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ABSTRACT

The emergence of applications dealing with structured, semi struc-
tured, and non-structured data created demands on new data stor-
age systems. The relational model, widely used to store data from
diverse applications, does not meet all the imposed scenarios. In
response, NoSQL databases have emerged as an option. As a con-
sequence, new approaches for converting the relational model to
NoSQL models have been created. However, most of them target a
specific NoSQL model and provide little (or none) support for cus-
tomization for transformations with different cardinalities. In this
paper we present a novel approach to convert relational databases
(RDB) to document and column family NoSQLs. Our approach re-
ceives as input a set of directed acyclic graphs (DAG) representing
the target NoSQL model. The DAGs are used to generate commands
to transform the input RDB data. The approach supports different
cardinalities, and the commands can be customized. We have de-
veloped a tool to interpret the DAGs and that supports different
transformation strategies. We performed experiments to validate
our solution, with different configurations, where conversions were
carried out to document and column-family storage.
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1 INTRODUCTION

Relational Database Management Systems (RDBMS, or symply
RDB) are used to store data of various applications. However, with
the emergence of new types of applications and the populariza-
tion of cloud computing new requirements have arisen on data
store systems. In [13], the authors state that these systems, based
on the relational model, can not handle all issues encountered by
current applications. As an example we have web applications and
mobile applications that produce a large amount of data during
user interactions. These data can be structured, semi-structured
or unstructured. In addition, RDBs are not flexible enough since
they have pre-defined schema, which makes interoperability and
adaptability difficult.

NoSQL databases emerged as an alternative [8]. They differ from
RDBs in terms of architecture, data model, and query language.
The relational model is implemented through tables, columns and
rows, and the database schema must be defined before storing the
data. NoSQL databases can be divided into four categories: key-
value, document, column-family and graph. Each of them uses
a different data model. However, since NoSQL databases do not
follow the relational model and do not support the SQL standard,
the migration from a RDB is difficult[2]. In addition, there is a
huge base of users familiarized with SQL syntax and migrating to
NoSQL has a large learning curve [10]. There is no standard API for
accessing different NoSQL, typically users interact with database
at the programming level, reducing portability [6]. As both types
of databases will coexist it is important to investigate approaches
for schema and data migration between them.

There are different solutions that translate the RDB model and
the corresponding data to NoSQL, while most of them follows a two
step methodology[4]. First, they transform the relational model to
the NoSQL model. Second, they perform the data migration. In the
transformation step, mappings between concepts and transforma-
tion rules are defined to convert the RDB entities to NoSQL entities.
In the migration step, it is necessary to connect to both databases,
read the RDB data, transform and write the data into the target
NoSQL.

In general, the approaches de-normalize the RDB data based on
dependencies between tables and/or data access pattern. Some ap-
proaches run automatic conversion algorithms and do not support
customization of the conversion process [1, 7, 9, 11, 12, 14, 16, 17].
Others allow the user to customize the generated NoSQL model,
but these are solutions that migrate RDB to a single NoSQL model
[4, 5]. To the best of our knowledge, there are little approaches
which allow customization of data conversion process and address
more than one NoSQL model.
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In this paper we present an approach to migrate RDB to NoSQL
nested models - document or column-family. For this, we present
a mechanism to represent the RDB to NoSQL transformations
through a set of generated commands. This mechanism receives as
input a set of directed acyclic graphs (DAG) corresponding to the
desired target NoSQL model. From the set of DAGs the framework
commands and user-defined functions (UDF) are generated, with
the ability to read the RDB data, transform and persist it into JSON
format. It supports transformations with different cardinalities. The
contributions of this paper can be summarized as follows:

e a customizable framework to convert RDB to NoSQL nested
models.

e a command generator method to produce data transforma-
tion commands and UDFs through the specification of a DAG
representing the output NoSQL model.

e the support of 1:1, 1:N and N:N transformations, through the
combination of two kind of functions: Map and MapReduce.

e an extensible mapping creation process, so the developer
can add new algorithms to generate mappings from the DAG
and to produce new data transformation operations.

e an execution flow where the output of one transformation
can be subsequently used as input by another transformation,
without the need to persist partial results.

We validated our approach through the implementation of a tool,
on top of Apache Spark [15], supporting all the components of the
transformation framework and we have performed experiments to
show the viability of the solution.

