
Applying a Data-centric framework for Developing Model
Transformations

ABSTRACT
Data-centric (Dc) and declarative languages are being used
for data processing in several application domains, such as
distributed systems, natural language processing, and others.
In Model Transformations (MT), recognized declarative and
hybrid languages have been used to develop model transfor-
mation rules, such as ATL, QVT, or ETL. Considering the
execution semantics, a large part use functional-like or graph-
matching semantics. However, these new data processing
frameworks have different execution capabilities and seman-
tics, including functional, procedural or logic. In this context,
it is important to take stock of existing approaches for pro-
viding efficient transformation engines, ease to use, though
with alternative semantics and in a distributed way. In this
paper, we present a detailed study on applying a data-centric
language called Bloom to develop model transformations.
We developed an extractor into its collection-based format
and then processed them using its highly-declarative rules.
The results show the feasibility of applying data centric ap-
proaches for MDE applications, which might be an attractive
alternative for MT in a single-machine or distributed nodes.

CCS CONCEPTS
• Software Engineering → MDE;

KEYWORDS
Model Transformation Rules, Data-centric, Bloom Language
ACM Reference Format:
. 2019. Applying a Data-centric framework for Developing Model
Transformations. In Proceedings of ACM SAC Conference (SAC’19).
ACM, New York, NY, USA, Article 4, 9 pages. https://doi.org/
xx.xxx/xxx_x

1 INTRODUCTION
Model Transformations (MTs) are key artifacts for existing
MDE (Model-Driven Engineering) approaches, since they
implement operations between models [15]. ATL [20] (At-
lanmod Transformation language) is one of the most used
solutions for model transformations. There are several other
approaches, such as QVT [26] based languages, VIATRA [19],

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SAC’19, April 8-12, 2019, Limassol, Cyprus
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5933-7/19/04.
https://doi.org/xx.xxx/xxx_x

Epsilon Transformation Language (ETL) [23]. There are also
approaches based on logical programming, such as the Prolog
Transformation Language (PTL) [1].

There are recent initiatives that aim to improve existing
solutions by adapting computation models, for instance, using
the MapReduce computation model. However, such model
adds complexity of coding and it is tied to a set of initial
assumptions. Besides, one important challenge is how to
integrate model transformation approaches within the data-
intensive computing models. Works such as Burgueño et
al. [16], Pagán et al. [27], Benelallam et al. [11] and Tisi et
al. [29] aim at providing solutions for this new scenario using
frameworks as Linda and MapReduce. However, they do not
highlight high-level, declarative and logic contexts in MT.

In a different context, new scenarios to Dc computing
systems are arising. Most parts focus on data processing
tasks, independent of their structure, i.e., without the aim to
integrate with a modeling platform. One challenge is to find
approaches that ease the development of such applications,
beyond traditional SQL technology. Design requirements
of Dc computing systems include a high-level programming
language to the development of applications on parallel and
distributed environments [2]. The MapReduce [18], Hadoop
frameworks [6] have been allowing and driving the develop-
ment of the distributed/parallel implicit applications. How-
ever, their coding can be not straightforward. The declarative
and Dc languages have added different capabilities for the
developers, such that focusing on domain-specific tasks [2, 9].
Moreover, these languages include built-in processing primi-
tives to ease the specific manipulation and transformation
of data. Therefore, we believe that the features of a Dc lan-
guage may be an attractive alternative for the development
of transformation rules.

For these reasons, in this paper we present a detailed study
on the application of a Dc language design style for model
transformations, particularly to extract the input models
and to define transformation rules. We do not intend to
create a new framework, but to take stock of existing Dc
solutions and to apply it in a Model-Driven context. Among
the existing approaches, we have chosen to investigate the
Bloom language and its framework [4]. It has been proven
effective in different use cases and possibly a good candidate
for MT [2–4].

In order to achieve an integration, there are several chal-
lenges we addressed. First, we provide data translations be-
tween the MDE world and the Bloom format. Despite being
implemented on top of the Ruby language, it has its own col-
lection format, thus it is not possible to use directly object-like

https://doi.org/xx.xxx/xxx_x
https://doi.org/xx.xxx/xxx_x
https://doi.org/xx.xxx/xxx_x

SAC’19, April 8-12, 2019, Limassol, Cyprus

structures. Second, we implement and validate the transfor-
mation rules. Their semantics and syntax need to be simple
enough in order to motivate its use.

We develop a set of rules and we validate them through
experiments, both in a local and a parallel setting. We present
a detailed description of the language, its strong and weaker
points, as well as indications that it can be a feasible alter-
native for model transformations.

This paper is structured in 5 sections. In Section 2, we
introduce the context for this work with the MDE and the
Bloom language; In Section 3, we present our specifications
for centralized and parallel executions of Bloom rules and
experiments them on a case study; In Section 4, we present
the related works; In Section 5, we conclude with future work.

2 CONTEXT
In this section, we introduce model transformations and
Bloom, a Dc language.

A model can be defined as an abstraction of phenomena
in the real world formed by a set of model elements [25].
Operations on models are implemented as model transfor-
mations (MT) solving different tasks. According to [15], MT
represent a crucial ingredient of MDE and allow the defi-
nition of mappings between different models. For instance,
in a model-to-model (m2m) transformation one or more in-
put models are processed generating one or more models as
output. Indeed, a model transformation aims to provide a
mean to specify and produce target models from one or more
source models. Performing a model transformation requires a
clear understanding of the abstract syntax and semantics of
both the source and target models. Thus, a transformation
is a set of transformation rules that together describe how
a model in the source language can be transformed into a
model in the target language [28].

There is a set of transformation rule characteristics such
as domain of rule, directionality (unidirectional or multidirec-
tional), application condition (conditions for executing the
rule), parametrization (use of parameters), among others [17].
Unidirectional transformation consists in accepting one or
more source models as input to produce one or more target
models as output. When it is necessary to synchronize be-
tween source and target models, the kinds of transformations
may vary, from being unique specifications, to source-to-
target and target-to-source ones [24, 25].

