
© Copyright IBM France 2010

Model weaving
Establishing links between model elements

Marcos Didonet Del Fabro – Software Engineer – marcos.ddf@fr.ibm.com

29 March 2010 – MDE Diploma

© Copyright IBM France 20102

Outline

Model weaving : state of the art and concepts

Practical work : schema mapping and traceability

Matching and transformation production

Practical work : matching and transformation production

© Copyright IBM France 20103

� Transformation are not always enough
– Precise execution semantics

� If ai ≡ bj
– How to express ?
– How to compute?
– How to generate Ma ∩ Mb or Ma ∪ Mb ?

� Three main aspects

Relationships between model elements

Ma

ai

Mb

bj
≠≠≠≠
≅≅≅≅ (60%)

≡≡≡≡

© Copyright IBM France 20104

First aspect: relationship representation

Representation

Syntax

Type Cardinality Extensible Fixed

Formalism Stocking

Persistent Memory

Referencing

Direct Indirect

[1..1][1..1]

[1..1] [1..1] <1..1>

[1..1]

<1..2>

<1..1>

[1..1]

Legend
[] – unique cardinality
<> - shared cardinality
Formalism: feature diagrams

© Copyright IBM France 20105

Second aspect: relationship computation

Computation (aka. matching)

Manual

Heuristics GUI Configurable Extensible

Automatic Tools Maintenance

<1..2> [1..1] [0..1]

[0..1] [0..1] [0..1] [0..1]

(around 138 approaches)
- COMA
- iMAP
- MAFRA
- S-Match
- etc.

© Copyright IBM France 20106

Third aspect: relationship utilization

Utilization

Fusion Metamodel
extension

Interoperability Difference AnnotationTraceability

<1-1>

Strongly linked to how relationships are produced

© Copyright IBM France 20107

Summary and requirements

� Representation
– Different formats
– Model management [Bernstein et al. 2000]

� Computation
– Interoperability difficult

� Utilization
– Transformation production
– Traceability
– Requirements
– etc.

© Copyright IBM France 20108

Representation of relationships

� Multiple technologies
– Morphism
– Value correspondences
– Auxiliary model
– Ontology bridges

� MDE solutions
– QVT relations
– TGG
– Model link
– Model weaving

© Copyright IBM France 20109

Approaches for relationship representation (1/2)

� Morphism
– A pair <L,R>, where

• L is an identifier for the left element
• R is an identifier for the right element

– Bidirectional
– Example : House <-> Home, Professor <-> Teacher

� Value correspondences
– A function f : S � T.

• A filter over the source elements from S.
– Directed relationships
– 1-to-1 function is the most common format
– Example : People � Person, First + Last Name � Name
– Largely applied on DB community

© Copyright IBM France 201010

� Auxiliary model
– A map model plus a pair of morphisms

� Ontology bridges
– Mappings as first class entities for bridging ontologies
– Identification using RDF IDs
– Explicit mapping names

• AttributeBridge, ConceptBridge, RelationBridge
• SubClassOf, InstanceOf

Approaches for relationship representation (2/2)

=

=

Person

Name

Male

First Name

Last Name

Model 1 Map model 12 Model 2

© Copyright IBM France 201011

Relationships on MDE : QVT Relations

� QVT Relations : from QVT relations, core and mappings
– “A declarative specification of the relationships between MOF models. “ from QVT spec.

� Not only simple correspondences
– Support to pattern matching, (Bi) directionality, nested relations, traceability
– Targeted for transformations

relation ClassToTable {
<checkonly/enforce>
domain uml c:Class {

namespace = p:Package {},
name=cn

}
domain rdbms t:Table {

schema = s:Schema {},
name=cn,
column = cl:Column {

name=cn+'_tid',
type='NUMBER'},
primaryKey = k:PrimaryKey {
name=cn+'_PK',
column=cl}

