# **Transformation as Search**

Mathias Kleiner : mathias.kleiner@ensam.eu Arts et Métiers, ParisTech, CNRS, LSIS, Aix-en-Provence, France Marcos Didonet Del Fabro : marcos.ddf@inf.ufpr.br \* Davi De Queiroz Santos : daqsantos@inf.ufpr.br \* C3SL labs, Universidade Federal do Paraná, Curitiba, Brazil

> •\*Partially funded by CNPq Universal and FA/INRIA call

#### Outline

- Context
  - Model transformations
  - Model search
- Transformation as search
  - Transformation by unification
  - Use case
- Conclusions

### Source-to-target Model Transformation (MT)



#### **Several other aspects in MT**



- First classification of approaches in [Czarnechi et. al. 2003]
- We stress two aspects
  - Directionality
    - Forward, Backward, Incremental, M:N, etc.
  - Execution semantics
    - 1 unique result
    - 1+ result(s)
- Solutions
  - TGG, JTL, QVT-R, ATL, Epsilon, QVT-M, Viatra, Moflon, etc.

### Problem

- Define a model transformation that:
  - Performs <u>Forward</u>, <u>Backward</u>, and <u>Incremental</u> transformations
  - From one input model, produces
    1+ output models

## Solution: Constraint Programming

- Constraint Programming
  - Constraint programming (CP) is a declarative programming technique to solve combinatorial (usually NP-hard) problems
- One CP scenario
  - Find the best allocation of graduate course sections
    - From
      - C : Classrooms, capability of S : Students
      - Allocate W courses, with 1 professor
- Approaches
  - CSP : Constraint Satisfaction Programming (OPL, Choco, Eclipse), SAT : Boolean solvers (Alloy) ASP : Answer Set Programming (DLW), Configuration (class-based representation)

### **CP + MDE : Model Search**

Domain

model

- Constrained Search as first class operation
- One typical scenario
  - SPL (Product Lines) : find the best/all product given a configuration
- Solutions
  - UmIToCSP, USE, JTL, SPL
  - Model Search : MDE + CP : formalization and implementation of a chain of operations

#### **Model Search Chain**



### MAS → TAS

- Model search (MAS)
  - Input and output models conform (almost) to the same metamodel
  - Intra model constraints
- Transformation as search (TAS)
  - Left and Right metamodels and models
  - Intra and inter model constraints
    - Weaving metamodel

### **Transformation as Search: Transformation by unification**



### **Two central definitions**

- We call weaving metamodel between metamodels CMM (A) and CMM(B), a constrained metamodel CMM(W) defined by CMM(W)=<MMW, C(W)>, where MM(W) and C(W) are respectively a set of metamodel elements and constraints that define the weaving relationships between the elements of CMM(A) and CMM(B).
- **Transformation metamodel.** We call transformation metamodel between metamodels CMM(A) = <MM(A), C(A) > and <math>CMM(B) = <MM(B), C(B) >, using a weaving metamodel CMM(W), a constrained metamodel CMM(T) defined by CMM(T) = <MM(T), C(T) >, where  $MM(T) = MM(A) \cup MM(B) \cup MM(W)$  and  $C(T) = C(A) \cup C(B) \cup C(W)$ .
- What actually the execution produces ?
  - Two constrained models
  - One weaving model  $\rightarrow$  traceability information

### **Implementation : TAS chain**

#### Technologies

- (Meta)Models implemented in Ecore
- Constraints in OCL+
- Translated into Alloy spec (SAT) [Jackson00]
- Use case
  - POC: Class ↔ Relational
    - Family model [ATLrepository] : 2 versions
    - Ongoing: graduate course model
- Scenarios
  - Forward, backward, synchronization, multiple output

### Use case: transformation metamodel



#### **Resulting instance**





#### **Results**

- V1 x V2: changes on the constraints
- Constraints
  - One specification for the three scenarios
  - Multiple output : small relaxation of the weaving links

| Scenario | #variables<br>(solver format) | #constraints<br>(solver format) | Exec. Time<br>(s) |
|----------|-------------------------------|---------------------------------|-------------------|
| (1)-v1   | 9956                          | 845357                          | 3.432             |
| (1)-v2   | 7179                          | 866894                          | 2.483             |
| (2)-v1   | 10114                         | 791167                          | 5.529             |
| (2)-v2   | 5725                          | 866894                          | 1.655             |
| (3)-v1   | 6496                          | 505227                          | 0.324             |
| (3)-v2   | 5448                          | 1231787                         | 0.666             |
|          |                               |                                 |                   |

#### **Conclusions and Future Work**

- Transformation as search
  - Chain of operations fitted to MDE
  - One specification, three scenarios
    - Synchronization is the faster
    - Multiple solutions need to be further investigated
- Improve the constraint language
  - OCL  $\rightarrow$  Alloy  $\rightarrow$  other...
- Future work
  - Generalization of the weaving links
  - Optimization (e.g., max() function)
  - Performance (generic transformation to Alloy is limited)