Bloom is a declarative language developed by in the BOOM
research project Hosted by Berkeley University1 [14]. It is
based on a formal temporal logic called Dedalus [5]. The
three Bloom aspects that we will use for specifying the ex-
traction and transformation rules [4, 14]: Data Model, the
Bloom data model is based on collections. A collection is an
unordered set of facts, which are manipulate by declarative
rules (logic) on single node or more nodes (single-machine

1http://boom.cs.berkeley.edu/

or network); Execution Semantic, Bloom was designed for
providing a programming way, where an unordered set of
declarative rules is formed by an unordered set of predicates,
and it captures the object states in unordered collections;
and Concise Code, Bloom is a high-level declarative language
and Bloom programs tend to be smaller than equivalent
programs which processing data in traditional imperative lan-
guages [2]. Its syntax is defined as: <collection-variable>
<op> <collection-expression>, where the variable(s) in
left-hand side (lhs) and the expression(s) in right-hand side
(rhs) of the collections are related by an operator (<op>) [4].

In next section, we present our approach.

3 DATA-CENTRIC TRANSFORMATION
RULES USING BLOOM

We present our approach for data-centric model transfor-
mations using the Bloom language. First, we extract the
input model into the Bloom data format, since it comes
from a different technical space. Second, we describe the
implemented transformation rules for execution on a single
node as well as on more nodes. We present forward source-to-
target transformations and discuss the implications on the
rule implementations.

3.1 Extracting Model Elements to Bloom
To allow the interoperability between technical spaces, we de-
fine a specific format that is used in the extraction operation,
in a systematic way. It is inspired by the RDF format [31],
which is based on the idea of making statements about re-
sources in the form of subject-predicate-object (s,p,o) expres-
sions, known as triples. The subject denotes the resource, the
predicate denotes the aspects of the resource and it expresses
a relationship between the subject and the object.

We define a triple (𝑇) as a data structure formed by an
element name 𝑒𝑁 , an element reference 𝑒𝑅 and an element
type/value 𝑒𝑇 , structured as: 𝑇 = (𝑒𝑁 , 𝑒𝑅, 𝑒𝑇). These el-
ements denote: the model element name; a value indicat-
ing the element reference; and the type/value of model ele-
ment respectively. This format will be further used to specify
the Bloom collections, e.g., :input_model, [:in_model_elm,
:in_model_ref, :in_model_type]. We use this format for
instantiating the output of the Extraction Operation. Figure 1
shows an overview of our approach containing the Extraction
and Transformation operations.

The transformation execution flow is as follows: from the
Extractor output (triples), the source model elements,
conforms to (c2) the source meta-model are instantiated
in Ruby Classes guided by Bloom Injector. The instances
from Ruby Classes are used as input to Bloom Rules, which
are transformed to target objects. The target objects also
are instances of Ruby Classes, which we specify from the
Target Meta-model. As a result of the transformation, they

http://boom.cs.berkeley.edu/

Applying a Data-centric framework for Developing Model Transformations SAC’19, April 8-12, 2019, Limassol, Cyprus

Figure 1: An Overview of Extraction and Transformation Operations

are stored in a repository with same input model format (xmi
or json).

The source model written in JSON or XMI is assigned
to a hash using a parser. Next, the hash is processed by
an Extract Function, which instantiates the input model
elements into Bloom collections. These collections follow the
triples (𝑒𝑁 , 𝑒𝑅, 𝑒𝑇) specification, and their content is used
as input in a Transformation Operation. Furthermore, we use
the triple format and the references among triple elements
for generating the graphs for model partitioning (which will
be explained later).

We use the Family model excerpt to illustrate how it is
translated into the triple format and we then describe how
they are mapped to Bloom elements.

Listing 1: XMI Family Model Scrap
<?xml vers ion ="1.0" encoding="ISO−8859−1"?>
<xmi :XMI xmi : v e r s i on=" 2 .0 " xmlns=" Fami l i e s ">
␣␣<Family lastName="March ">
␣␣␣␣<fa th e r f i rstName="Jim " />
␣␣␣␣␣
␣␣</Family>
</xmi :XMI>

Listing 2: Family Model in Collections (triples)
1 [1 , 0 , " "]
2 [2 , 1 , " xmi :XMI"]
3 [3 , 2 , " Family "]
4 [4 , 3 , 0]
5 [5 , 4 , " f a th e r "]
6
7 [" Jim " , 5 , " f i rstName "]
8 ["March " , 4 , " lastName "]
9 [" Fami l i e s " , 2 , " xmlns "]

The reference element from each triple allows to relate them.
For instance, the triple [3, 2, "Family"] can be linked with
the triple ["March", 4, "lastName"] by means of triple [4,
3, 0]. We can thus create a complete model. For instance,
the "lastName" string is set to 𝑒𝑁 ; the number 4 is set to
𝑒𝑅; and the string "March" is set to 𝑒𝑇 . After the extraction,
the Bloom collections containing the input model elements
are used to instantiate the Ruby objects specified from the
source meta-model.

3.2 Bloom Transformation Rules: case study
In this section, we present the implementation of model
transformation using the Bloom framework. The input of
the rules is a set of objects with elements encoded in the
collections. We use two scenarios for assessing the feasibility
of Bloom rules. First, we develop a set of rules for executing
on single node. Second, we re-use the rules and injectors and
we develop a prototype for running them on three nodes, in
a parallel way. We implement a model partitioning clustering
the elements using a clustering framework. In both scenarios,
we have developed forward source-to-target transformation
rules.