}
when {

PackageToSchema(p, s);
}
where {

AttributeToColumn(c, t);
}
}

© Copyright IBM France 201012

� TGG schema
– a pair of graphs
– a correspondence graph

� TGG rules
– Instance-based approach

� Mix of LHS and RHS
– Instantiate the three elements (left, link and right)
– Transformation and weaving

• Limited pattern and navigation expressions

� Rewriting rules (transformations) over the elements of 3 graphs

� Applications
– (Bidirectional) transformations
– Integration
– Synchronization

Triple Graph Grammars (TGG)

c2:Class :Correspondence

t:Tablec1:Class :Correspondence

{new}
{new}

{new}
{new}

© Copyright IBM France 201013

Model weaving : an illustrative example

© Copyright IBM France 201014

Model weaving

� Capture relationships between model elements

� Relationships are reified in a weaving model
– The model elements represent the relationships and the related elements
– As any kind of model, the weaving model can be saved, stored, transformed, modified
– Different kinds of links

• Equality, concatenation, equivalence, etc.

a1 b1
a2

a3
b2

Ma Mb

r1

Weaving model

r2

b1a1

b2

a2

a3

© Copyright IBM France 201015

Weaving model and metamodel

• Weaving metamodel: A weaving metamodel is a model MMW = (GM, ωM, µM), that defines
link types, such that:

• GM = (NM, EM, ΓM),
• NM = NL ∪ NLE ∪ NO, NL denotes the link types; NLE denotes the link endpoint types and

NO denote other auxiliary nodes,
• ΓM : EM → (NL × NLE) ∪ (NO × NM), i.e., a link type refers to multiple link endpoint types

and the auxiliary nodes refer to any kind of node.

� Weaving model : A weaving model is a model MW = (GW, ωW, µW), a graph GW = (NW, EW,
ΓW), such that its reference model is a weaving metamodel (ωW = MMW).

� The related models are independent
– 1-to-N models can be related

© Copyright IBM France 201016

Dereferencing function

� Dereferencing function: Given a weaving model MW = (GW, MMW, µW), GW = (NW, EW,
ΓW) and a linked model M = (G, ω, µ), G = (NG, EG, ΓG), a dereferencing function ρ returns
the elements of the linked model:

– ρ : NWLE → NG, NWLE ⊂ NW, such that µW (NWLE) = NLE.

� This means the elements of the weaving models are “pointers” to the elements of the linked
models, and they conform to the link end points.

© Copyright IBM France 201017

Weaving metamodel (core)

Link type et
link endpoints

Identifiers
(indirect
approach)

© Copyright IBM France 201018

Core weaving metamodel

WModel

WModelRef

WLink

WLinkEnd

-name : String

-description : String

WElement

-ownedElement 1

-model

1..*

ref : String

WRef

WElementRef

1 - *

modelRef

 *

ownedElementRef

wovenModel

child

parent

end

1-* link

element

© Copyright IBM France 201019

Weaving metamodel extensions

� The core metamodel must be
extended for a given application
domain

– Interoperability
•Equality, SourceToTarget.

– Data integration
•Concatenation, Equality, IntToStr.

– Traceability
•Origin, Source, Evolution, Modified,
Added

– Composition
•Override, Merge, Delete.

– Ontology alignment
•Equivalent, Equality, Resemblance,
Proximity.

Core

Ext1 Ext2 ExtN…

Ext11

© Copyright IBM France 201020

Extension operation

class InheritanceLink extends WLink {

reference parents [1- *] container : WLinkEnd ;

reference child container : WLinkEnd ;

}

MMR = Extend (MMW, MME, MWD)

Input:

MMW : the metamodel to be extended

MME : the metamodel extension

MWD : a weaving model between the elements of MMw and MM e

Output:

MMR : an extended MMw

/* add all elements and edges from MM E into MM W, if they do not already exist*/

for each mme ∈ MME and not mme ∈ MMW

MMW ← MMW ∪ mme

/* addLink gets the elements represented by M WD and create a link between them*/

