
Managing Open Data Evolution through
bi-dimensional mappings

Henrique Varella Ehrenfried∗, Eduardo Todt,†, Daniel Weingaertner, ‡, Luis C. E. Bona§,
Fabiano Silva¶, Marcos Didonet Del Fabro‖

Center of Scientific Computing and Free Software (C3SL Labs)
Department of Informatics

Federal University of Paraná (UFPR)
R. Cel. Francisco H. dos Santos, 100 – Curitiba – PR – Brasil

Email: ∗hvehrenfried, †todt, ‡danielw, §bona, ¶fabiano, ‖marcos.ddf@inf.ufpr.br

Abstract—The availability of large Open Data sources creates
opportunities for data analytics on different domains. But in
order to be effectively used, the data needs to be correctly
extracted, formatted and integrated, which is a specially chal-
lenging task on Open Data sources, since there is usually less
rigour in standardizing subsequent data releases. This means
Open Data evolution must be handled. A domain specific solution,
taking stock of existing approaches, but with delimited kinds of
operations and mappings, would be useful for providing coarse-
grained management of data evolution operations throughout
time. In this paper, we present an Open Data Evolution managing
solution, aiming to integrate periodically released data sets. We
define a set of operations acting over the instances, schema
and mappings, which are executed after each new data release.
These operations rely on the existence of a time dimension in the
input mappings. The approach is validated on a real-world case
study, which is being currently used to integrate and access a
large Brazilian educational Open Data source, with billions of
records and hundreds of columns evolving over many years. The
proposed solution is used to process this data source, successfully
integrating more than 90 data releases from 2012 to 2018.

I. INTRODUCTION

The diversity and volume of Open Data sources has grown
rapidly in recent years, partly due to policies of governmental
data disclosure and transparency adopted by many public in-
stitutions. The information contained in these data sources has
great potential to promote social improvements and enhance
the knowledge of citizens about their own society. But these
data sets are intrinsically difficult to process and combine
because they are very heterogeneous, both, in the form of
their availability and in their format/structure. In order to be
usable, the data needs to be correctly extracted and integrated
throughout many time-bound releases to enable data science.

Open Data sources are often made available in a de-
normalized format, e.g., in large CSV (Comma Separated
Values) files representing a fixed period of time. Extracting
and integrating data from a specific release usually involves
manual adjustments to the existing schema, and this needs to
be periodically redone for every new data release in response
to changes or evolutions of the data, in what can be categorized
as an Open Data evolution problem.

We illustrate this problem though an example. Consider the
necessity of extracting an indicator containing the number

of undergraduate teachers from all Brazilian schools for a
period of 5 years. The information can be extracted from
an Open Data source produced by a Brazilian Educational
Agency. While this is a particular indicator, the scenario
can be generalized as “periodically extracting indicators from
public Open Data sources”. The indicator must be correctly
extracted from this source and can be aggregated in different
dimensions. However, the data is not provided on a single
formatted source, but on a yearly basis, which means that the
extraction operations needs to be performed for every year.
Besides, there are changes on the data definition and format
from one period to another, making it difficult to integrate the
Open Data.

There are different solutions/tools that could be used to
handle these issues. The Clio tool [1] is one of the best
known, being developed before the advent of Open Data and
a precursor to many others. More recently the Polystore-like
approaches, such as BigDawg [2], ESTOCADA [3] or MISO
[4] focus on the data integration issues, as does the Data
Civilizer system [5]. However, periodically released sources
need to be integrated using ad-hoc scripts. Concerning this
last issue, there are solutions concentrating on schema and
instances changes, such as CoDEL [6] or BiDEL/InVerDa[7],
providing a set of element-based operations to handle evo-
lution. They provide means to keep track of evolution, and
to have multiple concurrent versions of the schema. Model
management solutions [8] first presented operators to manage
metadata, i.e., schemas and mappings, then were extended
to manipulate data [9] [10]. In order to take stock of these
solutions in an envolving Open Data scenario, it would be
important to define a domain specific approach, adapted to
the management of the operations handling the constant and
periodic evolution of the Open Data sources along time.