The remainder of this paper is organized as follows: section 2 de-
scribes the approach to convert RDB to NoSQL using our framework.
Section 3 deals with the experimental setup and results. Related
work is given in section 4. Finally conclusions and future work are
provided in section 5.

2 RDB TO NOSQL TRANSFORMATION
FRAMEWORK

In this section we present our data transformation framework which
allows to load data, to define mappings between source and target
fields, to perform transformations and to persist the data. It receives
the target NoSQL model and converts it into a set of commands.
These commands are executed to read the data from the RDB, trans-
form and persist in NoSQL format. Figure 1 provides an overview
of the approach.
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Figure 1: Overview of RDB to NoSQL approach

It is composed of the components: (i) DAG Set, (ii) Command
Generator, (iii) Command Executor and (iv) Metamorfose Framework.
We use a set of DAGs to define the NoSQL model, where each DAG

represents a NoSQL entity. The developer provides the set of DAGs,
where conversion heuristics from literature can be used in this
process. In the following we detail each component.

2.1 Metamorfose Framework

Figure 2 presents the main transformation components: Entity Set,
Mapping Definitions, Functions and Apache Spark. The Entity Set
component maintains a collection of the entities loaded or trans-
formed by the framework. Transformations change the data of
existing entities or generate new entities. Through the functions
Load, Filter, Map, MapReduce and Persist it is possible to load en-
tities, filter data using SQL, to perform transformations and to
persist the results. The Mapping Definitions component allows the
specification of the source and target schema of a given entity and
the transformation functions that are invoked. The functions call
Apache Spark methods to perform the operations. The choice of
using Apache Spark is motivated by its support of a wide range of
abstractions to manipulate datasets.
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Figure 2: Architecture of the framework

Transformation Functions. The central unit of a transformation
is an entity. An entity can be defined as E = {I3, I, ..., In}, where [}
is an instance of E. Data transformations are executed through the
Map or MapReduce functions. Both functions receive as parameters
the source entity and mappings that define the data transforma-
tions. The Map function has cardinality 1:1, returning an instance
of the target entity (I;) for each instance of the source entity (Ig).
The MapReduce function has cardinality N:1, returning an instance
of the target entity (Iy;) for each group of instances of source entity
(Is1, Is2, ..., Isn). To group instances of the source entity, it is nec-
essary to provide a grouping key as a parameter. Transformations
with N:N cardinality are not supported directly by the framework,
but it is possible to define a combination of Map and MapReduce
functions to enable this kind of transformation.

Figure 3 illustrates the execution flow of the Map function. The
source instance I is transformed into the target instance It;. The
set of mappings (M1, My, ..., My) defines how the fields of I5; are
transformed into fields of It;. Figure 4 illustrates the execution
flow of the MapReduce function. The source instances I; and Iy
are transformed into key-value pairs (map function) and reduced
to the target instance It;. In the reduction phase the mappings
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(M1, Mg, ..., My) are applied to each instance of the group.
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Figure 4: MapReduce Function

Mapping Definitions. Mappings are declarative statements that
establish correspondences between source and target fields, which
can be used by data transformation functions. An entity has a
data schema that can be defined as S = {s1, ..., sn}, where s; is a
data field of the schema S. From a source schema S is possible to
derive a target schema T applying transformations on the field
values of S. A complete transformation processes a set of mappings
M = {(s1,t1, 1), ---» (Sn, tn, fn)}, Where s; represents one or more
source fields {s;1, ..., sij}, t; one or more target fields {t;1, ..., t;j}
and fj a transformation function.

The mappings are used in Map or MapReduce functions to trans-
form source instances into target instances. There are three types
of user-defined functions (UDF) for translating the input fields:
Casting, Java or Javascript. Casting are data type conversion (e.g.,
string to integer and integer to string). Complex transformations
are implemented as UDF in Java or Javascript. Casting transforma-
tions allow only one-to-one mappings between source and target
fields. Transformations using UDFs allow one-to-one, one-to-many,
many-to-one, and many-to-many mappings. Internally, the frame-
work uses JSON to represent the instances of the source and target
entities. UDFs receive the input data via JSON and return the results
via JSON. For instance, considering the mapping M; =
(s(id, fname, Iname), t(id, name), f(jscript)), the f function takes
as parameters the id, fname and Iname fields encapsulated in a JSON
object and returns a JSON object with the id and name fields.