MMW ← MMW addLink (MWD)

return MMw

© Copyright IBM France 201021

A simple weaving metamodel extension

package mw_base_ext {

class Model extends WModel {

-- @subsets wovenModel

reference leftModel container : WModelRef ;

-- @subsets wovenModel

reference rightModel container : WModelRef ;

}

class ElementRef extends WElementRef {

}

class ModelRef extends WModelRef {

}

class Association extends WAssociation {

}

class AssociationEnd extends WAssociationEnd {

}

class Link extends WLink {

-- @subsets end

reference left container : WLinkEnd ;

-- @subsets end

reference right container : WLinkEnd ;

}

class LinkEnd extends WLinkEnd {

}

}

© Copyright IBM France 201022

AtlanMod Model Weaver (AMW): a tool for editing weaving models

� Adapts to any weaving metamodel extension
– The user interface is automatic generated according to the metamodel extensions

• Reflective API of EMF (Eclipse Modeling Framework)

� A set of extension points is defined to enable to customize the standard user interface
– Extension points to the panels, to the model elements, and to execute model

transformations in ATL (Atlas Transformation Language)
– New interfaces can be easily developed

GUI extensions MDE extensions

Model weaver workbench

Operation
execution

Dereferencing
mechanism

Metamodel
extension

Menus
for MDE

Weaving
panel

Woven
panel

EMF (model manipulation primitives)

© Copyright IBM France 201023

AMW user interface

Adaptive
interface

Identification
mechanism

Plugged panels

© Copyright IBM France 201024

Summary

� Relationship between model elements
– Several solutions, specialized for different aspects

� Model weaving
– Generic representation

• Based on the core metamodel and extensions
• ATLAS Model Weaver tool

© Copyright IBM France 201025

Traceability

� Data provenance
“the problem of discovering the origin of data after it was transformed from a source

schema into a target schema”

� Requirements traceability
“keeps track of all the steps of a development process: analysis, design, programming,

testing. Some possible kinds of links are developed_by, allocated_to, performed,
based_on, modify. The key processes are the identification of the possible kinds of links
and the development of new traceability reference models” .

– Static requirements traceability
• Requirements to code (several stages)

– Event-based traceability
• Subscribes to a service (observer pattern)

– Reference models
• Models used just for referring traceable models

Traceability survey [Galvao I, Goknil A. Survey of Traceability Approaches in Model-Driven Engineering. EDOC 2007]

© Copyright IBM France 201026

Traceability

� Traceability of model transformations
“Similar to data provenance scenarios, it is often necessary to store the execution trace of

model transformations. The execution trace of a transformation indicates, for a set of
generated elements, which transformation rules are executed, and which input elements
are used.”

– Loosely coupled
• Batch execution of model transformation produces a weaving model

– Embedded traceability � annotation
• Merges a model and its trace information

© Copyright IBM France 201027

Outline

Model weaving : state of the art and concepts

Practical work : schema mapping and traceability

Matching and transformation production

Practical work : matching and transformation production

© Copyright IBM France 201028

Relational database to XML schema

Slide from: Univ. Rey Juan Carlos

© Copyright IBM France 201029

Weaving metamodel extension

Slide from: Univ. Rey Juan Carlos

© Copyright IBM France 201030

Traceability of model transformations

� Original transformation setting

� How to store traceability information?

© Copyright IBM France 201031

Traceability of model transformations

� Produce Mt’ from Mt using a Higher Order Transformation

� Mt’ produces an additional weaving model

� Weaving metamodel extension

class TraceLink extends WLink{
attribute ruleName : String;
reference sourceElements [*] ordered container : WLinkEnd ;
reference targetElements [*] ordered container : WLinkEnd ;

}
class TraceLinkEnd extends WLinkEnd {
}
class ElementRef extends WElementRef {
}

© Copyright IBM France 201032

Outline

Model weaving : state of the art and concepts

Practical work : traceability and schema mapping

Matching and transformation production

Practical work : matching and transformation production

© Copyright IBM France 201033

Matching

� Matching is the process of establishing relationships between elements belonging to
different models

� Manual
– User interface

� Automatic
– Algorithms

� Semi-automatic
– Utilization of heuristics

© Copyright IBM France 201034

Matching heuristics

� String similarity
– Date <-> BirthDate

� Dictionaries
– Car <-> Vehicle

� Structural relations
– Class.name <-> Table.name

•Class <-> Table

� Different problems
– How to express this heuristics ?
– How to support different extensions ?

