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ABSTRACT
We present HOTMapper, a tool that maps tables of Open Data
with historical information into unified data sources. The tool
couples data exchange and integration techniques implemented
into two main components: 1) a CLI script with commands to
create and update tables, and to insert and update the data, using
2) a simple mapping definition file, interpreted by the CLI script,
to store the schema and data mappings throughout different
years. The tool is implemented using Python and MonetDb. This
demo will show the creation of the mapping definition and the
execution flow of the CLI script for creating a unified data source
from scratch and then updating an existing one. It will unify
real world data sources, with millions of records, containing
information about the Brazilian educational system.

1 INTRODUCTION
The availability of large Open Data sources raises several oppor-
tunities for researchers from different domains to extract and
process the data. Governments from different countries are re-
leasing vast amounts of governmental data, i.e. regarding public
services and expenditures. However, in order to effectively use
the data, some difficult problems must be addressed: open data
sources are often heterogeneous, with different representation
formats, data models, schemas (if any), data quality, and others.
Such problems can be categorized into Data Exchange, Data Inte-
gration and Table Stitching issues. Data Exchange is the problem
of transforming data from one source, which has a source schema,
into a target schema [10]. Data Integration is defined as the prob-
lem of uniformly accessing different source schemes through an
integrated source [10]. Finally, Table Stitching is defined as the
problem of unifying many tables with identical schemes into a
single table identifying extra attributes for it [7].

Open Data is often de-normalized (e.g. in large CSV (Comma
Separated Values) files) and represents a small period of time
(i.e. a semester or a year). New data is periodically released, with
several files that need to be integrated. In addition, from one
release to another, data and schema changes often occur. While
each periodic instance could be handled separately, having a
unified view of the data allows to do historical analysis and
comparisons. Thus, it is important to develop methods and tools
that are able to create a unified view of the data, to translate each
periodic source into the unified view, to perform transformations
on the data sources and to update them periodically. This means
it is necessary to provide simple ways to maintain schema and
data mappings from several input schemes and data sources into
a unified one, keeping data compatibility.
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There are different solutions/tools partially covering these is-
sues. The Clio tool [5] is one of the best known, being developed
before the advent of Open Data and a precursor to many others.
More recently the Polystore-like approaches, such as BigDawg[3],
ESTOCADA [1] or MISO[6] focus on the data integration issues,
as does the Data Civilizer system[2]. Ling at al. [7] handled the
problem of table stitching: new columns in the data source need
to be identified and stitched into unified tables. The approach
from [8] presents a brief history on data integration solutions
and the current issues when having multiple Open Data sources.
Their solution for creating union-able tables [9] could be valuable
for a mapping framework, though they do not focus on main-
tenance and updates of the data. As a drawback, the solutions
completeness and adaptability to several kinds of queries and
data sources makes it hard to be used in specialized scenarios,
such as the historical Open Data mapping presented in this paper.

TheHOTMapper tool 1 (Historical Open Data Table Mapper)
was developed as a domain specific data mapping/integration
solution, targeted to de-normalized Open data sources, spread
into several input files, where the mappings are simple and need
to be stored and modified periodically. The implementation cou-
ples different aspects of data integration, data exchange and table
stitching. It consists of a Command Line Interface (CLI) tool for
historical data and schema mapping, translated from CSVs into
the MonetDb2 column store.

The tool receives as input the CSV files and a mapping defini-
tion file with information on how to unify the data. The mappings
are defined in CSV as well, relating all desired input data with
the corresponding target columns. The mapping definition file
has information to guide the following actions: 1) creation of the
target unified schema; 2) source-to-target data transformations,
which are maintained for each given period; 3) creation of new
derived data 4) update of an existing source with new columns
and mappings; and 5) full reconstruction of the unified source
based on the input sources and mappings. More actions could be
added if needed.

This demonstration will present the execution flow of the tool:
• development of the periodical data and schema mappings;
• creation of a new data source;
• insertion of the corresponding data into the unified model;
• update with a new data source;
• update in the columns and data transformations.

We will execute the tool in a real world scenario, process-
ing information about the Brazilian educational system. The
data includes the enrollments and related information (schools,
courses or teachers) in schools and Universities, with hundreds
of columns. The mappings and commands can be modified on

1https://gitlab.c3sl.ufpr.br/tools/hotmapper
2https://www.monetdb.org/
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the fly following the audience interactions, showing how fast
and simple the tool is.

The unified data produced by the tool is currently being used
and can be visualized in an open web portal [4] 3. The amount
of data already processed by the tool is summarized in Table
1. It was extracted from Open Data sources produced by INEP
(Instituto Nacional de Pesquisa Educacionais Anísio Teixeira)4.

