
JSON-based interoperability applying
the pull-parser programming model

Leandro Pulgatti1 Marcos Didonet Del Fabro1

1C3SL Labs, Federal University of Paraná, Curitiba, Brazil
{ldpulgatti, marcos.ddf}@inf.ufpr.br

Keywords: NoSQL models · JSON interoperability · Pull-parser programming model

Abstract: The JSON format is been applied in a variety of applications: it is established as the de-facto standard for rep-
resenting document stores; it is widely used to achieve interoperability and as the exchange format in RESTful
web APIs. For these reasons, it is necessary to provide interoperability between JSON and other NoSQL
formats. There are several approaches that aims to translate between different NoSQL formats, however, most
of them attempt to be generic and do not focus on JSON. They aim on providing an abstract and generic
representation capturing all the data models constructs and to provide wrapper-like structures, or to develop
pairs of translators. In this paper, we present an approach that uses the JSON data model as driving format
for interoperability with distinct NoSQL data models. We take advantage of its nested textual structure to
apply the pull-parser programming model to process it and to develop translators between JSON and a set of
representative NoSQL formats. We focus on the JSON extraction and on the development and application of
the data transformations. We validate our approach through an implementation handling a large number of
data representation strategies.

1 INTRODUCTION

The JSON (Java Script Object Notation) is a data
format that has been used in a large variety of applica-
tions. It is today established as the de-facto standar for
representing document stores, for instance, the Mon-
goDb database. It is used as well as the request/re-
sponse format of several RESTful web APIs. Many
NoSQL stores have connectors to achieve interoper-
ability through JSON, a role that was previously filled
by XML documents.

There are several solutions that aim to provide
JSON and NoSQL interoperability. However, most
of them try to be generic to support JSON and several
other formats as input and also as output, covering
data migration issues between NoSQL data sources
(Bugiotti et al., 2013). This generality comes with the
drawback of implementing integrated frameworks or
datamodels not always easy to use.

The approaches can be classified into two main
groups. First, the approaches that provide an ab-
stract and generic representation that captures all the
constructs of different NoSQL formats, such as (Bu-
giotti et al., 2013; Atzeni et al., 2014; Alomari et al.,
2015). These generic representations act like wrap-
per structures to access the data sources. The access

can be done directly in the original sources or through
the translation into the common format. However, it
is necessary to maintain the wrapper components or
framework throughout the distinct data sources life
cycle. In addition, all the sources need to follow the
API convention, which may not be always a techni-
cal option. Second, many solutions provide trans-
lations between specific NoSql Database (Scavuzzo
et al., 2014). The translations include a limited num-
ber of systems, often between two distinct NoSQL
databases. These approaches are more efficient, since
they are adapted for specific scenarios. However, their
extension requires the implementation of new transla-
tions, which may be a costly task. All the given ap-
proaches need to store the full object in memory, or to
use some lazy loading API. Several other works focus
on the migration between RDBMSs and NoSQL, but
they are not in the central scope of this paper.

To overcome these issues, we present an approach
that focuses on the JSON format as the interoper-
ability data format, and that develops a set of rules
to translate to a series of NoSQL formats. We have
two main contributions. First, we use the pull-parser
programming model (Slomiski, 2001) to read the in-
put JSON objects. The pull-parser programing model
has already been used in different scenarios to parse

XML1 and it has been started to be used with JSON,
but not in an interoperability context. This enables
to take advantage of well-formed nested JSONs and
to read only the parts of the input that are being pro-
cessed. Second, we provide a set of interoperability
rules from JSON to a set of representative NoSQL
formats. These rules, which are fully described in
the paper, are simple to develop and to extend. They
handle 12 NoSQL formats, which cover mostly of the
existing representations (Bugiotti et al., 2013).

We validate our approach with an implementation
of a prototype that applies the transformations be-
tween these data formats, using a public data set as
input.

2 RELATED WORK

There are several works aiming to interoper-
ate/convert/migrate/access between different NoSQL
databases. We separate them into two major cate-
gories.

