes. Our approach resulted in a classification
accuracy of over 99%, while the best result for the other
methods was 87.6%. This finding revealed that the textural
features extracted from the TMs are more discriminative and
robust for classifying data center traffic.

The rest of this paper is structured as follows. Section II
presents the background and related works; Section III shows
the implementation details of DCTraCS; Section IV details the
experiments executed in two real data centers, and finally, our
conclusions are discussed in Section V.

II. BACKGROUND AND RELATED WORKS

From reviewing current literature, we found several works
using Machine Learning (ML) methods for traffic classifica-
tion. In this section, we briefly summarize the ML process
and then we present some relevant works which achieved
significantly high classification accuracy.

ML is the general name for a series of different algorithms
(such as Linear Regression, Decision Tree, Support Vector

Machine, etc) designed to use training datasets previously
collected for making predictions. It can be divided into two ar-
eas: regression for predicting continuous variables, and pattern
recognition for assigning predefined class labels to particular
observations, grouping them into discrete categories.

Pattern recognition tasks can be grouped into two main
sub-categories: supervised and unsupervised learning. Un-
supervised learning methods deal with unlabeled instances
where the classes have to be inferred from the unstructured
dataset. Typically, unsupervised learning employs a clustering
technique to group the unlabeled samples based on certain
similarity (or distance) measures. In contrast, in supervised
learning, the class labels in the dataset used to build the
classification model are known. Supervised learning has been
used for traffic classification so, next we present some relevant
works.

In 2006 Bernaille et al. [26] proposed a technique using an
unsupervised ML (Simple K-Means) algorithm that classified
different types of TCP-based applications using the first few
packets of the traffic flow. Their experiments aimed to classify
ten applications, achieving a correct identification over 80%.
Eerman et al. [17] classified the traffic using supervised (Naı̈ve
Bayes classifier) and unsupervised learning (Expectation Max-
imization clustering algorithm). Their testbed was composed
of traffic traces collected from University of Auckland, trying
to classify eight applications. Their results show an accuracy
of over 91%.

Soysal and Schmidt [27] investigated and evaluated the
classification performance of three supervised ML algorithms
(Bayesian Networks, Decision Trees, and Multilayer Per-
ceptrons) for classifying six different types of traffic. Their
datasets were acquired from the National Academic Network
of Turkey, and the accuracy reported in their paper ranges from
95% to 97%. Zhang et al. [19] developed a feature selection
algorithm which pre-filters most of the features and further
uses a wrapper method to select the best features for a specific
classifier. Their approach was evaluated using three classifiers
from the traces captured from different networks, achieving
more than 94% flow accuracy and 80% byte accuracy on
average.

Fahad et al. [20] proposed a method for identifying both
optimal and stable features relying on a multi-criterion fusion-
based feature selection technique. They used traffic dataset
collected from the University of Cambridge, classifying twelve
applications with five classifiers (K-Nearest Neighbours, Naı̈ve
Bayes, Decision Tree, Support Vector Machine, and Logistic
Regression), and getting an accuracy ranging from 70% to
97%. Apart from these works, there were some surveys
published [15, 7] reporting existing techniques for traffic
classification using ML.

The current state-of-the-art for traffic classification has
employed ML based essentially on statistical information
collected from network flows for creating feature vectors that
feed the classifiers. In contrast to previous proposals, our
approach considers a holistic perspective of all application
flows by “taking pictures” from the traffic and using their



textural information as input for ML classifiers.

III. DATA CENTER TRAFFIC CLASSIFICATION SYSTEM

Considering that parallel applications present communica-
tion patterns, in an earlier work [28] we observed that each ap-
plication has a singular TM, which could be used to distinguish
it from the other applications. So, in this work, we propose
using the visual textures expressed by the applications’ TMs
for classify them. Visual texture is strictly two-dimensional
and it can be defined as something that allows identifying
different things, such as plaid, stripes, a brick wall, or a piece
of burlap.

To evaluate our proposal for classifying the application
traffic, we developed the Data Center Traffic Classification
System (DCTraCS)1. The system architecture is shown in
Fig. 1 and explained in the following sections.
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Fig. 1. DCTraCS processing overview.

The basic operation of DCTraCS is first to acquire the TMs.
Next, we apply a novel function for unscrambling the TMs,
rendering different visual textures for each application, regard-
less the order processes were allocated on computing nodes.
Then, well-known visual descriptors are used for extracting
the feature vectors used by the classifiers for identifying the
applications.