The use of Javascript UDF mechanism provides flexibility to de-
fine complex data mappings and transformations. There is no need
to recompile the mappings every time new implementations are
provided. In addition, mappings can be persisted as JSON files for
future use.
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Execution Flow. Figure 5 presents the framework execution flow.
In (1) the data is loaded as a Spark dataset. Based on the user map-
pings the dataset is transformed (2) producing (3) dataset’ as a result.
Dataset’ can be used: (4) as input to a new transformation, (5) as
input to SQL query or (6) can be persisted to CSV file, JSON file
or relational database table. The SQL query execution on dataset’
produces new (7) dataset”. Dataset” can be used for new data trans-
formations (8), for persistence (9) or visualization (10). This flow
allows the definition of chains of transformations. Transformations
can be applied over the current dataset or can create a new datasets
with the resulting data.
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Figure 5: The framework execution flow

2.2 DAG Set

The transformations are represented as DAGs (Directed Acyclic
Graphs). A DAG is defined as G = (V, E), where the set of vertices
V is related with the entities of the RDB and the set of edges E
with the relationships between entities. The direction of the edges
defines the transformation flow. Each DAG can be visualized as a
tree, where the root vertex is the target NoSQL entity. The path
from one leaf vertex to the root vertex defines one transformation
flow. Each vertex encapsulates the metadata of its respective RDB
entity, including the table name, fields and primary key. The edge
between two vertices encapsulates relationship data between two
entities, including primary and foreign keys and which entity is on
the one or many side of the relationship. The DAG is used as input
to denormalize the set of RDB entities to create a NoSQL entity.
There are approaches following similar idea, though with different
strategies [4, 17].

Figure 6 illustrates three DAGs. The vertices with yellow back-
ground color are the target NoSQL entities. DAG 1 is composed of
two vertices representing Table A and Table B. In this case, Table B
instances are nested in Table A. In DAG 2 there are three vertices
with Table B, Table C and Table D. The instances of Table D and
Table C are nested in Table B. In DAG 3 there is only one vertex.
In this case Table D is converted as the target NoSQL entity. The
conversion process is dependent on target NoSQL model. For each
target NoSQL, it is possible to use different conversion strategies.

To summarize, we use the DAG for two purposes. First, for es-
tablishing a data path, which is used to define the denormalization
process or to define user queries (access pattern). Second, for assist-
ing in the generation of the mappings and UDFs to transform the
RDB data into NoSQL entities. The DAGs are used as input to the
Command Generator component.
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Figure 6: A set of example DAGs

2.3 Command Generator

This component is responsible for converting each DAG into a
set of commands. A command encapsulates operations for nest-
ing the leaf vertex entity in a root vertex entity. It is defined as
command = (joinSpec, fieldMaps, function), where joinSpec is the
join operation between entities that are denormalized, fieldMaps
is the set of mappings to transform the data, and function is the
transformation function to call (Map or MapReduce). To perform
this conversion we create Algorithm 1. It receives as parameters
the DAG and target NoSQL type. It iterates through the vertex set
and generates a command set as output.

Algorithm 1 Building the transformation commands:

Input: The DAG and target NoSQL (document or column family).
Output: The set of transformation commands.

1: commands «— empty

2: if graph.vertexSet = 1 then

3:  simple_cmd(graph.getVertex(0))

4: else

5:  while graph.vertexSet > 1 do

6: leafVertexs « graph.getVertexsWithInDegree(0)
7 for all leaf € leafVertexs do

8 if targetNoSQL = Document then

9: nosql_doc_cmd(leaf)

10: else if target NoSQL = ColumnFamily then
11: nosql_col_cmd(leaf, graph.vertexSet)
12: end if

13: graph.remove(leaf)

14: end for

15:  end while

16: end if

17: return commands

In Algorithm 1, if the given DAG has only one vertex (only one
entity), then the simple_cmd function is executed. This function
creates a command with operations to read the data from the RDB
entity and to transform each instance into a JSON object. If the
target NoSQL is a column family, then the JSON object consists of
a column family and rowkey field. If the DAG has two or more ver-
tices, the algorithm traverses all paths from the leaf vertices to the
root vertex. For each path it calls specific functions (nosql_doc_cmd
or nosql_col_cmd) depending on the target NoSQL. Then, the leaf
vertex is removed from the DAG. This process is repeated until the
DAG is reduced to one vertex that represents the target NoSQL
entity. The framework currently supports Document oriented and

Column Family NoSQL stores. For each target NoSQL, the genera-
tion commands are explained in Algorithms 2 and 3.