© Copyright IBM France 201035

Matching tools

Input (internal and
external representation)

Matching
techniques

Mapping nature Application
scenario

CUPID DB and XML schemas
(rooted graphs)

Structural and
linguistic

1:1 correspondences Generic matching
tool

GLUE Unified ontology (rooted
graph)

Data instances,
probability
distribution

1:1 mappings Generic matching
tool

PROMPT Ontologies (general
knowledge model)

Set of iterative
operations

None: merges the
ontologies

Ontology merging
and alignment

COMA /
COMA++

SQL, XML and OWL
schemas (rooted directed
graphs)

Library of
heuristics

Equivalence 1:1
correspondences

Generic matching
tool

ONION Ontologies (directed
graphs)

Interoperation
operators

Articulation ontologies Ontology
integration

MAFRA RDF schemas Multi strategies
(lexical and
structural)

Semantic bridging
ontology (SBO)

Alignment of
distributed
ontologies

S-Match Ontologies (propositional
formulas)

Propositional
unsatisfiability
problem

Logical relations Generic framework

API for ontology
alignment

RDF graphs Provides an API Simple 1:1
correspondences
translated into
XSLT, C-OWL,RDF

Generic ontology
matching

iMAP Database schemas (graphs) Different machine
learn searchers. Use
of domain
knowledge

1:1 mappings and
complex functions

Data integration

Xu et al. Database schemas Different matchers
and domain
ontologies

Complex mapping
expressions

Data integration

© Copyright IBM France 201036

Matching transformations

� A matching transformation is a domain-specific transformation that takes two or more
models as input, and that transform them into a new weaving model
– TMATCHING � model x … x model � weaving model

rule CreateLink {

from

aLeft : MMa!Class, aRight : MMb!Attribute (guard)

to

aLink : MMw!Equivalent (

left <- getID(aLeft),

right <- getID(aRight),

similarity <- aLeft.calcSim(aRight)

)

}

Execution condition

Similarity computation [0-1]

© Copyright IBM France 201037

Simple matching extension

class Element extends WLinkEnd {

}

class Equivalent extends WLink {

attribute similarity : Double ;

reference source container : Element ;

reference target container : Element ;

}

class <Type>Equal extends Equivalent {

}

class AttributeToRef extends Equivalent {

reference targetAttribute container : Element

}

© Copyright IBM France 201038

Cumulative matching

MMa MMb

OUTIN Matching
transformation 1

Weaving
model

Transformation engine Graphical
interface

. .
 .

OUT
IN

IN Matching
transformation N

Weaving
model

IN Matching
transformation 2

OUT
IN

Weaving
model

© Copyright IBM France 201039

Cumulative matching

� Different kinds of matching transformations

� Element creation

� Similarity calculation and propagation

� Link rewriting

� Link selection

© Copyright IBM France 201040

Matching rule for creating simple links

rule CPClass {

from

left : Ecore!EClass, right : Ecore!EClass

to

AMW!ClassEqual

}

rule CPAttr {

from

left : Ecore!EAttribute, right : Ecore!EAttribute

to

AMW!AttributeEqual

}

© Copyright IBM France 201041

Cumulative matching: similarity + link filtering

date

name

x

expiry date

f_name

r1

r2

Weaving Model - Mw 1

date
expiry date

name

f_name

Sim = 0.3

Sim = 0.7

OUT

IN

r2

name
f_name

Sim = 0.7

Weaving Model – Mw 2

Matching
transformation 1

IN

ININ

OUT

Matching
transformation 2

Sim > 0.6

Slide from: Univ. Rey Juan Carlos

© Copyright IBM France 201042

Calculating similarity

� Simple element-to-element similarities
rule AttributeSimilarity {

from

mmw : AMW!AttributeEqual

to

alink : AMW!AttributeEqual (

similarity <- (mmw.similarity + mmw.left.similarityNa me(mmw.right)) * weight

)