3.2.1 Transformation Specifications. The specification has
four main steps. First, we take as illustrative example Fam-
ily2Person transformation from the ATL zoo [21]. The trans-
formation maps a Family representation to a Male or Female
representation, according to the roles father, mother, sons and
daughters. We use the source and target meta-models, shown
in Figures 2 and 3 respectively, for mapping and implementing
the meta-model elements as Ruby classes. For instance, the as-
sociative attributes father, mother, sons, and daughters
were mapped to role attribute of the class Member. The
meta-model below is implemented as Ruby classes.

Figure 2: Families Meta-model

Figure 3: Person
Meta-model

Second, we adopt injectors to process the source models
(triples, output from Operation Extraction) and to inject
them in auxiliary collections, easing the instantiation of the
source objects. Listing 3 shows an Injector Implementation.
This idea is similar to helpers of ATL [20] and PTL [1].

SAC’19, April 8-12, 2019, Limassol, Cyprus

Listing 3: Injector Implementation
1 module Injector
2 state do
3 table : family_name , [: fn_name ,: fn_ref ,: fn_type]
4 table : family_members , [: fs_name ,: fs_ref ,: fs_type]
5 scratch : family_member , [: fm_name ,: fm_ref ,: fm_type]
6 end
7
8 bloom : bloom_injector do
9 family_name <= input_model_prop {|p| p if

10 p. in_elm_ptype == " lastName "}
11
12 family_member <= (family_name * input_model). pairs
13 (: fn_ref => : in_elm_ref){|f,i| i}
14
15 family_member <= (family_member * input_model)
16 . pairs (: fm_name => : in_elm_ref){|f,i|
17 [i. in_elm_name , f.fm_ref , f. fm_type] if
18 f. fm_type == "sons" or f. fm_type == " daughters "}
19
20 family_members <= (family_member * input_model_prop)
21 . pairs (: fm_name => : in_elm_pref)
22 {|f,p| [f.fm_type , f.fm_ref , p. in_elm_pname]}
23 end
24 end

We define the family_name, family_member, and
family_members as auxiliary collections (lines 3 to 5). One of
them is the type scratch, not persistent in memory after exe-
cution, and another is type table, persistent in memory. They
are used for selecting family last names and their respective
members. First, we select the lastName family elements (lines
9 and 10) from source model elements (input_model_prop).
For this, we use the merge operator (<=) for assigning the
collection-expression result (rhs) to the collection (lhs). We
create the |p| block argument to access the elements of the
input_model_prop collection (direct access it is not permit-
ted), which are filtered by a conditional-expression. Next, we
re-use the family_name collection in a join-expression for se-
lecting family member elements (lines 12 and 13). Recursively,
we create another join-expression with the family_member
collection for selecting the son and daughter elements, when
a family has more than a son or more than a daughter (lines
15 to 18). Finally, we implement the last expression at lines
20 to 22 for completing the names (firstName) of each fam-
ily members assign them to the family_members collection.
To create the join-expressions, we use the join operator (*)
followed by the pairs method with a hash-pair (:fn_ref =>
:in_elm_ref). A hash-pair is composed by the compatible
elements of different collections contained in the join expres-
sion and by the hashmap operator (=>) relating them. This
means that to form a hash-pair the collection elements must
have matched values (referenced).

In Family2Person module, we specify the rules. They trans-
form the Family object attributes contained in families
collection to male and female collections. In this module,
we implement the rules using two expressions: one for se-
lecting the elements to male collection and another to se-
lect the elements to female collection. In both, we create
a conditional-expression for filtering the elements from the
families collection using role attribute. This means that

the family roles such as father, mother, son, and daughter
are translated to the gender (male or female), establishing
implicit links among these elements.

Listing 4: Family2Person Rules
1 module Family2Person
2 bloom : family2person do
3 male <= families {|f| [[f.lastName , f. firsName]
4 .join(" ")] if (f.role == " father " or
5 f.role == "sons")}
6
7 female <= families {|f| [[f.lastName , f. firstName]
8 .join(" ")] if (f.role == " mother " or
9 f.role == " daughters ")}

10 end
11 end

Third, we develop a monitor program to encapsulate the
execution of the Extraction and Transformation Operations.
It is necessary to instantiate the objects as collections, and
to generate the target objects in a file; We do not show the
monitor implementation since it composed by direct calls to
existing components.

Last, we execute the implementations showed previously
using as input the source model Family from Listing 1. The
result is showed in Listing 5.

Listing 5: XMI Person Model
<?xmi vers ion ="1.1" encoding="US−ASCII"?>

<Male fullName="Jim␣March " />
␣␣<Male fullName="Brandon␣March " />
␣␣<Female fullName="Cindy␣March " />
␣␣<Female fullName="Brenda␣March " />
</xmi :XMI>

3.2.2 Distributed Bloom Transformation. We re-use the mod-
ules from Figure 1 and we implement a prototype to execute
the model transformations in a distributed/parallel way. Fig-
ure 4 shows an overview of Distributed Bloom Transformation
Prototype (DBTP). We implement three additional modules:
the Graph and Partition modules for allowing the parti-
tioning models, and the Distribution module to distribute
chunk models from the Primary Node (PN) to Secondary
Nodes (SN) (Node 1, 2,..., n) 2. We adopt the Primary/Sec-
ondary as a model of communication for the DBTP on a
distributed setup. It allows us to simulate a distributed sys-
tem for sending and receiving input model chunks among
PN and SNs. It is necessary to partition the input models.
Model partitioning is an operation that consists in extracting
subsets of a model, that is splitting a model into chunks but
preserving its consistency [12, 22]. Graph Module: it gener-
ates a directed graph (𝐺(𝑉, 𝐸)) from the extraction operation
output. To generate a set of vertices (𝑉) and edges (𝐸) of the
Graph (𝐺), first we select the root elements from the input
model and we add a sequential number for creating the ver-
tices (lines 9 and 12 from Listing 6). Next, we create vertices
to all the elements from the input_model collection related
2Primary and Secondary Nodes, following the Internet Systems Con-
sortium (https://www.isc.org/) terminology.

