QBMetrics: a tool for evaluating and comparing
document schemas

Evandro Miguel Kuszera!-?, Leticia M. Peres?, and Marcos Didonet Del Fabro?

! Federal University of Technology - Paran4, Dois Vizinhos, PR, Brazil
evandrokuszeraQutfpr.edu.br
2 (C3SL Labs, Federal University of Parang, Curitiba, PR, Brazil
{1mperes,marcos.ddf }@inf.ufpr.br

Abstract. Document stores are frequently used as representation for-
mat in many applications. It is often necessary to transform a set of data
stored in a relational database (RDB) into a document store. However,
it is difficult to evaluate which target document structure is the most
appropriate for each scenario. In this article, we present a tool, called
QBMetrics (Query-based Metrics), that assists on an RDB to NoSQL
document conversion process, by calculating a set of query-based met-
rics for evaluating and comparing the created schemas against a set of
existing queries. We represent the schemas and the queries as DAGs (Di-
rected Acyclic Graphs), which are used to calculate the metrics. The
metrics allow to evaluate if a given target document schema is adequate
to answer the queries. We demonstrate the tool in an RDB to NoSQL
conversion scenario, involving the creation of the schemas, queries and
the metrics calculation.

Keywords: RDBs - Document stores - Metrics - Evaluation - Tool.

1 Introduction

Relational databases (RDB) are widely used to store data of several types of
applications. However, they do not meet all requirements imposed by modern
applications [8], that handle structured, semi-structured and unstructured data.
Furthermore, RDBs are not flexible enough, since they have a predefined schema.
NoSQL databases [0] emerged as an option. They differ from RDB in terms of
architecture, data model and query language [6]. They are generally classified
according to the data model used: document, column family, key-value or graph-
based. One of the most used NoSQL format are document stores.

RDB and document stores will be used together, being necessary to investi-
gate strategies to convert and migrate schema and data between them. Different
approaches have been presented to convert RDB to NoSQL document stores
[79I1413]. Some of them consider just the structure of the RDB in the conver-
sion process [7J9]. While others also consider the access pattern of the application
[1/413]. However, none of the approaches is concerned with the evaluation and the
comparison of the output document structure against the existing queries that

2 E. Kuszera et al.

need to be adapted and then executed. The work from [2] presents eleven met-
rics to evaluate the structure of document stores. Such evaluation is important
to guide the choice of an adequate document structure. However, the approach
has no specific metrics for assessing the queries access pattern against document
structure. Despite not having a formal schema, a document has a structure used
by the queries to retrieve data. We consider that this document structure can
be used as an abstraction to represent a schema.

We present a demo of the QBMetrics tooEL which is used in RDB to NoSQL
document conversion processes. It provides a graphical interface to calculate
query-based metrics that assist on the choice of a most appropriate target NoSQL
schema. The tool uses Direct Acyclic Graphs (DAGs) to represent both the target
NoSQL schema and the set of queries, where the vertices are entities and the
edges are relationships. More specifically, a DAG represent a collection structure
for a schema and an access pattern for a query. DAGs as schema have already
been used in a previous approach to convert RDB to NoSQL nested models [5].

This demonstration will show how the tool is used to calculate metrics to
evaluate and compare candidate target NoSQL schemas, by executing the fol-
lowing steps:

— creation of the target NoSQL schema and queries;
— calculation of a set of schema scores and query scores;
— analysis of the results.

This paper is organized as follows: section 2 presents the architecture of our
tool. In section 3 we present a validation scenario and the demonstration steps.
Finally, conclusions are provided in section 4.