The first category concentrates on creating wrap-
pers or some kind of homogeneous way to access dif-
ferent data sources, and to translate between the data
sources only when necessary. The CDPort framework
(Alomari et al., 2015) aims at building a standard-
ized way to access RDBMS and NoSQL Databases
though a common data model and an API, both in a
cloud-based environment. Each entity can have mul-
tiple properties. The different data structures are al-
ways accessed with the same primitives. (Michel
et al., 2014) proposes a mapping language called
xR2RML, to convert heterogeneous data formats to
RDF (Resource Description Framework), extending
the work from (Consortium et al., 2012) for a NoSql
Databases . (Chung et al., 2014) developed a GUI
that connects to the column store Hbase. Despite be-
ing focused on the translation of queries, the study
on the difference of the models also serves to con-
duct a migration. (Atzeni et al., 2012) presents a pro-
gramming interface common to NoSql Databases and
which can be extended to a RDBMS, called Save Our
Systems (SOS). The solution has three main compo-
nents: a standard interface, one meta-layer responsi-
ble for storing the form of the data and specific han-
dlers for each database system. It is the foundation to
many other works for uniform data access, including
our idea of accessing the databases only through get()
and set() methods. (Scavuzzo et al., 2014) creates
a system for migrating data between NoSql colum-
nar databases. He creates a client/server application

1This model is supported by APIs such as Xerces,
kXML, or SAX.

which uses a metamodel designed solely to handle
columnar databases, taking into account details like
indexing.

The second major category uses a metamodel, or
other kind of intermediate representation, that helps
on the NoSQl migration process. The goal is to di-
minish the number of translation between the data
sources, compared to the case of NxN direct transla-
tions. (Atzeni et al., 2014) is an extension of the work
of (Atzeni et al., 2012), but focusing on the interface
utilization. A series of articles present the NoAM
(NoSQL Abstract Model) (Bugiotti et al., 2013; Bu-
giotti et al., 2014; Atzeni et al., 2016), developing
solutions based on the observation that the NoSql
Databases share similar features, specially the capac-
ity to access their data in what was called ”data access
units”. The classification of representation strategies
of this work are the basis for our classification and
for the kinds of rules implemented. (Bugiotti et al.,
2014) focuses on describing a data modeling and a
data design methodology to ensure that the data can
be represented in the major NoSql Databases models,
and this generic model can be refined or redesigned to
better accommodate in the chosen NoSql Databases
database. This work is a direct derivate from (Bu-
giotti et al., 2013) when the database design problem
are mainly addressed.

Our approach has two main differences from these
previous works. First, it uses JSON as base for-
mat, since it is well-established and has many sup-
port, without the need to create extra control struc-
tures. Second, the input processing and rule execution
is done on a stream of objects using the pull-parser
programming model, not an API or other similar data
access process.

3 JSON-BASED
INTEROPERABILITY

In this section we present our approach for JSON-
based data interoperability. First, we present how we
process the nested JSON format using the pull parser
programming model. Second, we describe the migra-
tion rules covering different representation strategies.

A JSON document is denoted by the ordered
list JSON = (e1,ei, ...,en), where each element ei =
(ki,vi) contains a key ki and a value vi, which is ei-
ther a String si, a numeral ni, a complex object coi
or a collection of elements Ci = (eci1,eci j, ...,ecim),
where each eci j is itself another element.

Consider the listing below to illustrate the syntax
of JSON. The key is the identifier of each element,
such as ”Person”, ”firstName” or ”type”, always in

the left side. The elements values, in the right side,
may store three kinds of values: 1) simple objects
or scalars, such as the String ”Smith” or the num-
ber 25; 2) complex objects, composed by other ob-
jects, such as the ”Person” object; 3) collections, such
as the ”phoneNumber” collection, formed by two el-
ements. This format allows to manipulate and persist
a wide diversity of complex values(Hecht and Jablon-
ski, 2011).

{ "Person":

{"firstName":"John","lastName":"Smith","age":25,

"phoneNumber": [

{ "type": "home", "number": "212 555-1234" },

{ "type": "fax", "number": "646 555-4567" }] }

}

3.1 Pull-parsing a JSON

The processing of the input JSON elements is done by
reading a stream of objects, which means it is not pos-
sible to obtain a complete object in advance to store
it in memory. We apply the pull-parser programming
model to read the input objects and to identify its lim-
its and structure. The pull-parser programming model
has been used to parse XML documents read from
streams in different scenarios. We apply a similar
methodology to read JSON input streams.