In this paper, we present an approach for the management
of Open Data evolution. We define a set of operations that
may be executed periodically, which handle data and schema
insertions, updates and deletions. We provide a set of formal
definitions for each operation, which are technology indepen-
dent. The operations use a set of mappings as input, defining
how the input data and schema are integrated into a single
data source. The mapping definitions have a time dimension

1

attribute, enabling their clear periodical organization. The
proposed mapping format is defined in CSV files, thus being
an Open Data source itself, and allows to specify complex
source-to-target translations

We validate our approach through a real-world case study
where periodically released data sets about schools and Uni-
versities in Brazil were extracted and integrated into a single
data source. This also publicly available data source contains
hundreds of attributes and billions of records, spanning over
more than 90 data releases since 2012. The specific tooling
aspects of this approach have been presented as a Demo at
EDBT 2019 [11]. In this paper, we focus on the methodology,
the operations’ flow and their definitions in a more general
approach.

The paper is organized as follows: section II presents our
approach for Open Data evolution management; section III
presents a validation through a case study; section IV is the
related work and section V presents the conclusions.

II. MANAGING OPEN DATA EVOLUTION

In this section we describe our approach for managing Open
Data Evolution using bi-dimensional mappings. It has three
main artifacts: 1) the input data, often extracted from CSV
files; 2) the target database, where the data is integrated
and 3) the bi-dimensional mappings, which specify how the
data is translated into the target database. These artifacts
are manipulated by a set of operations, following specific
execution flows.

Definition 1 (Target database). The target database D =
{R1, ..., Rn} is a database composed by a set of n ta-
bles. Each table Ri is a set of k instance tuples Ri =
{(r1,1, r1,2, ..., r1,m) , ..., (rk,1, rk,2, ..., rk,m)}, where m is the
number of columns of Ri. If the table is empty, k = 0.
Each table has a header H(Ri) = (h1, h2, ..., hm) and
Hj(Ri) = hj corresponds to the header of column j of Ri. If
x is a column header of R, then R(x) = Πx(R) is the column
x of R.

The database stores sets of tabular structures, where each
table has one header and its corresponding instances. For
the remaining of the paper, we assume a relational database
management system as a concrete implementation to illustrate
the operations.

The create operation is used to create a new empty table R′

in the target database, according to the provided description.
It is defined as follows:

create(R′) : Dnew = D ∪ {R′}

The create operation is implemented following the speci-
fication of the target database. When considering relational
databases, it generates a SQL create table expression based
on the table specification, with its corresponding columns and
types. If necessary, other database-specific elements could be
implemented, such as primary or foreign keys.

Tables can be deleted, whether they have instances or not,
by executing the drop operation defined as:

drop(R) : Dnew = D \ {R}

The drop operation generates a SQL drop statement to
remove a table from the database, with all its corresponding
data. This operation may be frequently used in scenarios with
frequent changes or tests on the data extraction. Once the
database structure is created, it is necessary to include and
maintain the Open Data sources.

Definition 2 (Input file). The input file is defined as
F = {(f1,1, f1,2, ..., f1,m), ..., (fk,1, fk,2, ..., fk,m)}, where
each fi,j is a cell that contains data. The file F contains a
header H(F) that can be defined as H(F) = (h1, h2, ..., hm)
where each Hj(F) = hj is a column header. If x is a column
header of F , then F (x) = Πx(F) is the column x of F .

This definition can represent CSV (Comma Separated
Value) files, with a set of columns separated by headers and
its corresponding data. CSV files are one of the most used
formats in Open Data sources, because it is simple and easy
to share and to process.

Definition 3 (Mapping table). A mapping table MTR is a
table that contains the mappings between each column of a
target table R and the corresponding column of the input file
Fy of the year y. Let Y be the set of years for which there are
input files related to table R. The mapping table is defined as:
MTR =

{
(t, f1, . . . , fy, . . . , f|Y |) | ∀t ∃j Hj(R) =

t, ∃i Hi(Fy) = fy, fy 7→ t where fy 7→ t is the mapping
between the input column fy associated with the year y and
the column t of the target table R.

Definition 4 (Transformation). A transformation is a function
that translates data from one or more input columns into a
column in the target database.