2 (QBMetrics tool

The QBMetrics tool supports an RDB to NoSQL document conversion process
by calculating metrics for evaluating and comparing target NoSQL schema op-
tions, prior to the data conversion. The tool has two components, the Converter
and Metric components, as shown in Figure

2.1 Converter component

This component defines conversion process, encapsulating the input RDB con-
nection properties, the set of target NoSQL schemas and the set of queries.
Both, schemas and queries are represented by DAGs (Directed Acyclic Graphs).
A DAG is defined as G = (V, E), where the set of vertices V is related with
the tables of the RDB and the set of edges E with the relationships between
tables. The direction of the edges defines the transformation flow. Each DAG
may be seen as a tree, where the root vertex is the target entity. The path from

3 The tool is available for download at: https://github.com/evandrokuszera/
nosql-query-based-metrics

https://github.com/evandrokuszera/nosql-query-based-metrics
https://github.com/evandrokuszera/nosql-query-based-metrics

QBMetrics: a tool for evaluating and comparing document schemas 3

Converter Module Metrics Module

|

I

|

[]|
I

1. 1 |

Fig. 1: Tool architecture.

one leaf vertex to the root vertex defines one transformation flow. Each vertex
contains the metadata of its respective RDB table, including its name, fields
and primary key. The edge between two vertices encapsulates relationship data
between two tables, including primary and foreign keys and which entity is on
the one or many side of the relationship. Through the DAG, we specify the
de-normalization process from a set of related tables to produce a NoSQL col-
lection. There are works with the same objectives, but with different strategies
[309].

Considering a DAG as a NoSQL collection, the root vertex is the first level of
the collection and the remaining vertices are the nested entities. The direction
of the edges defines the direction of nesting between entities and encapsulates
nesting type information, including embedded objects or array of embedded
objects types. We represent a NoSQL schema through a set of DAGs, where
each DAG represents the structure of a collection. We define a NoSQL schema
as S = {DAG,,..., DAG,|DAG; € C}, where C is the set of collections of S. The
resulting S schema can be used by our Metamoforse framework [5] to migrate
data from RDB to NoSQL document

2.2 Metric component

It receives as input a target NoSQL schema and a set of queries, both represented
by DAGs. We developed six (6) query metrics and two (2) schema metricsﬁ

Query Metrics The tool calculates three metrics that measure the cover-
age of the query paths in relation to the schema collection paths, being Path,
SubPath and IndPath. The Path(query) metric measures coverage consider-
ing path matching (leaf-to-root vertices), SubPath(query) considering subpath
matching and IndPath(query) considering indirect path matching. An indirect
path is the one where all its vertices and edges are contained in a regular path,
but there are additional intermediate vertices.

4 A detailed description of the metrics is available in a paper accepted for publica-
tion at this same conference (” Query-based metrics for evaluating and comparing
document schemas”).

4 E. Kuszera et al.

The tool also calculates two metrics related to edge coverage. Dir Edge(query)
measures the coverage of the edges of the query against the edges of the col-
lection, considering the direction of edges (e.g. a — b). On the other hand,
AllEdge(query) measures the edge coverage regardless of edge direction (e.g.
a — b or a + b). The last metric is called ReqColls(query), which returns the
smallest number of collections required to answer a given query.

To measure the coverage of the query paths and query edges relative to all the
schema, the maximum value found when applying the metric for each collection
is considered. However, for the ReqColls is minimum value found.

Query Score (QScore) represents the query score for a given metric or set of
metrics. The QScore for DirEdge, AllEdge and ReqColls is the same value
returned by the respective metric, for example, QScore(DirEdge, query) =
DirEdge(query). However, for the Path, SubPath and IndPath metrics, it is
calculated as the maximum value between them and is defined as QScore(Paths) =
max(Path, SubPath, IndPath).

To calculate the value of Path, SubPath and IndPath in QScore(Paths),
we use the expression (zPath(query) * w)/depth(query), where zPath can be
replaced for one of the three metrics above, w is the weight of each metric and
depth() is a function that returns the depth where the x Path match was found
in the schema. Different weights can be assigned to each xPath, prioritizing
schemas with a specific type of structural correspondence. The match depth is
used to penalize schemas, with less deep schemas being preferred.