In this model, the processing algorithm receives
a stream of objects SO = (o1,oi, ...,on), where each
object oi is a tuple < eki,ovi >; eki is the event kind
and ovi is the object value. The object value is an
input JSON element or it can be a NULL value.

The event kinds are separated into four categories:
1) to state the object boundaries (START OBJECT ,
END OBJECT), 2) to state the boundaries of col-
lections (START ARRAY , END ARRAY), 3) to iden-
tify objects (KEY NAME) and 4) to set the ob-
ject types (VALUE ST RING, VALUE NUMBER,
VALUE T RUE, VALUE FALSE, VALUE NULL).
We adopt the same kind of events supported by the
JSonParser API 2, since we consider they are enough
for many interoperability requirements.

We added the events kinds before each JSON ele-
ment to illustrate what would be the virtual input of a
stream of objects.

{START_OBJECT
"Person"KEY_NAME:
{START_OBJECT "firstName"KEY_NAME: "John"
VALUE_STRING, "lastName"KEY_NAME:
"Smith"VALUE_STRING, "age"KEY_NAME: 25
VALUE_NUMBER,

"phoneNumber"KEY_NAME : [START_ARRAY
{START_OBJECT "type"KEY_NAME:

2http://docs.oracle.com/javaee/7/api/javax/json/
stream/JsonParser.html

"home"VALUE_STRING, "number"KEY_NAME:
"212 555-1234"VALUE_STRING }END_OBJECT,
{START_OBJECT "type"KEY_NAME:
"fax"VALUE_STRING, "number"KEY_NAME:
"646 555-4567"VALUE_STRING }END_OBJECT

]END_ARRAY
}END_OBJECT

}END_OBJECT

Every time the application developer calls a next()
method or function, a new event is processed, which
means it is categorized and the input objects are read.
The read objects are stored in memory using an inter-
mediate nested data format.

Each object of the intermediate data format stored
in memory has the following fields:
ObjectId a unique identifier for each object.
DataValue the value of the given object, if any.
Label the event associated.
FatherObj the ObjectId of the father’s object, if any.

The unique identifier is created automatically as a
numerical sequence added to each new object. The
event is set up as soon as the objects are read. The hi-
erarchy between the objects depends on the existence
of collection boundaries events.

The output of the pull parser is illustrated below. It
shows the intermediate format after parsing the pho-
neNumber attribute.

ObjectId : 8
DataValue : phoneNumber
Label : KEY_NAME
FatherObj : 1

ObjectId : 9
DataValue : null
Label : START_ARRAY
FatherObj : 8

(the nested objects within
the phone number array)

ObjectId : 22
DataValue : null
Label : END_ARRAY;
FatherObj : 9

ObjectId : 23
DataValue : null
Label : END_OBJECT;
FatherObj : 1

Listing 1: Data format for the phone attribute

It is important to note that these objects are not
serialized, but they are processed as soon as they are
read from the input stream. The data migration rules
follow the sample principle, as it will be shown in the
next section.

3.2 Interoperability Rules

The interoperability rules developed take into account
the representation strategies presented in (Bugiotti
and Cabibbo, 2013), since they cover a large number
of NoSQL representations. We separate the rule de-
scription by the category of input data model and we
illustrate the output of each rule execution. The exe-
cution of each rule is illustrated by using the ”Person”
element already presented3.

Each rule is fired once a new object is identified,
i.e., a START OBJECT event occurs. For each exe-
cution, the rules process the following properties:

• Class: The class name defines the identifier of a
given composed object 4. This means that all the
nested objects or arrays have the same kind. In the
Document Store model, the class name is called
Collections; in the Graph model the class name is
the main node.

• Key: each object will have a main key, according
to the data model properties.

• Value: the value indexed by a given MainKey.

The difficulty on specifying the rules may vary de-
pending on the output data model. For instance, in
some cases it is more difficult to produce the output
key than the output data, or vice-versa. This will be
clearer in the following sections.

3.3 Key-Value stores

A key-value store contains collections of key-value
(K,V) pairs, where the key K is used as an index to
perform operations over the value V.