Definition 5 (Bi-dimensional mapping table). A bi-
dimensional mapping table BR is an extension of a
mapping table MTR where, for each year, a target column is
associated to either a transformation function or to an input
column.

The year information is a separate dimension, specified as
column headers from the BR. The execution of all mappings is
defined by the combination of three functions: MapTo, exec
and Map. Function MapTo is a higher-order function that,
given a specific year y and the target column z of table R,
returns the mapping:

MapTo(y, z, R) = Πy(σHt(BR)=z(ΠHt(BR),y(BR)))

Function exec returns the column values of applying the
MapTo(y, z, R) function to R, which is either a column stored
in Fy , either the result of the transformation function returned

2

by MapTo. It takes four parameters: the input file Fy , the year
y and the target column z of R:

exec(Fy, y, z, R) =

apply(MapTo(y, z, R)),

if MapTo is a transformation,

Fy(MapTo(y, z, R)),

otherwise

where apply generates the column values by applying the
transformation returned by MapTo to the input file (and other
tables of the target database if necessary).

Finally, Map is the complete bi-dimensional mapping ex-
ecution, i.e., it return the target tuples, which calls exec for
each line of the mapping table BR:

Map(Fy, y, BR) = { exec(Fy, y, z, R) | ∀z, z ∈ BR(Ht(BR)) }

This execution is used during the insert operation, which is
defined as:

insert(Fy, y, R) : Rnew = R ∪Map(Fy, y, BR)

Figure 1 illustrates the insert operation, using as input a
CSV file F containing country names and a corresponding
code. The mapping table (MT in the figure) contains the
target column names in the DB Name column, and two sets
of mappings for each column, for years 2018 and 2019,
specifying the time dimension. The columns code country
and name country are directly copied from the CSV into the
target database. The column continent is calculated using a
transformation function that generates a continent name, using
the data being inserted. The functions are implemented as SQL
CASE statements, which are injected into a SQL bulk insert
command (a bulk insert command in SQL insert the whole
table in a single operation).

The remap operation is responsible for implementing mod-
ifications on the table structure and mapping values in cases
when a new release of an Open Data source differs from
already inserted data. After the creation of a table, a simplified
version of the mapping table, called the MS, is stored in
the database and used by the remap operation. The remap
operation changes the table structure, by creating, removing
or renaming columns:

remap(C,R) : R = create(C,R) or delete(C,R) or rename(C,R)

Given a set of columns C = {c1, c2, ..., cm} and the table R,
the create function modifies the table structure of R by adding
the set of columns into R, with the corresponding data left
blank. The delete function removes the data and the column
definition from table R.

The rename function updates the name of the columns in
the target table, preserving the existing data. To achieve this,
it creates an auxiliary table Ra, containing the current set of
columns to be renamed and its corresponding data. Then, the
function deletes the original columns from the target table,

creates the new columns given by C and inserts the data stored
in the auxiliary table Ra.

Figure 2 illustrates the remap operation when adding a
new column. It is an extension of the scenario shown in the
insert operation (Figure 1), to keep a country table up to date.
The operation adds a new column called calling code. The
mapping could as well specify the dropping or renaming of an
existing column. This synchronization helps the curator of the
data to achieve consistency, improving the database’s schema
and its documentation. The operations can be implemented as
SQL DML (Data Manipulation) and DDL (Data Definition)
statements.

In order to modify existing data without modifying the table
structure, it is necessary to execute the update operation. The
operation receives as parameter the target table R, the columns
to be updated C, and a temporary table Rt, which is created
combining operations create(Rt) and insert(Fy, y, Rt). The
operation updates the columns of the target table R, from a
given year y, with the data from Rt, as defined below:

update(R,C,Rt) : R = ∀c, c ∈ C, ∀z, z ∈ Rt(c), ∀r, r ∈
R(c), r ← z

where r ← z is the update of the field r with the
corresponding data in z.

Figure 3 shows the update operation. It creates a temporary
table whose structure is a copy of the target table’s structure.
The new data is inserted into the temporary table and then each
column that should be updated is copied form the temporary
table into the target table. Note that it is executed for a specific
year, meaning that only the columns of a given year are
updated.