� Structural similarity
rule UpdateStructuralSim {

from

mmw : MMw!Equal mmw.source.isTypeOf(KM3!Attribute) and mmw.target.isTypeOf(SQLDDL!Column))

to

alink : MMw!Equal (

similarity <- (mmw.similarity + mmw.source.required Sim(mmw.target)) * weight

)

}

helper context KM3!Attribute def: requiredSim (column : SQLDDL!Column) : Real =

if (self.lower = 0 and column.canBeNull) then

1

else

0

endif;

© Copyright IBM France 201043

Similarity flooding (SF) : a generic structural algorithm

� Input
– Two metamodels Ma and Mb,
– Model elements a, a’ ∈ Ma and b, b’ ∈ Mb.

• Elements a and a’ are connected by a labeled edge (a, “containment”, a’).
• Elements b and b’ are connected by a labeled edge (b, “containment”, b’).

� Initial setup and execution
– Link creation : Cartesian product of Ma × Mb
– Similarity assignment for every pair of elements.

� Iterative propagation
– General idea: consider the pairs (a, b) and (a’, b’), with similarities x and y, respectively.

The algorithm propagates x to (b, b’) and it updates the similarity value y.
– Propagation formula

• y = y + (p * x).
– Calculation of p

• number of edges connecting a given pair of elements
• Ex.: if (a, a’) has 10 neighbors, then p = 1/10.

– Propagation graph : stores the propagation information.

© Copyright IBM France 201044

Adaptation of SF for model weaving and matching transformations

� Choose one kind of structural information
– Containment graph
– Inheritance tree
– Relation graph
– Any other relations

� Define how to calculate p

� Create a propagation weaving model

� Write the propagation transformation

© Copyright IBM France 201045

Propagation weaving metamodel extension

� Propagation extension : propagation from one link into another

package mmw_propagation {

class PropagationElement extends WAssociation {

reference incomingLink : Equivalent ;

reference outgoingLink : Equivalent ;

attribute propagation : Double ;

}

}

� Creation of propagation elements
rule CreatePropagationElement {

from

source_link : AMW!Equivalent,

target_link : AMW!Equivalent (<semantic guard>)

to

out : AMW!PropagationElement (

propagation <- 1 / <propagation_value>,

outgoingLink <- source_link,

incomingLink <- target_link

)

}

© Copyright IBM France 201046

Containment propagation model creation

from

source_link : AMW!ClassEqual,

target_link : AMW!AttributeEqual (

target_link.getReferredLeft.owner = source_link.getR eferredLeft

and target_link.getReferredRight.owner = source_link.get ReferredRight

)

to

out : AMW!PropagationElement (

outgoingLink <- source_link,

incomingLink <- target_link

propagation <-

1 /

(source_link.getReferredLeft.getAttributeCount()-> size() *

source_link.getReferredRight.getAttributeCount()->s ize()

)

© Copyright IBM France 201047

Propagation rule : valid for any kind of propagation model

rule PropagationClass {

from

mmw : AMW!Equivalent

to

alink : AMW!Equivalent()

do {

thisModule.aTuple <-

AMW!PropagationElement.allInstances()->

select (e | e.incomingLink = mmw)->

iterate (e1; acc : TupleType (value : Real , count : Integer) =

Tuple {value = 0, count = 0} |

Tuple {

value = acc.value + (e1.outgoingLink.similarity * e1 .propagation),

count = acc.count + 1

}

);

alink.similarity <- mmw.similarity +

thisModule.aTuple.value / thisModule.aTuple.count;