Table 1: Summary of data from the INEPOpenData Source
processed by HOTMapper

Year Tables Records
2017 13 102.176.661
2016 20 116.009.013
2015 18 116.946.948
2014 17 121.115.913
2013 18 112.645.020
2012 11 36.029.271
2011 7 12.025.035
2010 7 8.768.490

The paper is organized as follows: section 2 presents a moti-
vating example of HOTMapper; section 3 explains HOTMapper’s
design and working principle and Section 4 describe the steps of
the tool demonstration.

2 MOTIVATING EXAMPLE
Consider the necessity of extracting a metric (or indicator) regard-
ing the number of enrolled students in all Brazilian schools from
2013 to 2017. The information about enrollments is available at
an Open Data source produced by INEP. While this is a particular
metric, the idea can be generalized as “extracting indicators from
public Open Data sources”. The input data is de-normalized in
a set of large CSV files, with approx. 100 different fields each.
The choice for publishing de-normalized data is common in open
data sources, because it decreases the number of files that need
to be managed in the long run.

The metric/indicator must be correctly extracted from this
source and can be aggregated in different dimensions, i.e, location
dimensions such as country, state or city; enrollments on public
vs. private schools, enrollments on scientific courses, among
others. The metric also needs to support yearly updates, because
a new set of files is released every year, raising three main issues:

(1) Integrated source creation: a first set of tables needs to
be created to be able to execute queries considering the
historical data. In this case, the input data has 87 columns
for the 2013 and 2014 years, and 96 columns in 2015-2017.

(2) Schema evolution: every year, the data sources defini-
tion changes, so it is necessary to provide schema map-
pings:

(a) direct mappings:
NATIONALITY <- [2013-2017] NATIONALITY
SPECIAL_NECESSITY <- [2013-2014] HAS_NECESSITY
SPECIAL_NECESSITY <- [2015-2017] SPECIAL_NECESSITY

(b) new mapping (when a column is added):
REGION <- [2013-2015] not-available
REGION <- [2016-2017] REGION

(3) Data evolution: data has to be transformed and kept
compatible along all years, requiring instance mappings:

3http://dadoseducacionais.c3sl.ufpr.br
4http://portal.inep.gov.br/microdados

(a) mapping creation: a new dimension is generated from
existing data
PROFESSIONAL_STUDIES<-[2013-2014]
WHEN STUDIES_KIND between 30 and 40 THEN 1
WHEN STUDIES_KIND between 41 and 50 THEN 2
PROFESSIONAL_STUDIES<-PROFESSIONAL_STUDIES[2015-2017]

(b) mapping update: the datamapping from the data sources
may change (dimension or metric), which means the
previous mappings, for all previous years, has to be
updated
GENDER <- [2013-2014]

WHEN M THEN 1
WHEN F THEN 2

GENDER <- [2015-2017] GENDER

This motivating example considered just one indicator and
illustrative examples, with intersections of data exchange, inte-
gration and table stitching. This kind of mapping is commonly
applied to more or less 90 columns of annual data. In addition,
INEP publishes at least four main raw data sets: Students, Teach-
ers, Schools and Sessions, containing more than one hundred
columns. There are other sources released on a similar basis,
replicating this scenario for every new indicator produced, pre-
senting a challenging setting for the extraction and maintenance
of Open Data sources.

3 HOTMAPPER
In this section we present the HOTMapper tool, addressing the
maintenance of data and mappings of Open Data sets.

3.1 Tool description
HOTMapper’s architecture is shown in Figure 1. It consists of a
CLI (Command Line Interface) manager interacting with three
kinds of input and/or output, on which six predefined actions
can be performed. With a flexible implementation using Python
and SQL programming languages, the tool allows for an easy
extension by adding more actions.

Figure 1: HOTMapper overview

Themapping definition files are in CSV format. There is one
file for each table in the target RDBMS. It describes the columns
that are created and the mappings, per year, of each input column.

The input data is the set of CSV files that are included in
the target database, one file per metric (or set of metrics), and
per year. For instance, the enrollments metric has five input files,
from 2013 to 2017. The files are de-normalized, which means they
have a high number of columns.

The target database has the set of tables that contain the
integrated information produced by the tool. We use theMonetDb
column store and keep the included data as similar as possible to
the input data, i.e., we do not normalize the target data. This has
some advantages: the definition and maintenance of mappings
remains relatively simple; the data model does not need to be
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constantly adapted for every new release; the queries are fast,
because joins are minimized; and bulk insertion operations are
fast. It is important to emphasize that the target database is
only updated by new releases of the input data, without OLTP
operations.