The set of defined operations (create, drop, insert, remap,
update) with the mapping table and the dimension-based
mappings enables managing the extraction and integration of
periodically released Open Data sources, which can be further
analyzed through the implementation of individual indicators
or using specific data science approaches. A possible work-
flow for these operations is shown in Figure 4, were all
possible flows are presented.

All operations start by verifying the existence of a table
passed by parameter, triggering the next step, except when
creating a table. If the next step is triggered, each operation
modifies the database following its definition. The update
operation changes the values of the table; the remap operation
updates the table schema and data to match the mapping the
insert operation adds more data into the table; the create op-
eration adds a new table into the database; the drop operation
removes a table from the database. If there is any problem in
any operation, an error message is triggered and the operation
is completely un-done. Once an operation cycle finishes, other
operations can be executed, for instance, we could have the
following flow of operations: 1) create table; 2) insert data; 3)
update data (N-times); 4) remap; 4) update data. The operation
that is constantly called for each new periodical release is the
update operation.

3

Fig. 1. Using a mapping table and an input CSV to insert data about countries

Fig. 2. Adding a new ’calling code’ column into an existing table using the remap operation

Fig. 3. Updating the country code using the update operation

III. EXPERIMENTAL VALIDATION

In this section, we validate our domain-specific approach
through a case study, to show the utilization of bi-dimensional
mappings and a set of operations for managing Open Data
evolution. We first define three research questions (RQs) to
be answered:

RQ1: Management operations – Do the proposed oper-
ations improve manageability of Open Data evolution? This
question is relevant for data scientists and developers main-
taining the periodical releases.

RQ2: Bi-dimensional mapping table – Is there a differ-
ence in having a bi-dimensional mapping table, to understand

the mappings categorized by year and to maintain them?
This question is relevant for the mapping developers and data
scientics that need to update the sources after every new
release.

RQ3: Transformation functions – Is there an advantage
to be able to choose between an input column of the CSV or
to use transformations over existing data? This question is of
particular relevance to mapping developers.

We implemented the concepts presented in this paper in
the HOTMapper tool1. It is currently being actively used by

1The HOTMapper tool code is available at https://github.com/C3SL/
hotmapper

4

https://github.com/C3SL/hotmapper
https://github.com/C3SL/hotmapper

Fig. 4. Execution flow of the operations

two real-world Open Data applications. The first one, called
SMPPIR2, helps to monitor social inclusion indicators on
higher-education. The second project, LDE 3, helps to monitor
key indicators about the Brazilian educational system. Both
web portals use our approach to manage the periodical Open
Data releases.

The information is released periodically as Open Data
sources, in a yearly basis. These sources are de-normalized
tables in CSV files, with hundreds of columns each. Table
I shows the number of records and tables processed and
inserted into the target database, which is a column store called
MonetDb4.

TABLE I
OPEN DATA SOURCES PROCESSED

Year Input Tables Tuples
2018 8 76,779,455
2017 16 114,339,874
2016 15 109,803,647
2015 15 117,044,046
2014 15 120,084,335
2013 15 112,408,839
2012 11 36,258,716

2Accessible at https://seppirhomologa.c3sl.ufpr.br - In portuguese
3Accessible at https://dadoseducacionais.c3sl.ufpr.br/ - In portuguese
4MonetDb database: http://www.monetdb.org

Using the SMPPIR application, we describe one possible
execution flow for a new set of data that is made available and
needs to be inserted into the target database. The first step is to
create the mapping file MT . We use a simplified version of the
real world application with a small subset of columns (excerpt
shown below5). It contains the mapping table that maps a code
of specific institutions (such as universities) and the institution
creation date in four lines: (1) the headers, where the first
four fields are fixed, and the remaining fields are the time
dimension added for each released year; (2) a complete 1-
to-1 mapping with the institution code; (3) a mapping with
the institution start date. The data for this specific field is not
available for all years, so the corresponding column for non-
existent years is left blank; (4) a complex mapping using a
transformation function, only for year 2016 (notice the blank
fields for previous years).