Schema Score (SScore) denotes the sum of the QScore values for all the
queries for a given metric (except ReqColls), where each query ¢; of the set of
queries (@) has a specific weight w;, and the sum of all w; is equal to 1. Following
the same idea of the @QScore, SScore(Paths, (Q)) denotes the schema score for the
metrics Path, SubPath, and IndPath. The SScore for ReqColls metric is a ratio
between the number of queries and the number of collections required to answer
them. A schema that answers each input query through only one collection has
SScore(ReqColls, Q) = 1. It decreases when the number of collections increases.

To summarize, the QScores shows the coverage provided by the schema for
each query, where we can identify which queries require the most attention or
are not covered by the schema. The SScore field provides an overview of how
well the schema fits the query set. Since the metrics are not independent, we do
not define a single expression to calculate the overall score of the schema.

3 (QBMetrics demonstration

3.1 Scenario

The tool’s demonstration scenario consists of converting an existing RDB to
NoSQL document. Figure [2 shows the E-R model of the RDB. Although the

QBMetrics: a tool for evaluating and comparing document schemas 5

RDB is composed of 7 tables, related to each other, in the demo only the Cus-
tomers, Orders and Orderlines tables will be used. Generally, the RDB entities
are converted to documents and the relationships to references, embedded doc-
uments or arrays of embedded documents. The decision on how the documents
will be structured is not a trivial task and depends on the various aspects (ap-
plication access pattern, redundancy, maintainability, etc.).

Customers Orders Reorder
- id_customer - int - id_order : int - prod_id - int
- firstname : String 1 0.*| - orderdate : Date - date_ow : Date
- lastname : String - customerid int - quan_low : int
- address1 : String - netamount : double - date_reordered : Date
- address2 : String - tax : double - quan_reordered : int
- city : String - totalamourt : double - date_expected : Date
- state : String
e ; 5 Categories
- country : String o 1 - id_category int
- region : int Products 1| - categoryname : string
CQICT3ET Orderlines
- creditcardtype:int : String - id_prod int
- crediteard String - orderlineid - int - category : int
- creditcardexpiration ; String - orderid : int - title - String ;

inventol

- username : String - prod_id :int - actor : String Q L7
- password : String - quantity : int 0. 1| - price : double - prod_id : int
- income int - orderlinedate int - special ; int - quan_in_stock : int
- gender : String - common_prod_id - int - sales - int

Fig.2: Input RDB

Figure [3| shows three options for structuring the entities Customers, Orders
and Orderlines as documents, named schemas A, B and C. In schema A we
have a collection called Customers, where Orders and Orderlines are arrays of
embedded documents. In schema B there is a collection called Orders, where
Customers is an embedded document and Orderlines is an array of embedded
documents. In schema C' there are two collections, Customers and Orders.

Schema A Schema B Schema C
[——— e i
H Customers i Orders Orders Customers |
|
| asArmay H | asArmay as Obj as Array \
' H I
Schemas 1 ™ orgers | 11 [Orderlines Customers (Corderlines | !
! asArray Vo '
[

; i '
e

e T L '

H Query g1 Query g2 Query g3 H

I I

H Customers Customers Orders !

o ;

Queries 1 '

! Orders Orderlines !

i |

I - I

! Orderlines '

I

Fig. 3: Input NoSQL document schemas (A — C) and queries (g1 — ¢3).

In this demo, we consider the application access pattern to evaluate and
compare the schemas A—C'". The access pattern is represented by the queries g1 —
q3 of Figure|3| The goal is to calculate the metrics on the set of schemas and check
which one provides greater coverage for the set of queries. The user can configure
different weights for queries, prioritizing a certain access pattern. In addition, it

6 E. Kuszera et al.

is also possible to assign different weights to the Path, SubPath and IndPath
metrics, prioritizing schemas by path type. In the demonstration scenario, all
queries will have the same weight (same priority), however, different weights will
be assigned for path type, being path = 1.0, subpath = 0.7 and indpath = 0.5.
In this way, schemas with greater Path coverage will be prioritized, followed by
schemas with greater SubPath and IndPath coverage.