Applying a Data-centric framework for Developing Model Transformations SAC’19, April 8-12, 2019, Limassol, Cyprus

Figure 4: An Overview of Distributed Bloom Transformation Prototype

to the root elements previously selected in the vertice collec-
tion. To create the edges, we select all the references between
the elements from vertice collection (lines 13 and 14).

Listing 6: Graph Module Implementation
1 module GenerateGraph
2 vertice = 0
3 state do
4 scratch :vertice , [: vert_elm ,: vert_ref ,: vert_typ ,
5 : vert_nr]
6 scratch :edge , [: vert_i , : vert_j]
7 end
8 bloom : graph do
9 vertice <= input_model {|i| [i. in_elm_name ,

10 i. in_elm_ref , vertice +=1]
11 if i. in_elm_type == " Family "}
12 vertice <= (vertice * input_model). pairs ...
13 edge <= (vertice * vertice). pairs (: node_elm =>
14 : node_ref){|v1 , v2| [v1.vert_nr , v2. vert_nr]}
15 end
16 end

Partition Module: to guide the partitioning, we use the
clustering of elements from vertice and edge collections.
The development of a new clustering algorithm is not the
scope of this work. However, it is necessary to ensure the
consistency of the partitioned model by adopting a specific
strategic. In our case, we use the Infomap tool and algorithms,
from the MapEquation framework [13]. It is a fast stochastic
and recursive search algorithm with a heuristic method based
on the optimization of modularity. We create a file in the
Pajek format 3 required by Infomap.

For instance: *Vertices 27, 1 "node 1", ..., *Edges 33, 1 2 1, 1

3 1, ... In Edges, we use default weight 1. This means that
all the links have the same importance degree, since we are
interested in vertices clustering. Once the .net file is gener-
ated, we execute it with a call to Infomap from Partition
Module and assign the output to the cluster collection:
imap = File.open(’../Infomap/extractg.net’, ’w’)

3https://gephi.org/users/supported-graph-formats/pajek-net-
format/

imap.write ("*Vertices {prg.node.count}")

system("./Infomap extractg.net output/ -N 10 –directed –clu")

File.foreach(’../Infomap/output/extractg.clu’) do |line|

In the Infomap call (system), we set the parameter -N to 10.
This means that the Infomap algorithm iterates ten times
over the vertices and edges generating a file with same name
as the input file (extractg.clu) containing the clustering
the vertices from input model. Figure 5 shows the content
from the file extractg.clu on dispersion of Vertices for the
Clusters. To achieve the result shown by Figure 5, we gen-

Figure 5: Clusters of Vertices Dispersion

erate an input file (extractg.net) containing 1123 vertices
and 2240 edges from a source model Family with 100 families.
Whereas a family is composed by a father and a mother, it
can have one to three sons or/and daughters elements. The
result from the Infomap execution was the clustering of 1123
vertices in 100 clusters, which we use to describe the model
partitioning.

Since the clusters are assigned to the cluster collection,
we use the number of nodes (𝑛𝑁), provided by the user,
as the denominator in division of quantity of clusters (𝑞𝐶).
(𝑛𝑉 =

𝑞𝐶
𝑛𝑁

). The result is the number of vertices (𝑛𝑉) used for
the partitioning of the source model. For instance, given 100
clusters to divide between 5 SN (𝑛𝑁), this means that each

SAC’19, April 8-12, 2019, Limassol, Cyprus

node has 20 clusters and their respective vertices. This allows
us to select the input model elements for distributing among
SNs. Nonetheless, there are constraints to the numerator (𝑞𝐶)
and denominator (𝑁𝑛): 𝑞𝐶 ∈ (R>0) ∧ 𝑁𝑛 ∈ (R>1) ∧ 𝑁𝑛 ≤ 𝑞𝐶 .

Distribution Module: in this module, we implement the
partitioning and the sending of source model to SNs. Listing 7
shows code of this module.

Listing 7: Partitioning Source Model
1 module PartitionModel
2 state do
3 scratch range_vert ,[: rg_ini , :rg_final , : rg_node]
4 table : part_model ,[: pm_elm ,: pm_ref ,: pm_type ,
5 : pm_node]
6 end
7 def range_vertices
8 puts " Enter Number of Secondary Nodes "
9 nn = gets.to_i

10 ...
11 range_vert <+ [[int_vert , fin_vert , nbr_node]]
12 end
13 bloom : partition do
14 part_model <= (range_vert * vertice). pairs {|r,v|
15 [v.vert_elm , v.vert_ref , v.vert_type , r. vert_nr]
16 if v. vert_nr >= r. rg_ini and
17 v. vert_nr <= r. rg_final }
18 part_model <= (part_model * input_model_prop). pairs
19 (: pm_elm => : in_elm_pref){|p,i| [i, p. pm_node]}
20 end
21 bloom : send_chunk do
22 pipe_chan <~ (sn_connected * part_model). pairs
23 (: id_sn =>: pm_node){|s,p| [s.addr_sn ,
24 $id_msg +=1 , p.pm_elm , p.pm_ref , p. pm_type]}
25 end
26 end

We implement the clusters division presented previously in
the range_vertices method (lines 7 to 11) for instantiating
a range of vertices to each SN into range_vert collection,
which we use in the bloom :partition block. In this block
(lines 13 to 20), we develop the partition model, where we
specify two iterations (join-expressions) over the input model
elements: first we select the elements from the vertice col-
lection belonging to a range of vertices within range_vert
collection creating a quadruple of collection elements. For
instance, [5, 4, "father", 1], these elements are assigned
to the part_model collection and are sent to node 1, since
number 1 establishes a relationship between them and the SN
1. Next, we implement the second iteration for selecting the
input model elements from the input_model_prop collection
related to elements contained into the part_model collection.
Thus, the subsets of source model are instantiated to the
part_model collection delimited by the SN id.