A. Data Acquisition: Getting the Traffic Matrices

The first step of a pattern recognition system is the data
acquisition. For DCTraCS, the input depends on collecting the
applications’ TMs. As stated before, each TM is represented
as a matrix M[i][j] holding the number of bytes transmitted
between each pair of computing nodes. The entire execution of
an application can be seen as a set of multiple TMs, collected
for every time t → M[i][j](t).

The TMs are normalized to their maximum values, form-
ing a grayscale image, where cells in black are the most
communicative pair of nodes and white cells indicate that no
communication happened. An important thing to note is that
the manner of collecting the TMs is orthogonal to DCTraCS,
which means that it might be obtained using different tech-
niques [29, 30].

1DCTraCS is publicly available at: www.inf.ufpr.br/ctrois/dctracs/

B. Preprocessing: The Unscrambling Function

Usually, the collected data for pattern recognition can not
be easily processed by computer algorithms and some prepro-
cessing must be performed for facilitating the classification.
In the context of this work, when the users want to execute an
application in a data center environment, they have to submit it
to a job tracker or queuing system. This system is responsible
for automatically allocating the required computing resources
and returning a list of computing nodes (cn1, cn2, ..., cnn).
The problem happens when the processes are randomly allo-
cated on the computing nodes, precluding the recognition of
applications by the proposed method.

Fig. 2 shows TMs when the application’s processes (ap1,
ap2, ..., apn) are allocated in an ordered manner (i.e. ap1
in cn1, ap2 in cn2, ..., apn in cnn) and when the processes
are randomly distributed on the computing nodes (“Hosts in
Random Order” column). If the processes are allocated in a
random order, it is not possible to identify any visual textures
because the TMs are composed of many scattered points.
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Fig. 2. The TMs of cavity2s and poiseuille2d applications for processes
allocated in an ordered and in a random order.

For tackling this problem, we developed an unscrambling
function that reorders the TM lines and columns, rendering a
different texture for each application. The basic premise of this
function is, for each line, “bringing” the most communicating
pair of nodes close to the matrix main diagonal. As we can
see, in the two right columns of Fig. 2, after applying the
unscrambling function, it is possible to visually distinguish the
applications looking at the generated textures, independently
of the hosts allocation order.

The Algorithm 1 presents the unscrambling function. For
every line in the TM, it first locates the column with the
highest value (above the main diagonal), and then swaps the
entire column, bringing it close to the main diagonal. As
the computing nodes are the x and y-axes of the TM, it is
mandatory also to swap the line situated in the same position
of the swapped column.

C. Feature Extraction

After collecting and unscrambling the TMs, the next step
consists of extracting the feature vector. As stated before, our



Algorithm 1 The unscrambling function
1: function UNSCRAMBLEMATRIX(mat)
2: max← 0
3: max pos← −1
4: for line← 0, sizeof(mat) do
5: for col← (line+ 1), sizeof(mat) do
6: . Find the position of the highest value for each line
7: if mat[line][col] > max then
8: max← mat[line][col]
9: max pos← col

10: end if
11: end for
12: if max pos > 0 then
13: . Bring higher value column/line close to the matrix main diagonal
14: for i← 0, sizeof(mat) do
15: aux = mat[i][line+ 1] . swap column
16: mat[i][line+ 1] = mat[i][max pos]
17: mat[i][max pos] = aux
18: aux = mat[line+ 1][i] . swap line
19: mat[line+ 1][i] = mat[max pos][i]
20: mat[max pos][i] = aux
21: end for
22: end if
23: end for
24: end function

proposal considers the visual representation of the TMs, which
can be seen as a texture, as depicted in Fig. 2.

Texture classification techniques were explored by several
authors in recent years, and as a result a great number of
descriptors can be found in the literature, such as Grey Level
Co-ocurrence Matrices (GLCM) [31], Gabor filters [32], Local
Phase Quantization (LPQ) [33], and Local Binary Pattern
(LBP) [21]. Among all these descriptors, the LBP gained
significant popularity because of its high discriminative power
and computational simplicity, which makes it possible to
analyse images in challenging real-time settings. With that in
mind, in this work, we used two optimizations of LBP as the
texture descriptors.

For implementing LBP in DCTraCS, we consider C as each
cell in the TM. The value of C is compared with its eight
neighbors cells, starting with the top-left, and following a
clockwise order. If C is greater than the neighbor’s value, write
”0”, otherwise write ”1”, resulting in an 8-digit binary number
which is converted to decimal, as exemplified in Fig. 3; this
is the LBP value calculated for that cell. The same operation
is performed with all cells in the TM generating a histogram
as a 256-dimensional feature vector.