3.2 Demonstration

The tool provides support for defining a conversion process from RDB to NoSQL
document, and also for evaluating and comparing possible NoSQL schemas
through query-based metrics. Figure [f] shows the graphical interface of the tool.
The execution flow is based on four steps: In (A) the input RDB connection
parameters are provided. In (B) one or more NoSQL schemas are created from
the entities of the input RDB. In (C), queries that represent the application’s
access pattern are defined. Finally, in (D) the metrics are calculated. Each step
will be detailed below.

nnnnnn ezt Corvecton Test

o srare e su et (X

F m—— F ‘ Bremme

it o bt 5 2 =
(5 nport
B ven

o)
B renoe
Bowt
oot

Qo ©

Fig. 4: The tool graphical interface

A: Input RDB The starting point is to define the connection properties of
the input RDB (A). The tool accesses the RDB metadata to assist in creating
schemas and queries. Currently, Postgres and MySQL databases are supported.

B: NoSQL schemas The user can create one or more NoSQL schemas from
the input RDB. Each schema consists of one or more collections of documents,
represented as DAGs. In Figure 4| (B), schemas A — C and respective values
for structural metrics are shown, such as number of documents, arrays of em-
bedded documents, arrays of primitive types, primitive types and the maximum

QBMetrics: a tool for evaluating and comparing document schemas 7

collection depth. The user can add new collections or remove existing collections
from the schema. In Figure [4] (B.1) schema C is shown. It is composed of the
Customers and Orders collections. In Figure |4] (B.2) the screen for creating a
collection (or DAG) is shown. To create a collection three steps are required:

— Step 1 - Add vertices: the user selects the vertices (RDB tables) to com-
pose the DAG. The tool automatically loads the list of tables from the input
RDB. For instance, in (B.2) the Orders and Orderlines vertices are selected.

— Step 2 - Add edges: the user adds edges between vertices. When selecting
the source vertex, the tool automatically searches for possibly target vertex,
based on RDB metadata. For example, in (B.2) an edge is added in the
direction Orderlines — Orders. The direction of the edges, together with
metadata extracted from the input RDB (e.g. PK and FK) define how the
entities will be nested. In this case, Orderlines (FK) will be nested as an
array of documents embedded in the collection Orders (PK).

— Step 3 - Collection metrics: show the structural metrics of the collection.

The next step is to create the queries, which will be used to calculate the
metrics on the NoSQL schemas.

C: Queries The process of creating queries is similar to the process of creating
collections. Both, collections and queries, use DAG-based abstraction. Figure [4]
(C) shows the three previously defined queries (from Figure . These queries
represent the access pattern that will be used to evaluate and compare the
schemas A — C.

Filter Weights Depth
By: Schema v Path: (10 | subPath:[0.7 | IndPath: [0.5 Hon

Value: (Al v Queries: 0.33,0.33,033

Coverage e
Queries Fath() SubPath(D) IndPath (@) Difdge AlEdge ReqCols |Paths DiEdge AlEdge ReqCals
10.7

1 00() 10(1) 0.0(0) 0.0 00 1 0.0 00 1
2 10() 10(3) 00 (@) L0 10 1 |10 L0 10 1
3 00(0) 1002 000 10 10 1 10.35 10 10 1

sscore: |0.68 0.66 066 100

Coverage
Queries Path(D) SubPath(D) IndPath (D) Dirfdge AlEdge ReqCols |Paths DiEdge AlEdge ReqCols

1 00() 10(2) 00 () 0.0 00 1 10.35 0.0 00 1
2 00(0) 00(0) 0.0(0) 05 10 1 10,0 05 10 1
3 10() 10() 000 10 10 1 110 10 10 1