We present a code excerpt in Listing 8 that shows the
utilization of the collections of type channel, as well as the
connection among PN and the SNs. In the ConnectProtocol
module, we define the connect collection to allow the con-
nection among the PN and SN Nodes and the pipe_chan to
support the sending of model elements from the PN to SNs.
The sn_connected collection is used to instantiate the SN
addresses (:addr_sn) compose by an IP (Internet Protocol)
and a Port Number (endpoint of communication), and an

id (:id_sn). In particular, we assign an IP (127.0.0.1) and
Port (12345) to the PN (line 8) to ease the connection of
SNs to PN. Therefore, each SN knows the PN address.

Listing 8: Primary and Second Nodes Connections
1 module ConnectProtocol
2 state do
3 channel :connect , [: @addr_pn , : addr_sn]
4 channel :pipe_chan , [: @dst , : idmsg] => [: pc_name ,
5 :pc_ref , : pc_type]
6 table : sn_conneted , [: addr_sn , : id_sn]
7 end
8 PN_ADDR = " 127.0.0.1:12345 "
9 end

10
11 # On the PN side ========================
12 class PrimaryNode
13 ...
14 end
15 addrp = ARGV. first ? ARGV. first : ConnectProtocol :: PN_ADDR
16 ip , port = addrp . split (":")
17 pc = PrimaryNode .new (: ip => ip , :port => port.to_i)
18 pc. run_fg ()
19
20 # On the SN side ======================
21 module ReceiveModel
22 include ConnectProtocol
23 state do
24 table :rcv_model , [: rc_name , :rc_ref , : rc_type]
25 end
26 bootstrap do
27 connect <~ [[PN_ADDR , ip_port]]
28 end
29 bloom : rcv_model do
30 rcv_model <= pipe_chan {|p| [p.pc_name , ...]}
31 end
32 end
33 class SecondaryNode
34 ...
35 end
36 sc = SecondaryNode .new
37 sc. run_fg ()

On the PN side, we implement a monitor program
(primarynode.rb) to encapsulate the execution of PN mod-
ules. We use the pc.run_fg() method for handling and eval-
uating network events. It allows the PN to wait for SN
connections. This means that the PN has to be run before
the SNs.

On the SN side, we specify the rcv_model collection to
receive the model elements from the pipe_chan collection,
which are processed by Injector and Bloom rules (specified
in 3.2.1). Once PN is running, the connection of a SN is es-
tablished by bloom bootstrap block (lines 26 to 28), whose
statements are evaluated only once, before the other state-
ments in the SN program. Thereby, the SN address is sent
to the PN along with PN address. We obtain the SN ad-
dress by means of the ip_port method. It returns the IP
and Port from the Bud class instance. Although the devel-
oper may define an external IP and/or Port. As each SN
connects to the PN, the SN addresses are instantiated into
sn_conneted collection with a sequential number (starting
with 1). We use it in the bloom :send_chunk block (Listing 7)
for establishing a data pipeline among PN and SNs. Thus,
each subset of the source model contained into part_model

Applying a Data-centric framework for Developing Model Transformations SAC’19, April 8-12, 2019, Limassol, Cyprus

collection is sent to respective SN. This is ensured by the
:id_sn => :pm_node hash-pair in the join-expression. Fur-
thermore, we assign an unique number, in a sequential way
($id_msg+=1), to each created message, since the [:@dst,
:idmsg] pairs must be unique in the channel collection. We
also highlight that for any operation involving a channel
collection on the lhs, the asynchronous merge operator <∼
has to be used (lhs <∼ rhs). Finally, we implement a mon-
itor program (secondarynode.rb) to run the SN program
modules on different terminals.

3.3 Experiments
We use two scenarios to execute our approach: running on
a single node (Figure 1); and running on the PN and SNs
(Figure 4). In both, we utilize a single machine with the
following configuration: VirtualBox 5 with Memory size 4256
MB; Ubuntu 17.10; Ruby 2.2; and Bud release 0.9.7. This
virtual machine is hosted in a CPU Intel Core i5-4210U 1600
MHz Speed; Memory size 8096 MB; and 1 processor with
two cores. We include in these scenarios the Class2Table
(C2T) and Families2Persons (F2P) transformations. We aim
to answer two questions: Q1. How do the Bloom rules per-
form compared to another transformation language, ATL for
instance on sequential execution? Q2. Is distributed model
transformation in Bloom feasible?

For all the executions, we take only into account the du-
ration time of the transformation execution in seconds. In
Bloom, we do not consider the time used for loading the
models into memory or transmitting them to the SNs (dis-
tributing models in parallel executions). For running C2T
in ATL, we take two of the cases from [8] Atenea Systems
Modeling Group, MT Benchmark Class2Relational: case 0
(C0) consists of only one rule in ATL for transforming Class
to Table (C2T); and case 5 (C5) with two ATL rules, C2T
and Attribute to Column. We use the input models and the
meta-models from Atenea for running on ATL and Bloom.
The models size is defined in terms of the number of classes.
For instance, at line 1 and column 1 from of Table 1 (101),
there is the first input model with 10 classes, second 100, up
to 1000000 classes. In this sense, we use Bloom for gener-
ating families models in xmi as input for transforming F2P.
Thereby, each input model contains 10 to 1000000 families,
and each family has one to three sons and daughters.