Fig. 3. The LBP operator

The first optimization of LBP implemented in this work
is called ULBP [21], it introduces a concept based on the
transition between 0’s and 1’s in the LBP image, reducing the
length of the histogram to a 59-dimensional feature vector.

A binary LBP code is considered uniform if the number of
transitions is less than or equal to 2, also considering that the
code is seen as a circular list. That is, the code 10110111 is
not considered uniform because it contains four transitions.
But the code 11110111 is characterized as uniform because it
has only two transitions.

The second optimization is named RLBP, which considers
the input image as being noisy and proposes changing one
single bit from the original LBP, only if this modification
turns it in a uniform pattern. In the previous example, if we
change the second bit from 0 to 1 (11110111), it will result
in a uniform pattern, which is a more meaningful pattern for
the texture representation and classification.

D. Classifiers

We tested different supervised machine learning classifiers
but the best results were produced by the SVM with Gaussian
kernel [23] and the RF [24]. SVM is a popular classification
algorithm, which builds a hyperplane in a high-dimensional
space that may be used either for classification or regression.
Different from other linear discriminant functions, it provides
the optimal hyperplane for separating two classes.

The RF is an ensemble approach that uses decision tree
predictors. The rationale behind ensemble methods is that a
group of weak learners (in this case the decision trees) can
come together to form a strong learner. One of the advantages
of the RF is that they are quite fast and able to deal with
unbalanced data.

IV. EXPERIMENTAL SETUP AND EVALUATION

For evaluating our proposal, we collected data from two
different computing systems, an Intel based data center and a
High-Performance Computing (HPC) machine. We extracted
the TMs of 12 scientific applications and also the TMs of
the two most expressive phases of MapReduce applications,
comparing our approach with four methods used for applica-
tion classification. The results and the discussion are reported
throughout this section.

A. Experimental Testbeds

1) Intel Based (data center A): This computing system
is composed of 32 Lenovo PCs each with Intel quad-core
3.2Ghz processors, 8GB RAM, 1TB HD, 1 Gigabit Ethernet,
running Linux Debian 8.2 and the latest available version of
Disco MapReduce2 (v0.5.4). These computers are connected
to a 48 port Gigabit Ethernet Pica8 P-3290 switch running
the operating system PicOS v2.6.4. This switch supports
OpenFlow v1.4 through Open vSwitch3 (v2.0) integration.

2) BlueCrystal Phase 3 (data center B): This system is a
HPC machine belonging to the University of Bristol4 which
is comprised of 223 base blades, where each blade has 2.6
GHz SandyBridge processor with 16 cores, 64GB RAM, and
a 1TB SATA disk. Besides these “base blades,” there are also

2http://discoproject.org/
3http://openvswitch.org/
4https://www.acrc.bris.ac.uk/acrc/phase3.htm



(a) Scientific Applications
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Fig. 4. Communication patterns of studied applications.

100 blades that can host dual GPGPUs, and 18 large memory
blades each containing 256GB of memory. It runs Scientific
Linux (v6.4), Torque (v4.2.4.1)5 plus Moab (v7.2.9)6 as the
queuing system, and the mpich2 (v1.4.1p1)7 as the standard
MPI.

B. Scientific Applications and MapReduce

As stated before, we tested our approach with two different
types of applications commonly executed in data centers,
ie, MapReduce and scientific applications. For creating the
experimental dataset, we ran these applications on 128 nodes,
collecting their TMs every second for a period of 30 minutes8.

1) Scientific Applications: In our evaluation, we measured
the TMs of scientific applications for simulating fluid flows
by means of a lattice Boltzmann method, implemented using
the OpenLB library [34]. We randomly selected 12 sample
applications distributed with this open-source library; their
TMs are shown in Fig. 4a, identified from Class 1 to Class
12. All TMs presented in Fig. 4 were preprocessed, meaning
that the unscrambling function was applied to them.

2) MapReduce: Is often used to solve problems when a
vast amount of input information can be processed concur-
rently with a large number of computers (nodes). Usually,
MapReduce takes advantage of data locality, processing it
on or near the storage assets. In this computation phase, no
communication occurred, and the collected TMs were “blank”.