Sscore: 10.45 0.4 0.66 100

Coverage
Queries Path(D) SubPath(D) IndPath (D) Difdge AlFdge ReqCols |Paths DiEdge AlEdge ReqColls

1 10 (1) 10(1) 0.0 0.0 00 1 110 0.0 00 1
2 00() 00(0) 0.0(0) 05 05 2 10.0 05 05 2
3 10() 100 00 @) L0 10 1 110 L0 10 1

sscore: 10.66 0.8 0.49 075

Fig. 5: Query metrics results by schema

D: Calculating Query Metrics After defining the candidate NoSQL schemas
and queries, the user can calculate the metrics. Figure [5 shows the results of the

8 E. Kuszera et al.

metrics for the schemas A — C and queries ¢ — g3, including query coverage (left
side), QScore (right side) and SScore (below each schema). Field (D) represents
the depth where the correspondence between schema and query was identified.
As aresult, among schemas A, B and C, schema A has the highest SScore for the
Paths (0.68) and DirEdge (0.66) metrics, being the schema closest to the query
access pattern. The schema C' is in second place, but has the lowest SScore for
the ReqColls (0.75) metric, which means it is necessary to join documents from
different collections. Through the metrics, the user can evaluate and compare
different NoSQL schema options before migrating the data, where the user can
select one or more metrics that best meet the requirements of the application.

4 Conclusion

In this demo paper we presented the QBMetrics tool to support the conver-
sion process from RDB to NoSQL document. Based on an input RDB, the user
defines a set of candidate NoSQL schemas and a set of queries that represent
the application’s access pattern, both represented as DAGs. The tool calculates
a set of metrics that measures the coverage that a schema provides for the set
of queries. This information is used to decide which schema is most appropriate
for the required access pattern, before migrating the data. As a future work, we
intend to extend the set of metrics to consider aspects related to the implemen-
tation effort and execution time of queries in the target database.

References

1. Freitas, M.C.d., Souza, D.Y., Salgado, A.C.: Conceptual mappings to convert rela-
tional into nosql databases. In: Proceedings of the 18th ICEIS 2016

2. Goémez, P., Roncancio, C., Casallas, R.: Towards quality analysis for document
oriented bases. In: Conceptual Modeling (2018)

3. Jia, T., Zhao, X., Wang, Z., Gong, D., Ding, G.: Model transformation and data
migration from relational database to MongoDB. In: IEEE BigData. pp. 60-67

2016

4. %(arni)tis, G., Arnicans, G.: Migration of relational database to document-oriented
database: Structure denormalization and data transformation. In: 2015 7th ICCI-
CSN. pp. 113-118 (2015)

5. Kuszera, E.M., Peres, L.M., Fabro, M.D.D.: Toward RDB to NoSQL: Transform-
ing data with metamorfose framework. In: Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing. pp. 456-463. SAC 19 (2019)

6. Sadalage, P.J., Fowler, M.: NoSQL Distilled: A Brief Guide to the Emerging World
of Polyglot Persistence. Addison-Wesley Professional, 1st edn. (2012)

7. Stanescu, L., Brezovan, M., Burdescu, D.D.: Automatic mapping of MySQL
databases to NoSQL MongoDB. In: 2016 FedCSIS. pp. 837-840 (Sep 2016)

8. Stonebraker, M., Madden, S., Abadi, D.J., Harizopoulos, S., Hachem, N., Helland,
P.: The end of an architectural era (it’s time for a complete rewrite). In: Proc. of
33rd VLDB, University of Vienna, Austria, Sept 23-27, 2007. pp. 1150-1160 (2007)

9. Zhao, G., Lin, Q., Li, L., Li, Z.: Schema conversion model of sql database to nosql.
In: 2014 Ninth 3PGCIC. pp. 355-362 (2014)

	QBMetrics: a tool for evaluating and comparing document schemas