NoSQL Document. To convert RDB to NoSQL document it is nec-
essary to transform RDB entities into JSON objects. Relationships
between entities are represented by references (similar to the rela-
tional model), embedded in JSON objects, or arrays of embedded
JSON objects. Algorithm 2 uses JSON objects and array of embedded
JSON objects to represent the relationships between RDB entities.
It receives the leaf vertex and returns a command that encapsu-
lates the operations to embed the leaf vertex entity in the successor
vertex entity. If the leaf vertex is on side one of the relationship
it is embedded as a JSON object. If it is on side many, then all in-
stances are embedded in an array of JSON objects. This process
is repeated until the root vertex entity contains all DAG entities.
Function JScriptGenerator plays a key role in the transformation
process. It receives the vertex representing the RDB entity and UDF
type. JScriptGenerator returns automatically generated Javascript
UDFs with statements to transform an instance of the RDB entity
into JSON objects.

Algorithm 2 NoSQL Doc Command:

Input: Leaf vertex.

Output: Transformation Command.
1: fieldMaps «— empty

2: succr « leaf .getSuccessor()

3: for all field € succr.fields do

4 fieldMaps.oneToOne(field, field, casting)

5: end for

6: if leaf.isOneSide then

7 jsUDF « JScriptGenerator(leaf,docEmbedded)

8:  function <’ map’

9: else

10:  jsUDF « JScriptGenerator(leaf, arrayEmbedded)
11:  function <« mapreduce’

12: end if

13: fieldMaps.manyToOne(leaf .fields, leaf .name, jsUDF)
14: succr.addField(leaf .name)

15: joinSpecAdd(leaf, succr)

16: return Command(joinSpec, fieldMaps, function)

NoSQL Column family. The RDB entities are transformed into
tables composed of column families. RDB entities are de-normalized
and grouped before migrating into NoSQL. Each instance must
receive a unique identifier called rowkey. We use JSON objects to
represent the NoSQL entity. Each JSON object consists of the rowkey
field and embedded JSON objects to represent the column families.
Algorithm 3 receives the leaf vertex, number of vertices of the DAG,
and returns a command encapsulating the operations to nest the
leaf vertex entity into the root vertex entity. First it creates the join
operation between leaf vertex and root vertex entities, including
intermediate vertices. In the remaining statements, the leaf vertex
entity is nested as one column family of the root vertex entity. The
nesting_key variable is used to rename the fields of the leaf vertex
entity. This mechanism allows to insert the many side instances of
the relationship inside a column family (JSON object). When the
number of vertices is equals to two, it means that the last command
is created. In this case some extra operations are executed. The
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first one is the creation of the field rowkey. The primary key of the
root vertex entity is mapped as the rowkey field. The second one
is the creation of the column family of the root vertex entity. The
JScriptGenerator function returns UDFs to transform RDB entities
into column families. It uses the nesting_key variable for nesting
RDB entities without duplicating the field names in JSON object.

Algorithm 3 NoSQL Col Command:

Input: Leaf vertex and vertices number of graph.
Output: A transformation Command.
1: fieldMaps «— empty
2: root « getRootVertex()
3: joinSpecAdd(leaf, root)
4: if verticesNumber = 2 then
5. fieldMaps.oneToOne(root.PK, rowkey’, casting)
6
7
8
9

jsUDF « JScriptGenerator(root,docEmbedded)
fieldMaps.manyToOne(root.fields, root.name, jsUDF)
: end if
: for all field € root.fields do
10:  fieldMaps.oneToOne(field, field, casting)
11: end for
12: nesting_key = leaf .PK
13: jsUDF « JScriptGenerator(leaf, nesting, nesting_key)
14: fieldMaps.manyToOne(leaf .fields, leaf .name, jsUDF)
15: root.addField(leaf .name)
16: return Command(joinSpec, fieldMaps,” mapreduce’)

2.4 Command Executor

The Command Executor component receives a set of commands to
convert one DAG to one NoSQL entity. This set of commands is
converted to the framework functions. It encapsulates relational
database connection parameters and controls the execution order
of the commands. These commands are executed by the framework
to read, transform, and persist the data.