For evaluating MapReduce, we collected the TMs from
Disco application examples9. After gathering the TMs, we
analysed them and could identify two different classes of
communications, which are presented in Fig. 4b. The oper-
ations Map and Reduce have a similar communication pattern
(Class 13), presenting communication only from the master
node to all other nodes and vice-versa. On the other hand, the

5http://www.adaptivecomputing.com/products/open-source/torque/
6http://www.adaptivecomputing.com/products/hpc-products/moab-lite/
7https://www.mpich.org/
8This dataset is publicly available at: www.inf.ufpr.br/ctrois/dctracs/dataset/
9https://github.com/discoproject/disco/tree/develop/examples/

data shuffling operation (Class 14) is network intensive where
the communication randomly occurs among multiple pairs of
nodes, not expressing a singular pattern, as shown in Fig. 4b.

C. Gathering and Processing the TMs

For gathering the TMs in the data center A, we use the same
method described in our previous work [28], installing the
traffic measurement rules in each Software-Defined Network-
ing (SDN)-enabled switch, while the SDN controller keeps
periodically collecting the statistics for generating the traffic
matrices; the gathering process took on average 0.34 seconds.

Data center B presented a challenge as BlueCrystal Phase 3
had certain restrictions in place, meaning that no permissions
were given for accessing network devices. To combat this, we
developed a new solution for collecting the TMs, using the
strace Linux utility for intercepting all the network related
system calls. These system calls were recorded to a file and
parsed on each computing node for extracting the total amount
of bytes transmitted to and received from all other nodes. At
an adjustable time t, the computing nodes sent the parsed data
to a master node which consolidated it into the TM for the
time t. In this approach, the average time for acquiring the
TMs was 0.51 seconds.

The average time for applying the unscrambling function
was 35 µs and for extracting the feature vectors; the computing
time was 34 µs for both ULBP and RLBP.

D. Classification

For assessing the classification methods reported in this
section, we used the following methodology. We executed each
method ten times and, for every run, the input for the classifiers
were created by randomly splitting the collected TMs in 2/3
as the training set and 1/3 as testing set, meaning that for
each class, approximately 1200 entries were used for training
and 600 entries for testing.

We compared our classification results with the state-of-
the-art by extracting the feature vectors of four existing
works that achieved significantly high classification accuracy:



TABLE I
FEATURE VECTORS USED IN RELATED WORKS.

Reference Feature vector

Eerman et al. [17]

total number of packets
average packet length (client to server)
average packet length (server to client)
average packet length (bidirectional)
flow duration
average data packet length
average packet inter-arrival time

Fahad et al. [20]

server port
total number of packets with PUSH bit
total number of bytes sent in the initial window (server to client)
total number of RTT samples

Soysal and Schmidt [27]

server port number
client port number
total number of packets
total number of bytes
flow duration
service type
flags type
protocol type

Zhang et al. [19]

server port
minimum segment size (client to server)
total number of bytes sent in the initial window (server to client)
total number of bytes sent in the initial window (client to server)

Eerman [17], Fahad [20], Soysal [27], and Zhang [19]10; the
information used for creating their respective feature vectors
is presented in Table I.

For every experiment, we tuned the classifiers as follows.
The kernel parameters γ and C for the Gaussian SVM were
empirically defined through a grid search and fivefold cross-
validation using the training set. This operation was also
applied to find the number of trees for the RF classifier. All
the experiments were carried out using scikit-learn [35], an
open-source machine learning library in Python.

Fig. 5 shows the accuracy SVM and RF for classifying the
applications. As can be seen, the best overall accuracy was
obtained with visual textures extracted from the TMs. SVM
achieved better results for classifying our approach, achieving
98.9% when the feature vector was created using RLBP and
99.0% with ULBP. The accuracy of other methods was higher
with the RF classifier, with 75.8%, 87.6%, 61.6%, and 85.8%
for Eerman, Fahad, Soysal, and Zhang, respectively.
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Fig. 5. Accuracy of classifiers.

We observed in Fig. 5, that the feature vectors described in

10For simplicity, when referring to these works, we used only the first
author’s surname.

the previously discussed literature (Eerman [17], Fahad [20],
Zhang [19], and especially Soysal [27]) did not achieve the
level of accuracy as reported in their respective papers. We
believe that the contributing factor to this discrepancy was
that all scientific applications use the same server port (TCP
port number 22) for encrypted communication and, not being
a discriminative feature for classifying these applications.