1) Std.Label,New Label,DB
Name,Type,2010,2011,2012,2013,2014,2015,2016

2) COD_INST,Institution code,cod_inst,
INTEGER, CO_INST, CO_INST, CO_INST,
CO_INST, CO_INST, CO_INST,CO_INST

3) START_DATE,Start date,start_date,VARCHAR(255),
, , ,START_DATE,START_DATE, START_DATE,
START_DATE

5The complete mappings used in both scenarios are available in the follow-
ing Git repositories: https://gitlab.c3sl.ufpr.br/simcaq/mapping protocols and
https://gitlab.c3sl.ufpr.br/SMPPIR/SMPPIR-Mapping-Protocols/tree/master/
Protocols.

5

https://seppirhomologa.c3sl.ufpr.br
https://dadoseducacionais.c3sl.ufpr.br/
http://www.monetdb.org
https://gitlab.c3sl.ufpr.br/simcaq/mapping_protocols
https://gitlab.c3sl.ufpr.br/SMPPIR/SMPPIR-Mapping-Protocols/tree/master/Protocols
https://gitlab.c3sl.ufpr.br/SMPPIR/SMPPIR-Mapping-Protocols/tree/master/Protocols

4) PROF_STUDIES,Prof. Studies,
professional_studies,BOOLEAN, , , ,
, , ,CASE WHEN ("TEACHING_LEVEL"=1 OR
"TEACHING_LEVEL"=2) THEN 1 ELSE 0 END

The transformation function in line 4 maps information
about professional studies (PROF_STUDIES), which is
the combination of values of an existing teaching level
(TEACHING_LEVEL). This is a more complex mapping,
showing the possibility to calculate values from existing
columns in the source database.

The workflow uses these mappings and the definition file
to create a new table followed by the insertion of its data.
First, it executes the create operation, which produces two
new tables: An auxiliary table containing the mappings and
the target table that stores the data.

During the insert operations two types of mapping are pos-
sible: 1) a 1-to-1 mapping between input and target columns;
2) a mapping that calls a transformation function, which is
evaluated for each column for which it is specified. The
transformation function must be specified in a language that
is compatible with the target database. In our scenario, we use
SQL CASE statements.

Every time a new data source is released, this mapping
is passed as parameter to the management operations, and
with new columns for each year. To update it, the data
scientist updates the mapping, runs the remap function if
there are changes in the mapping and inserts the new data.
The operations need to be re-executed, with new mappings,
for every new release. The number of tables from Table I
indicates that we executed the create and insert operations for
at least 95 times to populate the tables, at least one update or
remap per new data source that is updated. The drop operation
is used when the developed transformations are not correct and
the insertion need to be re-executed from scratch.

The research questions were answered as follows. For RQ1,
the set of operations narrows the scope of possible operations
on the data sources, making it clear what needs to be done
to create a new data source and to update it periodically, so
the question is positively answered. This is an advantage over
generic frameworks, which have a higher expressive power,
but where the operations are not explicit. For RQ2, the bi-
dimensional mapping table enables having explicit mappings
for each new release, even in cases when they are copies of the
previous year. The mappings are centralized, and it is possible
to have a general view of the evolution, so this question
is answered positively as well. In addition, the mappings
themselves can be published as Open Data sources, enabling
to keep track of the implemented operations. This traceability
is important for data scientists to assess the validity of the
data transformations. Finally, to answer RQ3, the possibility
to write a transformation over the existing data is important
to enable the generation of new values, when only copying
the input data is not possible. In addition, the simplicity
of the format of the mapping table enables sharing it with
other researchers from similar domains, so they can validate
and improve the mapping definitions. The utilization of a

tool implementing such concepts in two real-world scenarios
for releases from 7 years of educational data are a strong
indication of the success of the approach.

To summarize, the approach creates a domain specific
solution, which narrows the set of possible operations and
mappings that can be done for managing Open Data evolution.
This assumption makes the solution less expressive, for in-
stance, it is not targeted to complex and complete ETL or data
exchange workflows. The specificity of the approach enables
to concentrate in a diminished and well stablished operations
and simple mappings.