We run the ATL rules on the Eclipse Photon framework,
using the option for measuring the execution time in seconds.
In Bloom, we use in our implementations the Time() method
from Ruby to measure the time in seconds. Following the im-
plementation style presented in section 3.2.1, we implemented
in Bloom the rules from cases C0 and C5. Every input model,
except 106, is executed 7 times, having discarded (warm-up
phase) the first two executions and computing the average
value of five executions. Table 1 shows the result in a single
node, in the attempt to answer Q1. Cells marked with dashes
"–" indicate that the execution did not fit into memory. In the

Table 1: C2T in ATL and Bloom

size C2T-c0 C2T-c5 F2P
ATL Bloom ATL Bloom ATL Bloom

101 0.002 0.002 0.006 0,007 0,002 0.003
102 0.007 0.004 0.049 0,058 0,047 0.067
103 0.012 0.005 0.424 0,353 0,286 0.297
104 0.081 0.078 33.726 5,241 2.295 3.268
105 2.93 1.923 – 72.862 30.027 29.317
106 – 18.924 – – – 108.913

transformations using a single rule (C2T-c0), Bloom executes
faster than ATL. However, when the transformations involve
more than one rule (C2T-c5) and the number of input model
elements is small, Bloom is slower than ATL. As the number
of elements increases, Bloom performs slightly better that
ATL. However, in both the speed-up is negatively influenced
by model size and by amount of rules being executed. There
are other frameworks that could be compared, though we
chose a baseline simple ATL, since we assume it is the most
used scenario.

To answer Q2, we first execute the transformations in a
centralized setting (CS). Then we partition the same input
models (described in Section 3.2.2) to run on three SNs.
Table 2 shows execution results. Note that in all finished

Table 2: Local and Distributed Bloom Rules Executions

Size CS-C2T SN-C2T CS-F2P SN-F2P

103 0.004

sn1 = 0.002

0,306

sn1 = 0,178
sn2 = 0.002 sn2 = 0.159
sn3 = 0.001 sn3 = 0.148

0.005 0.485

104 0.089
sn1 = 0.038

3.317
sn1 = 0.938

0.076 3.074

105 2.138
sn1 = 0.672

30.730
sn1 = 10.149

1.931 27.691

106 19.085
sn1 = 6.537

110.582
sn1 = 34.603

17.943 106.428

executions, except of size 103, the total execution time on
parallel setups such as SN-C2T and SN-F2P is smaller than
the execution time on a single node, CS-C2T and CS-F2P.
This means that the execution of parallel transformation in
Bloom can be feasible. However, other aspects on distribut-
ed/parallel executions need to be better evaluated, such as
exploring different partitioning models.

3.3.1 Discussions. The Bloom model is flexible and struc-
tured and any metamodel and model can be instantiated by
the Extractor. The collected approach may ease the data
modelling for distinct transformation scenarios (local and
distributed/parallel). Syntactically and semantically the con-
structs of the Bloom language are relatively simple, though
some join operation change the way of rules are developed
if compared to existing rule-based frameworks. In addition
to the collections, Bloom has a particular set of operators
that act directly over data collections. The capability to
process two different model formats (JSON and XMI) can

SAC’19, April 8-12, 2019, Limassol, Cyprus

be considered a differential of our approach to those that
accept only the XMI format. Another important aspect is
the declarative style to encode the rules in rhs expressions.
However, it requires a shift in thinking in order to change
the context from a modeling technical space to the Bloom
technical space. Furthermore, the inappropriate use of join-
expressions can decrease the execution performance. In our
experiments, the executions in Bloom were slightly faster
than the executions on a plain ATL setting. Nevertheless, we
still can not consider the Bloom transformations faster than
any ATL transformations or setting. As the ATL, Bloom
also presented problem with memory usage for loading and
processing very large models.

Regarding Bloom language, it was embedded in a DSL, in
this case, into the Ruby language. For this reason, it may
be easier to integrate it on already existing programming
environments, without the need for a separate editor/mainte-
nance framework. The data representation in triples allowed
to instantiate and to recover model elements from/to Bloom
collections preserving its references and the connectivity of
models, as well as generating graphs as input to model parti-
tioning. Still, is an additional format that need to be taken
into account. It would probably easier to be understood by
developers with familiarity with RDF-based representations
than the ones familiar with OO models. In the distributed/-
parallel context, our approach can be alternative when the
centralized transformation executions are not feasible. Nev-
ertheless, aspects such as the sending of sub-models to SNs
(throughput in data transmission), the model partitioning
strategy (partitioning balanced), and performance improve-
ments (memory usage) need to be better investigated. The
linking between elements from different nodes is handled by
making copy of connected elements in different clusters. This
means that fully connected models may not be adequate
for distribution. Furthermore, we did not explore yet the
junction of target sub-models on a single node or on a decen-
tralized persistence back-end. Also a benchmark involving a
diversified set of transformation scenarios is necessary.

4 RELATED WORK
MDE approaches have already being reinterpreted under
different views, for instance, Batory and Azenza [10] do a
reinterpretation under the context of relational databases.
To ease the understanding of MDE approaches they employ
a Dc approach and a declarative language to model trans-
formations. They map metamodels to relational tables and
the Prolog language to write declarative constraints in m2m
transformation. This approach has some aspects resembling
our work such as: the mapping of models and metamodels
to tuples; and use of Dc and declarative styles. However,
it was elaborated for helping to explain the MDE concepts
under relational perspectives, whereas we search to offer an
approach for model transformation in Dc approach.

Based on logic programming, Almendros-Jiménez et al. [1]
created a framework for model transformations using Prolog
language for specification of MT constraints. To evaluate it,
they create the PTL language. The approach uses declara-
tive and logic styles for specifying transformation rules and
constraint validations, and the use of the RDF library of SWI-
Prolog for storing models as RDF triples. However, PTL is
not evaluated for distributed or/and parallel environments.

Prolog was used by Varró [30] on top of VIATRA [19]. He
presents an automated solution for generating transforma-
tion programs as implementations of a model transformation
system. The models are stored as facts and modified at run-
time. Graph pattern matching is accomplished by unification
and VIATRA control structures are implemented as Pro-
log predicates. The representation model and declarative
implementation are aspects that are closely to our approach.