The actions currently handled byHOTMapper are: tablemain-
tenance actions (1) CREATE and (2) DROP; data and table ma-
nipulation actions (3) INSERT, (4) REMAP and (5) UPDATE; and a
reporting action (6) GENERATE REPORT:

(1) CREATE action takes as input the table definition and exe-
cutes the DML (Data Manipulation Language) commands;

(2) DROP action deletes the table passed as parameter and any
related data. The tool executes standard DML commands,
so that it can be used in different RDBMS’s;

(3) INSERT action executes a bulk insert of the input CSV
files into a temporary table in the target database. Then, it
reads the mapping definition to transfer the data into the
target table. The creation of a temporary table is important
to facilitate the manipulation of the input data, avoiding
direct operations on the CSV file;

(4) REMAP action modifies the initial table definition;
(5) UPDATE action updates a table after a change in the map-

pings; and
(6) GENERATE REPORT action produces a report with column

equivalences between the input table and the current data-
base. It is not necessary for inserting or updating data, but
eases the creation of the mapping definition file.

Figure 2 illustrates a mapping definition and two input CSV
files, with information about the universities in Brazil.

Figure 2: Illustration of a mapping definition and two in-
put CSV data files

File OpenData-Mapper.csv contains the mapping definition,
composed of eight columns: [Lab.Var] is an identifier for each
mapping; [Standard Label] has the name of themapped columns;
[New Label] has the description of the column; [Temp Column]
defineswhether the column is temporary (usedwhen pre-calculations
are necessary); [DB name] is the name of the column in the target
database; [Data type] has the data type of the column defined
by [DB name]; and columns [2010],[2011] have the yearly
mappings of each input column into the corresponding target
column. Every time a new release is available, a new year column
is added, with its corresponding mappings. The periodicity can
be different, depending of the characteristics of the input data.

HOTMapper also supports source-to-target mappings. For a
given line in the CSV file, the [DB name] column points to the
target column in the database. Then, for each year, it is possible
to define two kinds of mappings: 1) simple equivalence mappings,
by indicating the name of the source column; 2) data transfor-
mation mappings, defined by CASE statements in SQL. The CASE

statements are injected in the code responsible for the transfor-
mation. The context of each statement is the current cursor of
the SQL execution.

Consider the first equivalence mapping from the motivating
example, i.e., for NATIONALITY. Five columns, from 2013 to 2017,
have the value of the input column NATIONALITY. The same
is valid for SPECIAL_NECESSITY, though it will have different
names depending on the year. Non-existent mappings are just
left blank. All other data transformations are written using CASE,
one per year, independently from each other.

Considering the PROFESSIONAL_STUDIES column, following
code is written to process years 2013 and 2014:
CASE
WHEN (STUDIES_KIND >= 30 AND STUDIES_KIND <= 40) THEN 1
WHEN (STUDIES_KIND > 40 AND STUDIES_KIND <= 50) THEN 2

END

Simple join operations are also supported. For instance, the
following expression (~ SCHOOL.REGION_ID) written in the map-
pings of the ENROLLMENTS table causes a join with the SCHOOL
table and returns the REGION_ID column.

The mapping definition is kept as simple as possible, yet rich
enough to express data translations. The choice of a sub-set of
SQL enables fast SELECT + INSERT executions, which would
demand handcrafted loops over millions of records with an imper-
ative programming language. The complexity of the translation
depends on the CASE expression written. They support 1-to-1 and
N:1 mappings, and simple joins with other tables. This choice
for simplicity is crucial for the continuous maintenance of the
mappings.

4 HOTMAPPER DEMONSTRATION
The demonstration will show how to create a mapping definition
file, how to use it to create and update tables and its correspond-
ing data. The process will be interactive, so the mapping can be
modified if necessary and the tool can be re-executed, to show
its efficiency and ease of use.

4.1 Requirements
HOTMapper has following software requirements:

• A Python environment
• The MonetDB5 database
• The Open Data files in CSV6

• A connection configuration file6
• The HOTMapper code6

After the installation, it is necessary to set up the configura-
tions in the file settings.py. It contains the database configura-
tions (login, host, database name) and the path to the CSV files.
The utilization of the CLI interface is straightforward:
./manage.py create|insert|remap|drop|remap|generate_report

INPUT_TABLE_NAME PARAMETERS

All the options process a mapping definition file with the same
name of the input table name, except for the period indication.
The development of this file is a central part of the tool usage.

4.2 Using the HOTMapper
This demonstration will show two scenarios, illustrating two
workflows: 1) the creation and insertion of an open data source
from scratch, and 2) the update of mappings and data of an
existing table. In both scenarios the audience will be able to

5https://www.monetdb.org/
6https://gitlab.c3sl.ufpr.br/tools/hotmapper

https://www.monetdb.org/
https://gitlab.c3sl.ufpr.br/tools/hotmapper


propose modifications in the mapping definitions and check the
results on the fly.