Key-value per object - kvpo: there is only one
object associated per each key. The key is a concate-
nation of the collection name and an identifier for the
object. The collection name could be considered the
object type. The value is a serialization of the entire
value of the object, which may be a atomic data type
or a composition of values or objects.

The MainKey that identifies an object is formed
by the object Class plus the first VALUE STRING
found. The Value is generated by concatenating all
the nested values of the object. The output is a se-
quence of key-values pairs, as shown in Table 1.

Key-value per field - kvpf: there are multiple
key-value pairs to represent each object. The key is a
concatenation of the collection name, the object iden-
tifier and the name of the top-level field. The format

3We removed the second phone number in the illustra-
tions for brevity

4In this work a class is used as a noun to categorize an
object with a set of common attributes

Table 1: Key-value per object - kvpo()

Key Value

MainKey
for all Obj.value do

Value = Value + Obj.value
end for

Person:John

”firstName”:”John”, ”lastName”:
”Smith”, ”age”: 25, ”phoneNum-
ber”: [{ ”type”: ”home”,
”number”: ”212 555-1234” }, ...]

of the key may vary depending of the implementa-
tion, keeping the requirement that the value is only
the value of the corresponding field.

The MainKey is the object Class plus the
KEY NAME, and this is repeated for each
KEY NAME found in the input object. The
value is the data associated at the KEY NAME. If
the data is an Array or other Object all the values are
concatenated until the end of the Array or Object (see
Table 2).

Table 2: Key-value per field - kvpf()

Key Value

MainKey
+ ”/” +
Obj.KEY NAME

for all Obj.KEY NAME do
if Value = (Array or Ob ject)
then

for all Obj.value do
Value = Value +
Obj.value

end for
else

Value = Obj.value
end if

end for

Person:John/
firstName
lastName
age
phoneNumber

John
Smith
25
{ ”type”: ”home”, ”number”: ”212
555-1234” }, ...

Key-value per field object - kvpfo: the key is a
concatenation of a major and a minor key. The major
key contains information related to the main object,
such as its collection name and an identifier and the
minor key has information related to each field.

The Key is composed by the MainKey , plus /-
/, plus each KEY NAME found in the object. The
values are formed by the KEY VALUE associated to
the KEY NAME. If the the value is an array or other
object, it is sequentially concatenated (3).

Key-value per atomic value - kvpav: the key is a
concatenation of identifiers, and the value is a unique

Table 3: Key-value per field object - kvpfo()

Key Value

MainKey
+ ”/-/” +
Objs.KEY NAME

for all Obj.KEY NAME do
if Value = (Array or Ob ject)
then

for all Obj.value do
Value = Value +
Obj.value

end for
Value = Objs.KEY NAME
+ ”:” + Value

end if
Value = Objs.KEY NAME +
”:” + Obj.Value

end for

Person/John/-
/firstName
Person/John/-
/lastName
Person/John/-
/age
Person/John/-
/phoneNumber

John
Smith
25
”type”: ”home”, ”number”: ”212
555-1234” , ...

atomic value, not allowing complex objects.
The values are formed by each of the

KEY VALUE’s found. The Key is composed
by the MainKey , plus /-/, plus all the path until the
KEY NAME before the value. If the value is an array
or another object, a sequential number is added in the
key to maintain the uniqueness (see Table 4).

Key-hash per object - khpo: there is a key for
each complex object and a hash for each field value,
which is commonly the field value.

The Key has the same format of the kvpo repre-
sentation. The same MainKey has several vales, each
one composed by the KEY NAME plus the associ-
ated value. If the value is an array or other object, the
value is the concatenation of all elements of the array
or object (see Table 5).

3.4 Column Stores

Column Stores are organized on columns (as its cen-
tral entity), tables and rows. Thus, they are optimized
for reading columns, or groups of columns.

Column: a Column organizes keyed records as a
collection of columns, where a column contains col-
lections of key-value pairs. The key is the column
name, and the value can be an arbitrary data type.