To evaluate output quality of our approach, we plotted
the Receiver Operating Characteristic (ROC) curves of SVM
classifier. This curve is created by plotting the true positive
rate on the Y axis against the false positive rate on the X axis.
The top left corner of the plot is the ideal point, with a false
negative rate of zero, and a true positive rate of one, meaning
that a larger area under the curve (AUC) is usually better.
ROC curves are typically used in binary classification and, for
plotting multiclass ROC curves, we computed the ROC curve
for each class, comparing it against the other classes [36].

Fig. 6. ROC curve of DCTraCS using ULBP and SVM.

Fig. 6 shows the ROC curve of DCTraCS using ULBP. The
values in parenthesis next to the classes’ numbers show the
AUC. The figure was enlarged to show the details of the upper
left corner of the curves, showing that Class 12 presented the
most problems in the classification, followed by Class 5.

The confusion matrix (Fig. 7) shows that Class 12 was 27
times wrongly predicted as Class 1. This problem probably
happened because, as can be seen in Fig. 4, Class 12 presents
few textural information since this application exchanged
information only across 16 of 128 available computational
nodes. Class 5 was wrongly predicted 12 times, mostly being
confused with Class 11. Despite these problems, the percent-
age of misclassification is relatively low.

Finally, Fig. 8 illustrates the average classification time nor-
malised to the maximum value11. Our first observation is that
RF was faster than SVM in all cases, this can be explained by
the very different nature of the algorithms design. The results
show that Eerman [17], Fahad [20], and Soysal [27] achieved

11In our testbed, the highest classification time was 158 µs, computed when
SVM classified DCTraCS (ULBP).



Fig. 7. Confusion matrix of DCTraCS using ULBP and SVM.

the highest classification speeds with the RF classifier, slightly
higher than 20% of the highest measured time.
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Fig. 8. Normalized classification time.

It is possible to observe a difference of 20% when SVM
classified the two implementations of LBP. This variation
occurred because, during the training phase, the SVM needed
more support vectors for ULBP than for RLBP. With SVM the
fastest time was for Eerman [17], followed by Zhang, taking
just under 40% of the maximum time. When comparing the
different approaches with the RF classifier, we can see that
DCTraCS is about 10% slower than the other methods.

E. Discussion

The time measured for RF to classify DCTraCS is around
10% higher than that of other approaches. This difference in
our testbed corresponds to 17.8 µs; considering that a data
center application may take many hours for executing, this
time is negligible. On the other hand, the accuracy of our
method is less than 1% of the optimal solution, and the best
accuracy obtained with the other methods was 11.3 percentage
points worse than ours.

Another important consideration is the time for executing
the entire process, from acquiring the TMs to classifying
the applications. In the worst case, the total time is around

0.7 seconds. So, if we consider that the execution time of
a MapReduce or a scientific application may take hours, we
perceive that it is feasible using DCTraCS for traffic classifi-
cation. It can be attached, for instance, to a SDN controller for
modifying the network forwarding to improve the applications
performance or enabling a network orchestrator in a data
center environment for properly placing the working nodes.

Finally, the last point to be considered is that texture is a
powerful tool for classification. It has been used for classifying
hundreds of classes in many different fields. For instance,
Bertolini et al. [37] has used the textures for identifying and
verifying 650 different writers, achieving accuracies as higher
as 99%.

V. CONCLUSION

In this paper, we proposed a novel approach for classifying
data center traffic using the textures of TMs as input for ML
techniques. Our method consisted of measuring the TMs and
applying an unscrambling function for generating different
image textures for each application. The feature vectors were
extracted from the images through the ULBP and the RLBP,
two methods widely used for texture recognition.

We implemented the proposed method in a system called
DCTraCS, and we employed two classifiers, SVM and RF,
for evaluating it. We performed experiments for classifying
the traffic for four scientific applications plus two MapReduce
execution phases, comparing the accuracy of our proposal
with four methods described in current literature. As scientific
applications use secure communication and the Shuffle phase
of MapReduce presents a high level of randomness in the com-
munications between the computational nodes, the accuracy of
the other approaches were lower than our approach. On the
other hand, our proposal uses information extracted from the
TMs and therefore has the advantage of having a global and
comprehensive view of the network communications.

We concluded that it is possible to use different information
from that commonly used (i.e. intrinsic and statistical flow
information) for traffic classification and, as the results pre-
sented in this paper showed, the existing texture from TMs
images may be used as a robust representation for building a
classification system. We plan to extend our current work by
firstly utilizing DCTraCS within a live data center or similar
environment during its normal day to day operation to classify
live traffic in real time. Secondly, we want to create a self-
adapting mechanism, using the input data as feedback for the
training set, allowing the classification process to evolve over
time.
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