Based on big data tools, Aracil and Ruiz [7] proposed
CloudTL. They demonstrate that the big data technologies
can be used in MDE to achieve faster execution times of
transformations when input models are large. The CloudTL
is inspired in ATL language and uses the Apache Storm
as the backend for the engine. JSON objects are used for
helping in distributing the models. Our approach is motivated
by data processing frameworks and also aims at easing the
development of MT using a new language.

Benelallam et al. [11, 12] present the ATL-MapReduce
as a distributed MT engine. They embed the ATL on the
MapReduce framework for obtaining an implicit distribution
of ATL rules, achieving distributed execution. Using static
analysis, they proposed a model partitioning for balancing
and preserving the dependency among model elements by
means of a greedy distribution algorithm. The strategy is
relevant for applying an algorithm for balancing the parti-
tioning.The ATL-MapReduce solution is dependent of the
MapReduce framework and an implicit distribution of mod-
els, as well as the transformation executions on two phases
(map and reduce).

5 CONCLUSION
In this paper, we applied a Dc framework for model transfor-
mations to assess if it is a valid alternative to the development
of transformation rules. The main motivation was to exper-
iment using a framework outside of the modeling world in
order to identify its advantages or weaker points. We devel-
oped a set of transformation rules on the Bloom language
and validated them with experiments using centralized and
parallel executions. The obtained results indicate that the
Bloom language can be an alternative for specification and
execution of transformation rules on single node or distribut-
ed/parallel nodes. They also reveal that there is a set of open
questions about the use of the Dc approach to MDE tasks.
The syntax is simple, is integrated with Ruby, but many
new operations have different execution semantics than the
most known transformation languages. This means it would

Applying a Data-centric framework for Developing Model Transformations SAC’19, April 8-12, 2019, Limassol, Cyprus

need a change on the way of thinking for the developers. The
distribution capabilities are useful, but need further studies
to apply more sophisticated strategies, not a ready-to-use
framework, As future work, we plan running Bloom rules on
distributed environments as cloud computing aiming a bench-
mark with Very Large Models, to evaluate partition model
strategies prioritizing the load balancing of sub-models, and
to include a mechanism for jointing the target model chunks.

REFERENCES
[1] Jesús M. Almendros-Jiménez, Luis Iribarne, Jesús López-

Fernández, and Ángel Mora-Segura. 2016. PTL: A model transfor-
mation language based on logic programming. Journal of Logical
and Algebraic Methods in Programming 85, 2 (2016), 332 – 366.

[2] Peter Alvaro, Tyson Condie, Neil Conway, Khaled Elmeleegy,
Joseph M. ellerstein, and Russell Sears. 2010. Boom Analytics:
Exploring Data-centric, Declarative Programming for the Cloud.
In Proceedings of the 5th European Conference on Computer
Systems. ACM, New York, NY, USA, 223–236. https://doi.org/
10.1145/1755913.1755937

[3] Peter Alvaro, Tyson Condie, Neil Conway, Khaled Elmeleegy,
Joseph M. Hellerstein, Russell C Sears, Peter Alvaro, Tyson
Condie, Neil Conway, Khaled Elmeleegy, Joseph M. Hellerstein,
and Russell Sears. 2009. Boom: Data-centric programming in
the datacenter. Technical Report UCB/EECS-2009-113. EECS
Department, University of California, Berkeley.

[4] Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and William R.
Marczak. 2011. Consistency Analysis in Bloom: a CALM and
Collected Approach. In CIDR 2011. CIDRDB, CA, USA, 249–
260.

[5] Peter Alvaro, William Marczak, Neil Conway, Joseph M. Heller-
stein, David Maier, and Russell C Sears. 2009. Dedalus: Datalog in
Time and Space. Technical Report UCB/EECS-2009-173. EECS
Department, University of California, Berkeley. http://www2.
eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-173.html

[6] Hadoop / 04 August 2017 / Release 2.7.4 Apache. 2017. Apache
Software Foundation. Retrieved 2018-07 from http://hadoop.
apache.org/

[7] Jesús M. Perera Aracil and Ruiz Diego Sevilla. 2017. CloudTL: A
New Transformation Language based on Big Data Tools and the
Cloud. In Proceedings of the 5th International Conference on
Model-Driven Engineering and Software Development. MODEL-
SWARD, Prague, Czech Republic, 137–146.

[8] Systems Modeling Group Atenea. 2018. MT, Benchmark. Re-
trieved 2018/08 from http://atenea.lcc.uma.es/index.php/Main_
Page/Resources/MTBenchmark

[9] David Basin, Manuel Clavel, Marina Egea, Miguel A. García
de Dios, Carolina Dania, Gonzalo Ortiz, and Javier Valdazo.
2011. Model-driven Development of Security-aware GUIs for Data-
centric Applications. In Model-driven Development of Security-
aware GUIs for Data-centric Applications, Alessandro Aldini
and Roberto Gorrieri (Eds.). Springer-Verlag, Berlin, Heidelberg,
Chapter Foundations of Security Analysis and Design VI, 101–
124.

[10] Don Batory and Maider Azanza. 2017. Teaching model-driven
engineering from a relational database perspective. Software &
Systems Modeling 16, 2 (May 2017), 443–467.