The column name is each individual KEY NAME
and the values are formed by each of the individ-
ual KEY VALUE’s. If the value is an array or
other object, the columns’ name are composed by the

Table 4: Key-value per atomic value - kvpav()

Key Value

for all Obj.KEY VALUE do
Key = MainKey + ”/-/” +
Objs.KEY NAME
if Value = (Array or
Ob ject) then

for all Ob ji do
Key = Key +
”/” + Ob ji +
Obj.KEY NAME

end for
end if

end for

Objs.KEY NAME.
Value

Person/John/-/firstName
Person/John/-/lastName
Person/John/-/age
Person/John/-
/phoneNumber/0/type
Person/John/-
/phoneNumber/0/number
Person/John/-
/phoneNumber/1/type
Person/John/-
/phoneNumber/1/number

John
Smith
25
home
212 555-1234
fax
646 555-4567

Table 5: Key-hash per object - khpo()

Key Value

MainKey

for all Obj.KEY NAME do
if Value = (Array or Ob ject)
then

for all Obj.value do
Value = Value +
Obj.value

end for
Value = Objs.KEY NAME
+ ”:” + Value

end if
Value = Objs.KEY NAME +
”:” + Obj.Value

end for

Person:John

firstName:John
lastName:Smith
age:25
phoneNumber:[”type”: ”home”,
”number”: ”212 555-1234” , ...]

KEY NAME of the father plus the final KEY NAME
found. No group is created, and the columns are
stored individually (see Table 6 (a)).

Super Column: it is a collection containing
records of other columns, so each column is a group
of other columns, and these groups are stored and ma-
nipulated based on a ”Super Column” name, which
can be defined as a Key part, and the columns group

itself determine the value.
The migration rule is a variation of the previous

one. The identification of the key is the same, as well
as the assignment of the values. The rule changes
when the value is an array or another object: the
KEY NAME of the father object is used as a Super
Column name, with the other KEY NAME’s serving
as the column name (see Table 6 (b)).

Table 6: Column and super column rules
(a) Column

Column Value

for all Obj.KEY NAME do
if Obj.hasFather = true
then

Key =
Ob j f .KEY NAME +
”/” + Obj.KEY NAME

else
Key =
Obj.KEY NAME

end if
end for

Obj.KEY VALUE

firstName
lastName
age
phoneNumber/type
phoneNumber/number
phoneNumber/type
phoneNumber/number

John
Smith
25
home
212 555-1234
fax
646 555-4567

(b) Super Column
Super Column Column Value
Ob j f .KEY NAME KEY NAME KEY VALUE

phoneNumber

firstName
lastName
age
type
number
type
number

John
Smith
25
home
212 555-
1234
fax
646 555-
4567

Column Family: it groups the columns based in
a Row Key, which is set by the first VALUE STRING
found (see Table 7 (a)). The creation of the columns
follow the creation rules of a Super Column.

Super Column Family: the Row Key groups
columns that are correlated. The Row Key is set by
the object Class, which plays a role similar of a ta-
ble name. The columns follow the creation rules of a
Super Column. The rule is shown in Table 7 (b).

3.5 Document Stores (DS)

The document stores are designed to manipulate and
persist a wide diversity of complex values (Hecht and

Table 7: Column Family and super column family
(a) Column Family, row key ’John’

Super Column Column Value
Ob j f .KEY NAME KEY NAME KEY VALUE

phoneNumber

firstName
lastName
age
type
number
type
number

John
Smith
25
home
212 555-1234
fax
646 555-4567

(b)

Super Column Family, column family ’Person’
Super Column Column Value
Ob j f .KEY NAME KEY NAME KEY VALUE

phoneNumber

firstName
lastName
age
type
number
type
number

John
Smith
25
home
212 555-1234
fax
646 555-4567

Jablonski, 2011), which can comprise scalar values,
lists, and other documents in a nested format. These
documents are organized into collections of objects,
i.e., a group of documents.

Similarly to Key-Value stores, there are variations
on how to encode the documents. The three main vari-
ations are document per object - cpo, item per ob-
ject - ipo and cell per object - cpo.

The migration rules have similarities to the Key
Value stores, since the objects may be identified by
unique keys. We describe the particularities in the fol-
lowing.

Document per object: the migration rule is sim-
ilar to the kvpo strategy. The main difference is that
the MainKey is split into the class name, acting as a
collection name and the first VALUE STRING, act-
ing as the ”Document id”. The nested values are con-
catenated sequentially. This rule is described in Table
8.