3 EXPERIMENTS

To validate our approach we executed experiments to convert RDB
to NoSQL document and column family.

3.1 Experimental Setting

We use the database of Dell’s DVD Store test application [3]. It
provides a database schema, load scripts and an application that
simulates an online e-commerce site. Through the load scripts it is
possible to configure the size of the database in terms of number
of records. Figure 7 shows the database schema. It is composed of
seven tables, but to illustrate our approach we consider only Orders,
Orderlines and Products tables.

From these three tables we build the Orders, Orderlines and Prod-
ucts DAGs presented in Figure 8. Each DAG has a root vertex (yellow
background color) and the remaining vertices representing the en-
tities that are nested. For example, in DAG Orders, the Products
and Orderlines tables are nested in the Orders table. How nesting
is performed depends on the NoSQL model. All these three DAGs
enable translating the input data into the output data. However,
other DAGs, representing only part of the information, could also
be created depending on the application domain.
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Customers Reorder
- id_customer : int - prod_id : int
_ firstname : String _ date_low : Date

- lastname : String
- address1 : String
- address2 : String

- quan_low : int
- date_reordered : Date
- quan_reordered : int

- city : String - date_expected : Date
- state: String 0.4
- zip : String -
- country : String 4 Inventory
- region : int
- email : String Products 1 0.1) - prod_id : int
- creditcardtypesint - String - - - guan_in_stock : int
 creilcard String ~id_prod - int - sales : int
- creditcardexpiration : String - category : int
- username ; String -title : String
- password : String - actor : String
- income : int - price : double Categories
- gender : String - special  int |
- common_jrod_id © int - id_category © int
1 1 - categoryname : String
0.*

Orders 0.
id_order :int Orderlines
- orderdate : Date L o - orderfineic - int
- customerid : int - orderid : int
~ netamount : double - prod_id - int
- tax - double - quantity : int
- totalamourt : double - orderlinedate - int

Figure 7: Dell DVD store database schema
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Figure 8: Orders, Orderlines and Products DAGs

We have implemented a tool! to validate our approach. It receives
as input RDB connection parameters, the DAG and the NoSQL tar-
get model. After that, the Command Generator converts the DAG to
the framework commands. These commands are executed through
the Command Executor component. As a result, it produces JSON
objects. Our approach does not need to persist the data directly into
the NoSQL database by default. However, we develop adapters to
read and insert the JSON objects into the desired NoSQL database.

The experiments are performed in one single machine with Win-
dows 10 Professional, Intel Core i7 2.5Ghz, 16 GB of RAM and 1
TB disk. The tool is implemented in Java and Apache Spark 2.3.0.
We have configured three database instances of different sizes in
Postgres 10. The number of records in the Orders, Orderlines and
Products tables is shown in Table 1. In the next section we present
the results of the experiments.

3.2 Experiment Results

We select the DAG Orders as a guide to describe the artifacts gener-
ated during the conversion and examples of JSON objects generated
after conversion. We present the run-time results to convert RDB
data to NoSQL document and column family.

'The tool is available for download at: https:/github.com/evandrokuszera/
metamorfose
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Table 1: Number of records of each Postgres database

RDB Size  Orders Orderlines Products
RDB1 12,000 60,350 10,000
RDB2 60,000 301,188 50,000
RDB3 120,000 601,009 100,000

RDB to NoSQL Document. We show bellow the mappings and
commands generated by Algorithm 2, using as input the DAG from
Figure 8:

flary

Mi.1 = (s(orderlineid)s t(orderlineid)s fcasting)§

Mi 2 = (s(orderid)> t(orderid)s fcasting)§

M3 = (s(prodfid)’ t(prodiid)i fcasting)Z

M4 = (s(quantity)a t(quantity)9 fcasting)?