IV. RELATED WORK

Managing the evolution of Open Data sources often span
over different research subjects. In Data Integration solutions
[12], it is necessary to uniformly access different source
schemes through an integrated source [12]. The approach from
[13] presents a brief history on data integration solutions and
the current issues when having multiple Open Data sources.
Their solution for creating union-able tables [14] could be
valuable for our framework to create the initial mapping table,
but they do not focus on maintenance and updates of the data.

Data exchange approaches enable the translation of source
data into a target data, where one of the most known solutions
are the Clio tool [1]. It could be used for defining the
mappings to be used in an yearly basis. Business Intelligence
frameworks, such as Saiku, IBM Cognos or QLikView, or many
others, could be used as well. They are very expressive, provid-
ing complete frameworks accessible for the developers or data
analysts, often providing graphical interfaces or specialized
languages. However, due to its genericity, there is no design
indications on which operations could be used on evolution.
This means new open data evolution projects need to be
defined from scratch. The periodically released sources need
to be integrated using ad-hoc scripts, or the queries need to be
manually updated, which means there is not a specific work-
flow for handling evolution. In addition, the correspondences
between the evolving data is not explicitly published as Open
Data sources as well.

There has been extensive work on schema and data evolu-
tion, such as the surveys from [15] and [16]. The solutions
are based on element-to-element evolution, where each opera-
tion, often called SMO (Schema Modification Operation), are
handled using different techniques. Two recent approaches are
CoDEL[6] and BiDEL/InVerDa [7]/[17]. BiDEL is a language
to specify bi-directional SMOs, while InVerDa generates code
to handle evolution; it also enables having multiple schemas
evolving concurrently. In addition, the updates are processed
”online”, i.e., after each single element update. Our approach
has a different main goal, since we do not have specific SMOs
to handle each modification, but we have a full copy of the
columns and transformations for each new period, to integrate
into a single source. This limits the possible modifications,
and it does not allow multiple concurrent versions, but the
management through time is simpler, together with the set

6

of operations. In addition, the transformations enable data
evolution.

Model management solutions [8] first presented the idea of
using operators to handle metadata and data. They provide
operators such as Merge, Match, Extract, Apply, which can be
used in an algebra and combined to handle schema evolution,
among other issues. As in our approach, the evolutions are
handled ”off-line’.These approaches evolved to express richer
mappings, manipulating data as well [9] [10]. Our operations
could be considered as extensions of the Apply operator,
targeted to Open Data management workflow, by handling
both schema and data evolution.

V. CONCLUSIONS

We have presented a domain-specific approach for manage-
ment of Open Data evolution based on a set of operations and
bi-dimensional mappings. We narrow the scope of possible
operations and mappings, so it can be used as a starting point
for data scientists who do not need a complete framework
for defining any kind of ad-hoc transformations over data.
We advocate that a domain specific framework with such
characteristics can be used in many Open Data evolution
scenarios, because there is a large availability of data in de-
normalized CSVs.

The operations create, update, insert, remap and drop facil-
itates the management of the evolution of Open Data sources
in order to create integrated data sources. The execution flow
of the operations has been shown effective, being validated
through a case study in a real-world scenario, covering more
than 90 data releases. The operations take as input a mapping
table, which contains information on how to translate data and
schema of the input sources into a target integrated database.
The mapping table stores the mappings with columns catego-
rized by the release period, which we call time dimension. This
enables maintaining the mappings from one release to another,
without loosing track of the transformations executed.

The mappings are stored in a tabular (CSV) format, thus
being an Open Data source themselves, making it possible to
audit them. This is an important issue to enable third parties
to assess the correctness of the mappings, and also its validity
with respect to a specific domain analysis, i.e., if a given
indicator is really applicable and important, for instance, to
drive a given public policy. This assessment can only be done
by specialists.

As future work, we plan to develop a graphical interface
to ease the task of creating the mappings and managing
the proposed execution flow. We also plan to make broader
experiments about the usability of the tool.

REFERENCES

[1] R. Fagin, L. M. Haas, M. Hernández, R. J. Miller, L. Popa, and
Y. Velegrakis, Clio: Schema Mapping Creation and Data Exchange.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 198–236.