Table 8: Document per object - dpo(), class Person

Document id Value

VALUE STRING
for all Obj.value do

Value = Value + Obj.value
end for

John

{”firstName”:”John”, ”last-
Name”: ”Smith”, ”age”: 25,
”phoneNumber”: { ”type”:
”home”, ”number”: ”212
555-1234” }, ...

Item per object: this rule is similar to the kvpf
one. The class name is the Collection name and the
data is composed by the KEY NAME and the associ-

ated value. To distinguish each collection within the
same element, one ID is generated for each inner doc-
ument. If the value is an array or other object, it is the
concatenation of all the nested elements (see Table 9).

Table 9: Item per object - ipo(), class Person

Documents Value

KEY NAME
for all Obj.KEY NAME do

Value = Value + Obj.value
end for

id
firstName
lastName
age

phoneNumber

John
John
Smith
25
{ ”type”: ”home”, ”number”:
”212 555-1234” }, ...

Cell per object: the table name receives the
Class name. The ID is created based on the
first VALUE STRING found. The Value receives
all the nested values concatenated sequentially (see
Table(10).

Table 10: Cell per object - cpo(), class Person

Value

VALUE STRING

for all Obj.value do
Value = Value +
Obj.value

end for

John

John
{”firstName”:”John”, ”last-
Name”: ”Smith”, ”age”:
25, ”phoneNumber”: [{
”type”: ”home”, ”number”:
”212 555-1234” },]}

3.6 Graph stores

A graph store organizes the data as nodes, edges and
properties. Is important to note that the properties are
key/values pairs. Nodes can represent entities, and
the edges are the connection between two nodes rep-
resenting a relationship and the properties are the data
itself (Bondiombouy and Valduriez, 2016). There are
several possible representations, such as not consid-
ering properties as separate entities as well. They are
best suited to applications involving large connected
elements, graph traversals and sub-graph matching.

The Main Node is composed by the object Class,
plus the first VALUE STRING found. This is the
same process used to form the MainKey . The leaf
nodes are composed by each KEY NAME, plus the

associated value. If the value is an array or another
object, it is the concatenation of all elements of the ar-
ray or object (see Table 11). Note that graph databases
may have many other encoding, which are not cov-
ered by this migration rule.

Table 11: Graph - graph(), node Person

Leaf Node Value

Objs.KEY NAME

for all Obj.KEY NAME do
if Value = (Array or
Ob ject) then

for all Obj.value do
Value = Value +
Obj.value

end for
Value =
Obj.KEY NAME
+ ”:” + Value

end if
Value = Obj.KEY NAME
+ ”:” + Obj.Value

end for

firstName
lastName
age

phoneNumber

John
Smith
25
{ ”type”: ”home”, ”number”:
”212 555-1234” }, ...

3.7 Implementation

The implemented tool5 uses different NoSQL
databases per category of data store. They where cho-
sen because they have all implemented get() and put()
interfaces to access the data, as well as ways to seri-
alize the results in JSON. As Key value store, we use
the Oracle NoSQL Community Edition; for the col-
umn stores, Apache HBase; Mongo Db as document
store and Neo4J as graph database.

We used the data that is freely available from the
City of Chicago Data Portal and the ”Food Inspec-
tions” data set 6. The dataset describes inspections of
restaurants and other food establishments in Chicago
from January 1, 2010 to December 1, 2016. There
is no particular reason about the kind of data chosen,
just because they are public domain, with easy access
through its API. The input data contains 139.535 ob-
jects. Each object is composed by 23 fields and 1 ar-
ray of objects, containing itself 5 distinct fields. Table
12 shows the number of output pairs for each repre-
sentation strategy for key value stores.