M s = (S(id_prod,Category,title,actor,price,special)v t(products)’ stl );
cmdl = ((Products > Orderlines), fieldMaps, Map)

[are ey

Mg = (S(id_order)v t(id_order)v fcasting)§
Mz 2 = (5(customerid)» t(customerid)> fcasting);
Mz 3 = (s(orderdate)» t(orderdate)s fcasting)§

M; 4 = (S(orderlineid,orderid,prod_id,quantity,products)’ t(orderhnes)’ f J52)§
cmd?2 = ((Orderlines >« Orders), fieldMaps, MapReduce)

The ¢cmd1 command encapsulates operations to transform the
instances of Products and Orderlines into JSON objects and to embed
the object Products inside Orderlines. The cmd2 command trans-
forms the Orders entity into a JSON object and then embeds the
resulting Orderlines as an array of JSON objects into Orders. The
process of creating embedded JSON objects is encapsulated in the
Js1and Js2 UDFs. Figure 9 shows the code of UDF JsIand Fs2. These
UDFs are automatically generated from DAG vertices and edges
by Command Generator component. If desired, it is possible to can
modify this code to customize the translations.

In Figure 10 we show an Order instance produced by these com-
mands. The Order instance is composed of an array of Orderlines
and each Orderline instance has an associated Product.

RDB to NoSQL Column Family. We show bellow the mappings
and commands generated by Algorithm 3, using as input the DAG
from Figure 8:

Myq= (s(id_order)’ t(id_order)’ fcasting)§
Mi 2 = (s(customerid)> t(customerid)s fcasting);
M 3 = (s(orderdate)» t(orderdate)s fcasting)?

My 4= (5(id_prod,category,title,actor,price,special)’ t(products)» stl);
cmd1 = (((Products >« Orderlines) »< Orders), f Maps, MapReduce)

Mz.1 = (s(id_order)v t(rowkey)v fcasting)§

M2 = (s(products)a t(products)7 fcasting);

My 3 = (3(idﬁorder,customerid,orderdate)’ t(orders)7 stz);

My 4= (s(orderlineid,orderid,prod_id,quantity)’ t(orderlines)» f]s?:);
cmd2 = ((Orderlines > Orders), f Maps, MapReduce)

The ¢cmd1 command encapsulates operations to transform the
Products and Orders entities into JSON objects and to nest Products
as column family in the Orders entity. The cmd2 command creates

UDF | Source Target Type
id_prod, products | function docEmbedded(values) {
category, input = JSON.parse(values);
title, output = JSON.parse('{}');
actor, output.products = JSON.parse('{}');
price, output.products.id_prod = input.id_prod;
special output.products.category = input.category;

Js1 output.products.title = input.title;

output.products.actor = input.actor;
output.products.price = input.price;
output.products.special = input.special;
return JSON.stringify(output);

}

orderlineid, |orderlines [function arrayEmbedded(values) {

orderid, input = JSON.parse(values);

prod_id, output = JSON.parse('{}');

quantity, if (linput.obj1.hasOwnProperty('orderlines')) {
products embed_obj = JSON.parse('{}');

embed_obj.orderlineid = input.objl.orderlineid;
embed_obj.orderid = input.objl.orderid;
embed_obj.prod_id = input.obj1.prod_id;
embed_obj.quantity = input.objl.quantity;
embed_obj.products = input.obj1.products;
Js2 if (input.obj2 != null)
output.orderlines = [embed_obj, input.obj2];
else
output.orderlines = [embed_obj];
Yelse {
output = input.obj1;
if (input.obj2 != null)
output.orderlines.push(input.obj2);
}
return JSON.stringify(output);

Figure 9: RDB to NoSQL Document UDFs

"id_order™: 1,
"customerid": 7888,
"orderdate”: "2089-01-27",

Order “"orderlines”

Instance —_

Document orderlineid”: 13,

"orderid": 1,
"quantity": 2,
"products™: {
‘ "id_prod": 2778, Products

Orderlines |
Array —

"title": "ADAPTATIOMN SECRETS", - Document
"price":