In the first scenario, we will map a table containing informa-
tion about the undergraduate institutions in Brazil, from 2010 to
2016 (localoferta_ens_superior). It is a relatively small table,
with approximately 200K records per year, and for its creation
the mapping definition file must contain the necessary columns.
We execute the command:
./manage.py create localoferta_ens_superior

In addition, HOTMapper creates an auxiliary table to store the
mapping definitions, called mapping_localoferta_ens_superior.
These mappings can be used for any subsequent modifications,
enabling a faster processing and generation of SQL commands.
A final commit is done after the tables are created. Then, we
execute the command below to insert the data into the target
table.
./manage.py insert /FILEPATH/DM_LOCAL_OFERTA_2010.CSV

localoferta_ens_superior 2010 --sep="|"

The process is repeated for data files from each year, i.e., from
2010 to 2016, using the corresponding mapping definitions for
each year. An excerpt of the mapping is shown in the three
items below: (1) the labels of the mapping file; (2) a complete
1-to-1 mapping with the institution code; (3) a mapping with the
institution start date. In this case, we do not have data for every
year, leaving the corresponding column blank.

(1) Label,Std.Label,New Label,DB Name,Type,
2010,2011,2012,2013,2014,2015,2016

(2) LOCAL-OFERTA,CO_IES,Institution code,cod_ies,INTEGER,
CO_IES,CO_IES,CO_IES,CO_IES,CO_IES,CO_IES,CO_IES

(3) LOCAL-OFERTA,DT_INICIO_FUNCIONAMENTO,Start date,
data_incio_funcionamento,VARCHAR(255),,,,
DT_INICIO_FUNCIONAMENTO,DT_INICIO_FUNCIONAMENTO,
DT_INICIO_FUNCIONAMENTO,DT_INICIO_FUNCIONAMENTO

Figure 3: Screenshot of the insertion execution flow

The screen shot of the execution log is shown in Figure 3.
The command first inserts the table into a temporary table, with
the same structure as the input CSV, in a bulk insert action.
Then, it inserts the data into a final table applying the map-
ping definitions. If this insertion is successful, the tool commits
all changes to the MonetDb database. Once a first insertion is
done, we will execute the drop command (./manage.py drop
localoferta_ens_superior), and the audience can propose al-
terations to the mapping definition file to see different outcomes.

In the second scenario, we start from an already existing
table, with more complex mappings and records. We use the table
from the motivating example in Section 2, with the enrollments
of all students from 2013 to 2017. As already stated, it has about

90 columns and millions of records per year. We execute the
remap and update actions for 2013 as follows:
./manage.py remap matricula

./manage.py update_from_file /FILEPATH/MATRICULA_2013.csv
matricula 2013 --columns="profissionalizante" --sep="|"

The actions check if there is a difference between the current
table specification (matricula) and the new mapping definition
provided. It updates the table and the data. The mappings have, in
addition to simple definitions as the ones from the scenario 1, ex-
pressions requiring data conversions using CASE statements. We
will edit the PROFESSIONAL_STUDIES mapping, whose excerpt is
shown below:
IN_PROFISSIONALIZANTE,Educação Profissional,0,

profissionalizante,BOOLEAN,
~CASE
WHEN ("FK_COD_MOD_ENSINO"=1 OR "FK_COD_MOD_ENSINO"=2
OR "FK_COD_MOD_ENSINO"=3) THEN CASE WHEN null THEN null
WHEN ("FK_COD_ETAPA_ENSINO">=30 AND "FK_COD_ETAPA\_ENSINO"<=40)
OR ("FK_COD_ETAPA_ENSINO">=59 AND "FK_COD_ETAPA_ENSINO"<=65)
OR ("FK_COD_ETAPA_ENSINO">=67 AND "FK_COD_ETAPA_ENSINO"<=68)
OR ("FK_COD_ETAPA_ENSINO">=73 AND "FK_COD_ETAPA_ENSINO"<=74)
OR "FK_COD_ETAPA_ENSINO"=57
THEN 1 ELSE 0 END
END

The last column is the mapping for year 2013, also repeated
for 2014. The remaining years already have the desired informa-
tion. During the demonstration, this and other mappings can be
changed following audience interactions.

To summarize, the HOTMapper demo will show how to write,
store and manage mappings and data, from Open Data sources
with historical information into an integrated database. The sim-
ple definition format and rapid bulk insertions enables efficient
management of several Open Data sources over time.
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