}

}

© Copyright IBM France 201048

Link filtering

� Called-rule for selecting better similarities

rule getMaxLink (aSource : MMa!ModelElement) {

using {

newLink : MMw!Equivalent = null;

maxSim : Real = 0;

}

do {

for(e in MMw!Equivalent.allInstaces()->select(e.source=aSour ce)){

if (e.similarity > maxSim) {

maxSim <- e.similarity;

newLink <- e;

}

}

© Copyright IBM France 201049

Link rewriting

� The final similarity weaving model may not have the right connections
– Nested relationships
– Hierarchy
– Others

rule NestedRewriting {

from

attr_link : MMw!AttributeEqual,

class_link : MMw!ClassEqual (

attr_link.source.owner = class_link.source and

attr_link.target.owner = class_link.target

)

to

link : MMw!AttributeEqual (

parent <- class_link

)

}

© Copyright IBM France 201050

Link rewriting

PortHW AUTOSAR 2.0

ShortName: String

Name: String

Autosar_cp_sim_th.amw<<link>> PortHW_PortHardWare

<<left>> PortHW

<<right>> PortHardware

<<link>> ShortName_ShortName

<<left>> ShortName
<<right>> ShortName

<<link>> PortHW_PortHardWare

<<left>> PortHW

<<right>> PortHardware

<< link>> ShortName_ShortName

<<left>> ShortName

<<right>> ShortName

Autosar_cp_sim_th_lr.amw

PortHardWare
AUTOSAR 2.1

ShortName: String

Name: String

Link Rewriting

Slide from: Univ. Rey Juan Carlos

© Copyright IBM France 201051

Configuration model : setting up an execution chain

d
e
p
e
n
d
s

*

Configuration metamodel

Finding the good combination of
transformations/parameters is fundamental

© Copyright IBM France 201052

Transformation production : how to use these weaving models?

� Typical situation
– Weaving model between 2 metamodels (source and target)
– Transformation between source and target terminal models

� Based on 3 observations
– Transformations have frequently-used expressions (e.g., equality, concatenation)
– Metamodel has link types and link endpoints
– Transformation languages are similar

� Pattern for generating transformations
– TransfGen : weaving model � transformation model

© Copyright IBM France 201053

Some solutions in DB community

� Typically called query discovery

� Difficult when using complex mappings

� Specific to the corresponding application domain

 Input Mapping nature Transformations
Clio A pair of relational and XML

nested schemas (internal
nested format)

1:1/n:m value correspondences Produces logical operational
mappings that are translated in
SQL or XSLT

Kedad et al. Two or more XML schemas 1:1 value correspondences XQuery

An et al. Relational schemas plus a
conceptual model

1:1 value correspondences and the
mappings between a schema and its
conceptual model

Relational mappings

SMART XML schemas and conceptual
schemas

1:1 value correspondences with
inclusion labels

XML transformations

© Copyright IBM France 201054

Definitions

� Higher order transformation. A higher-order transformation is a transformation TOUT : MMT
= THOT (TIN : MMT), such that the input and/or the output models are transformation models.
Higher-order transformations either take a transformation model as input, either produce a
transformation model as output, or both.

� TransfGen. TransfGen is a higher-order transformation that takes a weaving model Mw as
input and that produces a transformation model MT as output. The weaving model conforms
to a data interoperability metamodel extension MMw.

– MT : MMW = TransfGen (Mw : MMw).

© Copyright IBM France 201055

TransfGen: input metamodel extension

Core metamodel

© Copyright IBM France 201056

class Module {

reference rules [1-*] container : Rule ;

}

class Rule {

attribute name : DataType ;

reference input container: InputElement ;

reference output [*] container: OutputElement ;

}

class InputElement {

reference element : ReferredElement ;

reference condition [0- 1] : Expression ;

}

class OutputElement {

reference element : ReferredElement ;

reference bindings [*] : Binding ;

}

class Binding {

reference target : ReferredElement ;

reference source : Expression ;

}

TransfGen: output metamodel

rule <name> {
from

input (condition)
to

output1 (
target1 <- source1
target2 <- source2
targetN <- sourceN

),
outputN ...