Figure 10: Order entity converted to NoSQL Document

the rowkey field from the id_order field, copies Products object
created by cmdl to Orders entity, encapsulates the Orders fields
into the JSON object and nests as a column family of the Orders
entity and, finally, transforms Orderlines entity into JSON object
and nest it as column family of Orders entity. The process of creating
column families as JSON objects is encapsulated in UDFs Js1, Js2 and
Js3, which are shown in Figure 11. These UDFs are automatically
generate from DAG vertices and edges by Command Generator
component. Customizations in the UDFs can be done as well.
Figure 12 shows an Order instance after the execution of the
commands. The Order instance is composed of rowkey field and
column families Orders, Orderlines and Products. In order to nest
the entities Orderlines and Products in Orders, the orderlineid and
id_prod fields are used as nesting_key. The nesting_key parameter
is used to assign an unique column qualifier for each instance field.
After running the experiments to convert RDB to NoSQL docu-
ment and column family we checked the consistency of the gen-
erated data against RDB data. Through the obtained results we
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UDF | Source Target Type
id_prod, products | function manyNesting(values) {
category, input = JSON.parse(values);
title, output = JSON.parse('{}');
actor, if (linput.obj1.hasOwnProperty('products')) {
price, key = input.objl.id_prod;
Special output.products = JSON.parse('{}');

output.products[key +'_id_prod'] = input.objl.id_prod;
output.products[key +'_category'] = input.objl.category;
Js1 }else {
output.products = input.objl.products;
}
if (input.obj2 != null) {
key = input.obj2.id_prod;
output.products[key +'_id_prod'] = input.obj2.id_prod;
output.products[key + '_category'] = input.obj2.category;

}
return JSON.stringify(output);
)

id_order, orders function oneNesting(values) {

customerid, input = JSON.parse(values);

orderdate output = JSON.parse('{}');

if (linput.obj1.hasOwnProperty('orders')) {
output.orders = JSON.parse('{}');
output.orders.id_order = input.obj1.id_order;

Is2 output.orders.customerid = input.obj1.customerid;
output.orders.orderdate = input.objl.orderdate;
}else {

output.orders = input.objl.orders;

}
return JSON.stringify(output);

orderlineid, |orderlines [function manyNesting(values) {

orderid, input = JSON.parse(values);
prod_id, output = JSON.parse('{}');
quantity if (linput.obj1.hasOwnProperty('orderlines')) {

key = input.objl.orderlineid;
output.orderlines = JSON.parse('{}');
output.orderlines[key+'_orderlineid'] = input.objl.orderlineid;
output.orderlines[key+'_orderid'] = input.objl.orderid;

}else {
output.orderlines = input.objl.orderlines;

}

if (input.obj2 1= null) {
key = input.obj2.orderlineid;
output.orderlines[key+'_orderlineid'] = input.obj2.orderlineid;
output.orderlines[key+'_orderid'] = input.obj2.orderid;

Js3

}
return JSON.stringify(output);

Figure 11: RDB to NoSQL Column Family UDFs
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7~ "orders": {
Orders "id_order™: 1,
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Figure 12: Order entity converted to NoSQL column family

verified that generated data is consistent with RDB data and pro-
vided DAG.
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Performance Results. We measure the performance of the ap-
proach to convert data from the RDB1, RDB2, and RDB3 databases
according to Orders, Orderlines and Products DAGs. Table 2 shows
the results obtained considering only the time to convert the data
from one model to another. The time to persist (on disk or NoSQL
database) the generated JSON objects is not considered. The main
objective of the experiments is to assess the viability and feasibility
of the approach, leaving detailed performance evaluations as future
work. However, we can see that the conversion to NoSQL column
family has higher runtime if compared to the conversion to NoSQL
document. This result is due to the fact that the conversion strategy
calls more often MapReduce functions than the conversion strat-
egy to document stores, and the MapReduce function has higher
execution time than the Map function.

Table 2: Execution time (in seconds) to convert RDB to
NoSQL document and column family for Orders, Orderlines
and Products DAGs.

RDB Orders Orderlines Products
Doc  Col Doc Col Doc  Col
RDB1 36s 45s  28s 33s 36s 41s
RDB2 75s 120s  40s 61s 83s 129s
RDB3 132s 210s 59s 97s 187s 336s

4 RELATED WORK

There are different related works aiming to convert relational data-
bases to NoSQL document and column family models. The main
differences between these approaches, despite their output format,
are on how they select the input elements from the relational model,
their relations, and on how the output model is produced.