5http://www.inf.ufpr.br/didonet/files/Jsonpullparser.zip
6Food Inspections Data Set:

https://data.cityofchicago.org/Health-Human-

Table 12: Generated elements for Key Value stores

MainKey Values Output Pairs
Kvpo 1 1 139.535
Kvpf 24 24 3.348.840
Khpf 1 24 3.348.840
Kvpfo 24 24 3.348.840
Kvpav 28 28 3.906.980

For Column Stores, it generates the same number
of columns as output, 3.906.980, for Column, Super
Column, Column Family and Super Column Family.
The output is different only in the way the columns
are grouped. For the Document Stores, the choice of
the key that will compose the document has a direct
consequence in the number of generated values: dpo
produced 139.535 elements; ipo generated 3.348.840
and cpo generated 139.535 elements. Finally, the out-
put for the Graph databases was one main node, the
input class, and one leaf node for each field or array
in the original file. The values are then inserted into
each leaf node, totalling 3.348.840 elements.

4 CONCLUSIONS

We presented an approach for NoSQL interoper-
ability based on the JSON format and applying the
pull-parser programming model for executing a set of
rules over a stream of objects. We have two main
contributions. First, we use the JSON nested data
model as a basis for interoperability between differ-
ent NoSQL data formats. The utilization of JSON has
confrimed to be an effective choice, since it has many
support for several APIs, making it easy to connect to
different output datastores.

The second main contribution is the utilization of
the pull-parser programming model, which has al-
ready been used in the XML context, for reading the
input from a stream of objects. This enables to have
large files as input, since it does not need to keep the
input objects in memory. The translation itself is free
of context, if the JSON objects are well-formed nested
documents.

We detailed a set of rules from JSON to a set of
NoSQL data representation strategies. The data mi-
gration rules are simple to implement, relying only on
get() and set() primitives, available in several imple-
mentations of NoSQL databases. Despite covering a
large number of representations,other representations
exist, specially with respect to the composition of the
input keys. They are often path/based expressions to
reach a given object.

Services/Food-Inspections/4ijn-s7e5

As future work, we could extend the model to sup-
port complex query compositions, and to compare the
results of a same query in different NoSQL stores.

REFERENCES

Alomari, E., Barnawi, A., and Sakr, S. (2015). Cd-
port: A portability framework for nosql datas-
tores. Arabian Journal for Science and Engi-
neering, pages 1–23.

Atzeni, P., Bugiotti, F., Cabibbo, L., and Torlone, R.
(2016). Data modeling in the nosql world. Com-
puter Standards & Interfaces.

Atzeni, P., Bugiotti, F., and Rossi, L. (2012). Uniform
access to non-relational database systems: The
sos platform. In Advanced Information Systems
Engineering, pages 160–174. Springer.

Atzeni, P., Bugiotti, F., and Rossi, L. (2014). Uniform
access to nosql systems. Information Systems,
43:117–133.

Bondiombouy, C. and Valduriez, P. (2016).
Query Processing in Multistore Systems:
an overview. PhD thesis, INRIA Sophia
Antipolis-Méditerranée.

Bugiotti, F. and Cabibbo, L. (2013). A comparison of
data models and apis of nosql datastores. Dipar-
tamento di Ingegneria della Università di Roma.

Bugiotti, F., Cabibbo, L., Atzeni, P., and Torlone, R.
(2013). A logical approach to nosql databases.

Bugiotti, F., Cabibbo, L., Atzeni, P., and Torlone, R.
(2014). Database design for nosql systems. In In
proc. of ER, pages 223–231. Springer.

Chung, W.-C., Lin, H.-P., Chen, S.-C., Jiang, M.-F.,
and Chung, Y.-C. (2014). Jackhare: a framework
for sql to nosql translation using mapreduce. Au-
tomated Software Engineering, 21(4):489–508.

Consortium, W. W. W. et al. (2012). R2rml: Rdb to
rdf mapping language.

Hecht, R. and Jablonski, S. (2011). Nosql evaluation:
A use case oriented survey.

Michel, F., Djimenou, L., Faron-Zucker, C., and Mon-
tagnat, J. (2014). xr2rml: Relational and non-
relational databases to rdf mapping language.
Technical report, ISRN I3S/RR 2014-04-FR v3.

Scavuzzo, M., Di Nitto, E., and Ceri, S. (2014). Inter-
operable data migration between nosql columnar
databases. In 2014 IEEE 18th EDOCW, pages
154–162. IEEE.

Slomiski, A. (2001). TR550: Design of a Pull and
Push Parser System for Streaming XML. Tech-
nical report, University of Indiana, US.