[2] J. Duggan, A. J. Elmore, M. Stonebraker, M. Balazinska, B. Howe,
J. Kepner, S. Madden, D. Maier, T. Mattson, and S. Zdonik, “The
bigdawg polystore system,” ACM Sigmod Record, vol. 44, no. 2, pp.
11–16, 2015.

[3] F. Bugiotti, D. Bursztyn, A. Deutsch, I. Ileana, and I. Manolescu,
“Invisible glue: scalable self-tuning multi-stores,” in Conference on
Innovative Data Systems Research (CIDR), 2015.

[4] J. LeFevre, J. Sankaranarayanan, H. Hacigumus, J. Tatemura, N. Poly-
zotis, and M. J. Carey, “Miso: souping up big data query processing
with a multistore system,” in Proc. of the 2014 SIGMOD, 2014, pp.
1591–1602.

[5] D. Deng, R. C. Fernandez, Z. Abedjan, S. Wang, M. Stonebraker, A. K.
Elmagarmid, I. F. Ilyas, S. Madden, M. Ouzzani, and N. Tang, “The
data civilizer system.” in CIDR, 2017.

[6] K. Herrmann, H. Voigt, A. Behrend, and W. Lehner, “Codel – a
relationally complete language for database evolution,” in Advances
in Databases and Information Systems, M. Tadeusz, P. Valduriez, and
L. Bellatreche, Eds. Cham: Springer, 2015, pp. 63–76.

[7] K. Herrmann, H. Voigt, T. B. Pedersen, and W. Lehner, “Multi-
schema-version data management: Data independence in the twenty-first
century,” The VLDB Journal, vol. 27, no. 4, pp. 547–571, Aug. 2018.

[8] P. A. Bernstein, “Applying model management to classical meta data
problems,” in CIDR 2003, First Biennial Conference on Innovative
Data Systems Research, Asilomar, CA, USA, January 5-8, 2003, Online
Proceedings, 2003.

[9] P. A. Bernstein and S. Melnik, “Model management 2.0: Manipulating
richer mappings,” in Proceedings of the 2007 ACM SIGMOD Interna-
tional Conference on Management of Data, ser. SIGMOD ’07. New
York, NY, USA: ACM, 2007, pp. 1–12.

[10] S. Melnik, P. A. Bernstein, A. Halevy, and E. Rahm, “Supporting
executable mappings in model management,” in Proceedings of the 2005
ACM SIGMOD. New York, NY, USA: ACM, 2005, pp. 167–178.

[11] H. V. Ehrenfried, R. Eckelberg, H. Iboshi, E. Todt, D. Weingaertner,
and M. D. D. Fabro, “Hotmapper: Historical open data table mapper,”
in 22nd EDBT, 2019, Lisbon, Portugal, March 26-29, 2019, 2019, pp.
550–553.

[12] C. Yu and L. Popa, “Constraint-based XML query rewriting for data
integration,” Proceedings of the 2004 ACM SIGMOD international
conference on Management of data - SIGMOD ’04, p. 371, 2004.

[13] R. J. Miller, “Open data integration,” Proc. VLDB Endowment, vol. 11,
no. 12, pp. 2130–2139, Aug. 2018.

[14] F. Nargesian, E. Zhu, K. Q. Pu, and R. J. Miller, “Table union search
on open data,” Proceedings of the VLDB Endowment, vol. 11, no. 7, pp.
813–825, 2018.

[15] E. Rahm and P. A. Bernstein, “An online bibliography on schema
evolution,” SIGMOD Rec., vol. 35, no. 4, pp. 30–31, Dec. 2006.

[16] P. Manousis, P. Vassiliadis, A. Zarras, and G. Papastefanatos, “Schema
evolution for databases and data warehouses,” in Business Intelligence,
E. Zimányi and A. Abelló, Eds. Cham: Springer International Publish-
ing, 2016, pp. 1–31.

[17] K. Herrmann, H. Voigt, T. Seyschab, and W. Lehner, “Inverda - co-
existing schema versions made foolproof,” in 2016 IEEE 32nd Interna-
tional Conference on Data Engineering (ICDE), May 2016, pp. 1362–
1365.

7

	Introduction
	Managing Open Data Evolution
	Experimental validation
	Related Work
	Conclusions
	References