In 7, 9, 11, 14, 16], they present different forms of de-normali-
zation to produce as output column family models. After the de-
normalization, techniques are used to define the column families
and rowkey field of the output table. The approach from [9] presents
a dataflow to select the tables to be converted. The dataflow is set
up according to the cardinality relationships between the elements.
The tables are transformed into column families and grouped into
an HBase table. In [7], they analyze primary and foreign keys and
add the corresponding tables on linked lists, recursively transform-
ing them, with the concatenation of primary keys of the tables
in the linked list. [14] presents an algorithm that traverses all the
tables of the RDB and verifies the dependencies between them. For
each dependency between two tables, a third denormalized table
is created. The approach analyzes the set of tables created and de-
termines which ones have the least cost in terms of storage space
and query execution time. In, [16] they also use de-normalization
to avoid the use of join queries. A graph conversion model was
used to identify and represent the dependencies. Article [11] pre-
sented a conversion method composed of four steps: (i) relation
denormalization, (ii) extended table merging, (iii) key encoding
and (iv) views based on indexes. Heuristics were proposed to nest
tables with relationships. The techniques for translation are fixed,
which means that it is not possible to integrate or to extend these
approaches, to choose one or another according to specific needs.
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The other set of approaches [1, 4, 5, 12, 17] present translations
into document models. Similarly to the column family approaches,
they provide ways to choose the input tables and to produce the out-
put documents, but having as output embedded documents and also
references to other documents. In [12], the authors implemented
a six-step algorithm to represent relationships with different car-
dinalities. [17] describe a graph-transformation that captures the
dependencies between the input tables, where tables are vertices
and dependencies are edges. This algorithm is coupled with an
extension model to denormalize the data, in three different ways
(simple, vertical or horizontal). [1, 4, 5] approaches need additional
input. [1] presents the R2NoSQL tool, that enables to create map-
pings that use a table classification scheme to transform the data.
[5] presents a table-like-structure (TLS) that represents the input
tables. The elements of the TLS are classified into four groups (cod-
ifier, simple or complex entity and N:N link), and the translation
algorithm creates a tree based on this classification, which will be
used to guide the algorithm. In [4], it is necessary to add description
tags (frequent join, big size, frequent modify and insert), which are
extracted from the database log. Depending on the tags, a given
translation strategy is chosen, and an output graph is produced,
which can be manually modified. In addition, [4, 5] use an internal
representation to capture the de-normalization process and data
conversion. The main advantage is to be able to customize the out-
put after the initial discovery process. Still, they cannot be extended
to integrate different methods.

Our approach has a different contribution focus: instead of creat-
ing an automatic extraction method, it enables to capture the main
methods of the existing approaches in a form of a customizable
DAG, which represents the NoSQL entities. The DAG is used as
input to generate a set of commands. The commands can also be
changed in order to apply specific translations strategies. The cur-
rent version provides strategies for transforming RDB data into
tables composed of column families, embedded documents, em-
bedded document array or references. This mechanism allows our
approach to express most of the conversion techniques proposed
by related works, for both column families and document models.

5 CONCLUSIONS

In this article we have presented an approach to convert RDB to
NoSQL nested models, and we provided an implementation for doc-
ument and column family stores. We use a customizable directed
acyclic graph (DAG) to represent the NoSQL entities, which serves
as input to generate a set of commands and UDFs to convert the
RDB entities to NoSQL entities. These commands can be modi-
fied by the user to describe new strategies for transforming the
data. We provide strategies for transforming RDB data into tables
composed of column families, embedded documents, embedded
document array or references. This mechanism allows us to express
the conversion techniques presented by different related works,
for both column family and document models. It supports 1:1, 1:N
and N:N transformations, through the combination of two kind
of functions Map and MapReduce. We implemented a tool, on top
of Apache Spark and we performed experiments to validate the
approach, where conversions were carried out to document and
column family NoSQLs, which has shown to be effective.

As future work, we will incorporate new strategies to convert
RDB to NoSQL, where the user can select which one best suits
their requirements. We will also develop a graphical interface to
assist the user in building the DAG and to configure parameters of
the data conversion process. In addition, we will conduct experi-
ments to measure the performance of our approach relative to other
conversion tools and using available Open Data sources.
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