[11] Amine Benelallam, Abel Gómez, Massimo Tisi, and Jordi Cabot.
2015. Distributed Model-to-model Transformation with ATL
on MapReduce. In 2015 ACM SIGPLAN Software Language
Engineering (SLE 2015). ACM, New York, NY, USA, 37–48.
https://doi.org/10.1145/2814251.2814258

[12] Amine Benelallam, Massimo Tisi, Jesús Sánchez Cuadrado, Juan
de Lara, and Jordi Cabot. 2016. Efficient Model Partitioning
for Distributed Model Transformations. In Proceedings of the
2016 ACM SIGPLAN International Conference on Software
Language Engineering (SLE 2016). ACM, New York, NY, USA,
226–238. https://doi.org/10.1145/2997364.2997385

[13] L. Bohlin, D. Edler, Lancichinetti A., and Rosvall M. 2014.
MapEquation Framework. Retrieved 2018/08 from http:

//www.mapequation.org
[14] Project BOOM, Berkeley Orders Of Magnitude. 2011. Bloom,

Bloom Language. Retrieved 2018/07 from http://boom.cs.
berkeley.edu/

[15] M. Brambilla, J. Cabot, and M. Wimmer. 2012. Model-Driven
Software Engineering in Practice (1 ed. ed.). Vol. 1. Morgan &
Claypool, Williston, USA.

[16] Loli Burgueno, Manuel Wimmer, and Antonio Vallecillo. 2016.
A Linda-based Platform for the Parallel Execution of Out-place
Model Transformations. Inf. Software Technology 79 (Nov. 2016),
17–35. https://doi.org/10.1016/j.infsof.2016.06.001

[17] K. Czarnecki and S. Helsen. 2006. Feature-based Survey of Model
Transformation Approaches. IBM System Journal 45, 3 (jul
2006), 621–645.

[18] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified
Data Processing on Large Clusters. Commun. ACM 51, 1 (jan
2008), 107–113.

[19] Foundation. Eclipse. 2017. Eclipse 2017/08/02 1.6.1. http://www.
eclipse.org/viatra/. Accessed in 2018/1.

[20] Foundation Eclipse. 2018. ATL - A Model Transformation Tech-
nology. Retrieved 2018/08 from https://projects.eclipse.org/
projects/modeling.mmt.atl

[21] Foundation Eclipse. 2018. ATL - Transformations list. Retrieved
2018/07 from http://www.eclipse.org/atl/atlTransformations/

[22] T. Hartmann, A. Moawad, F. Fouquet, G. Nain, J. Klein, and
Y. Le Traon. 2015. Stream my models: Reactive peer-to-peer
distributed models@run.time. In ACM/IEEE 18th International
Conference on Model Driven Engineering Languages and Sys-
tems (MODELS). IEEE, MODELS-2015, Ottawa, Canada, 80–89.

[23] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack.
2008. The Epsilon Transformation Language. Springer Berlin
Heidelberg, Berlin, Heidelberg, 46–60.

[24] N. F. M. Macedo. 2014. A Relational Approach to Bidirectional
Transformation. Ph.D. Dissertation. Universidade do Minho,
Minho, POR.

[25] Tom Mens and Pieter Van Gorp. 2006. A Taxonomy of Model
Transformation. Electron. Notes Theor. Comput. Sci. 152 (mar
2006), 125 – 142.

[26] OMG. 2016. QVT Query View Transformation, formal/2016-06-03
v1.3. http://www.omg.org/spec/QVT. Accessed in 2018/06.

[27] Javier Espinazo Pagán, Jesús Sánchez Cuadrado, and Jesús Gar-
cía Molina. 2015. A repository for scalable model manage-
ment. Software & Systems Modeling 14, 1 (2015), 219–239.
https://doi.org/10.1007/s10270-013-0326-8

[28] Adrian Rutle, Alessandro Rossini, Yngve Lamo, and Uwe Wolter.
2012. A formal approach to the specification and transformation
of constraints in MDE. The Journal of Logic and Algebraic
Programming 81, 4 (2012), 422 – 457.

[29] Massimo Tisi, Salvador Martínez, and Hassene Choura. 2013.
Parallel Execution of ATL Transformation Rules. In Proceed-
ings of the 16th International Conference on Model-Driven
Engineering Languages and Systems - Volume 8107. Springer-
Verlag New York, Inc., New York, NY, USA, 656–672. https:
//doi.org/10.1007/978-3-642-41533-3_40

[30] Daniel Varró, Gábor Bergmann, Ábel Hegedüs, Ákos Horváth,
István Ráth, and Zoltán Ujhelyi. 2016. Road to a reactive and
incremental model transformation platform: three generations of
the VIATRA framework. Software & Systems Modeling 15, 3
(Jul 2016), 609–629.

[31] W3C. 2014. RDF 1.1 Concepts and Abstract Syntax. Retrieved
2018/07 from https://www.w3.org/TR/rdf11-concepts/

https://doi.org/10.1145/1755913.1755937
https://doi.org/10.1145/1755913.1755937
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-173.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-173.html
http://hadoop.apache.org/
http://hadoop.apache.org/
http://atenea.lcc.uma.es/index.php/Main_Page/Resources/MTBenchmark
http://atenea.lcc.uma.es/index.php/Main_Page/Resources/MTBenchmark
https://doi.org/10.1145/2814251.2814258
https://doi.org/10.1145/2997364.2997385
http://www.mapequation.org
http://www.mapequation.org
http://boom.cs.berkeley.edu/
http://boom.cs.berkeley.edu/
https://doi.org/10.1016/j.infsof.2016.06.001
http://www.eclipse.org/viatra/
http://www.eclipse.org/viatra/
https://projects.eclipse.org/projects/modeling.mmt.atl
https://projects.eclipse.org/projects/modeling.mmt.atl
http://www.eclipse.org/atl/atlTransformations/
https://doi.org/10.1007/s10270-013-0326-8
https://doi.org/10.1007/978-3-642-41533-3_40
https://doi.org/10.1007/978-3-642-41533-3_40
https://www.w3.org/TR/rdf11-concepts/

	Abstract
	1 Introduction
	2 Context
	3 Data-centric Transformation Rules using Bloom
	3.1 Extracting Model Elements to Bloom
	3.2 Bloom Transformation Rules: case study
	3.3 Experiments

	4 Related Work
	5 Conclusion
	References