}

rule <name2> …

Transformation metamodel
(an abstraction of ATL metamodel)

Transformation model

© Copyright IBM France 201057

TransfGen operation template
1 Module TransfGen (C: ωωωωC)
2
3 inputModel: C /* a correspondence model conforming to a correspondence metamodel ωC*/
4 outputModel: T /* a transformation model conforming to ωT */
5
6 rule newModule
7 input WModel
8 output Module
9 rules � ownedElement (ownedElement isA WLinkST)
10
11 rule newRule
12 input WLinkST (parent isA WModel) /*classifiers (classes, references, attributes)*/
13 output Rule
14 input � source
15 output � target
16
17 rule newInput
18 input WLinkEnd (link.source = self)
19 output InputElement
20 element � ρ (element.ref)
21 condition � /*depends on the WLinkST and WLinkEnd types*/
22
23 rule newOutput
24 input WLinkEnd (link.target = self)
25 output OutputElement
26 element � ρ (element.ref)
27 bindings � link.child /*get the sibling WLinkEnd*/
28
29 rule newExpression
30 input WLinkST (parent isA WLinkST)
31 output Binding
32 source � MapExp (ρ (source.element.ref)) /*mapping expressions here,*/
33 target � ρ (target.element.ref) /*according to the WLinkST type*/

© Copyright IBM France 201058

Outline

Model weaving : state of the art and concepts

Practical work : schema mapping and traceability

Matching and transformation production

Practical work : matching and transformation produc tion

© Copyright IBM France 201059

General view

� Two major points
– Transformations are models
– Different transformation metamodels (e.g., ATL or XSLT)

MMs MMt

KM3

MMw

Mw

MMt

TransfGen
Mt

MMs

Ms

MMt

Mt

MMt

Mt

KM3

© Copyright IBM France 201060

Case study : Comparison and migration – putting all together

� Two versions
– Scade of Esterel Technologies (v1 and v2)
– Autosar (v2.0 and v2.1)

� Creation of the weaving model

Source Target Source Target

MMw

Mw

Scade
(v1)

KM3 KM3

Scade
(v2)

Scade
(v1)

Scade
(v2)

© Copyright IBM France 201061

Mt
(v1-v2)

Mt
(v1-v2)

Comparison and migration (cont’d)

� Transformation generation � Model migration

MMw

Mw

ATL

TransfGen

KM3

Source Target

ATL

KM3

Scade
(v1)

Scade
(v2)

Scade
(v1)

Scade
(v2)

© Copyright IBM France 201062

Scalability

� Scade

� Autosar

� Remarks
– Identical executions
– Optimized transformations
– Graphical interface essential

Elements Classes Attributes References

Version 1 449 106 105 231

Version 2 381 95 89 190

Elements Classes Attributes References

Version 2.0 4569 700 2262 1607

Version 2.1 6360 1020 3254 2086

Links: 379 Transformation: 1030 lines

Links: 3411 Transformation: 7990 lines

© Copyright IBM France 201063

Summary

� Matching
– Several solutions
– (semi) automatic creation of weaving models
– Coupling of transformations and weaving models provide a generic framework
– Necessary for real world model integration/migration scenarios

� Transformation production
– Uses the result of a matching operation
– Generates the final model transformation
– Relies on higher-order transformations : difficult to write, but quite useful

© Copyright IBM France 201064

General conclusions

� Relationships between model elements are ubiquitous

� Several solutions, different application domains, implementations, techniques

� Model weaving
– Generic MDE solution
– Simple core that is extended to a given application domain

� Others
– TGG : transformation by example
– Model link : simple Ecore2Ecore links

� Several use cases
– Traceability
– Model integration and comparison
– Model merging
– Annotation
– Others

© Copyright IBM France 201065

Q & A

