Marcos Didonet Del Fabro - Software Engineer - marcos.ddf@fr.ibm.com

29 March 2010 – MDE Diploma

Model weaving Establishing links between model elements

Outline

Model weaving : state of the art and concepts

Practical work : schema mapping and traceability

Matching and transformation production

Practical work : matching and transformation production

Relationships between model elements

- Transformation are not always enough
 - Precise execution semantics

- If $a_i \equiv b_i$
 - How to express ?
 - How to compute?
 - How to generate Ma \cap Mb or Ma \cup Mb ?
- Three main aspects

First aspect: relationship representation

Legend [] - unique cardinality <> - shared cardinality Formalism: feature diagrams

Third aspect: relationship utilization

Strongly linked to how relationships are produced

Summary and requirements

- Representation
 - Different formats
 - Model management [Bernstein et al. 2000]
- Computation
 - Interoperability difficult

Utilization

- Transformation production
- Traceability
- Requirements
- etc.

Representation of relationships

- Multiple technologies
 - Morphism
 - Value correspondences
 - Auxiliary model
 - Ontology bridges
- MDE solutions
 - QVT relations
 - TGG
 - Model link
 - Model weaving

Approaches for relationship representation (1/2)

- Morphism
 - -A pair <L,R>, where
 - L is an identifier for the left element
 - R is an identifier for the right element
 - Bidirectional
 - Example : House <-> Home, Professor <-> Teacher
- Value correspondences
 - A function $f : S \rightarrow T$.
 - A filter over the source elements from S.
 - Directed relationships
 - 1-to-1 function is the most common format
 - Example : People \rightarrow Person, First + Last Name \rightarrow Name
 - Largely applied on DB community

Approaches for relationship representation (2/2)

- Auxiliary model
 - A map model plus a pair of morphisms

- Ontology bridges
 - Mappings as first class entities for bridging ontologies
 - Identification using RDF IDs
 - Explicit mapping names
 - AttributeBridge, ConceptBridge, RelationBridge
 - SubClassOf, InstanceOf

Relationships on MDE : QVT Relations

- QVT Relations : from QVT relations, core and mappings
 - "A declarative specification of the relationships between MOF models." from QVT spec.
- Not only simple correspondences
 - Support to pattern matching, (Bi) directionality, nested relations, traceability
 - Targeted for transformations

```
relation ClassToTable {
<checkonly/enforce>
domain uml c:Class {
 namespace = p:Package {},
 name=cn
domain rdbms t: Table {
 schema = s:Schema {},
 name=cn,
 column = cl:Column {
      name=cn+' tid',
      type='NUMBER'},
      primaryKey = k:PrimaryKey {
      name=cn+' PK',
      column=cl}
when {
 PackageToSchema(p, s);
where {
 AttributeToColumn(c, t);
```


Triple Graph Grammars (TGG)

- TGG schema
 - a pair of graphs
 - a correspondence graph
- TGG rules
 - Instance-based approach
- Mix of LHS and RHS
 - Instantiate the three elements (left, link and right)
 Transformation and weaving
 Limited pattern and navigation expressions
- Rewriting rules (transformations) over the elements of 3 graphs

- Applications
 - (Bidirectional) transformations
 - Integration
 - Synchronization

Model weaving : an illustrative example

: Edit Navigate Search Project			new data in the second se	<mark>8</mark> + 1 ⊉ - 5	- *\$ \$	\$ · _ [Ê	- 6
B Mantis	} + ⇒ैंछ	¥	Weaving model	👌 🕇 🎋	🔁 Bugzilla		3 +	•
 EReference severity EReference status EReference reporter EAttribute summary EAttribute description EAttribute version EAttribute build EAttribute platform EAttribute os EAttribute os EAttribute osVersion EReference reproducibilities 	7-035		Ø <child> Refs To Attr Ø <child> Refs To Attr Ø <child> Attribute Equ Ø <child> Enum Concal Ø <child> Not Equivale Ø <child> Not Equivale</child></child></child></child></child></child></child></child></child></child></child></child></child></child></child></child></child></child></child></child></child></child></child>	Parametrized resc ual summary ual version ual build - only mar ual platform ht platform ht rep_platform t os nt reproducibility		EAttribute reso EAttribute prior EAttribute prior EAttribute vers EAttribute vers EAttribute assis EAttribute delt EAttribute delt EAttribute com EAttribute repo EAttribute targ	duct rity platform gned_to a_ts ponent orter uet_milestone	>
Properties 🛛 Console						(E)	₩ 🖾 🗸 .	- 6
Property	Val	Value						8
🗃 Misc								
Child	ΕΞ							
End	四王							

Model weaving

- Capture relationships between model elements
- Relationships are reified in a weaving model
 - The model elements represent the relationships and the related elements
 - As any kind of model, the weaving model can be saved, stored, transformed, modified
 - Different kinds of links
 - Equality, concatenation, equivalence, etc.

Weaving model and metamodel

- Weaving metamodel: A weaving metamodel is a model $MM_W = (G_M, \omega_M, \mu_M)$, that defines link types, such that:
 - $\mathbf{G}_{\mathsf{M}} = (\mathsf{N}_{\mathsf{M}}, \, \mathsf{E}_{\mathsf{M}}, \, \Gamma_{\mathsf{M}}),$
 - $N_M = N_L \cup N_{LE} \cup N_O$, N_L denotes the *link types*; N_{LE} denotes the *link endpoint types* and N_O denote other auxiliary nodes,
 - $\Gamma_M : E_M \to (N_L \times N_{LE}) \cup (N_O \times N_M)$, i.e., a *link type* refers to multiple *link endpoint types* and the auxiliary nodes refer to any kind of node.
- Weaving model : A weaving model is a model $M_W = (G_W, \omega_W, \mu_W)$, a graph $G_W = (N_W, E_W, \Gamma_W)$, such that its reference model is a weaving metamodel ($\omega_W = MM_W$).
- The related models are independent
 - 1-to-N models can be related

Dereferencing function

Dereferencing function: Given a weaving model M_W = (G_W, MM_W, μ_W), G_W = (N_W, E_W, Γ_W) and a linked model M = (G, ω, μ), G = (N_G, E_G, Γ_G), a dereferencing function ρ returns the elements of the linked model:

 $-\rho: N_{WLE} \rightarrow N_{G,} N_{WLE} \subset N_{W}$, such that $\mu_{W} (N_{WLE}) = N_{LE}$.

 This means the elements of the weaving models are "pointers" to the elements of the linked models, and they conform to the link end points.

Weaving metamodel (core)

Core weaving metamodel

Weaving metamodel extensions

- The core metamodel must be extended for a given application domain
 - Interoperability
 - •Equality, SourceToTarget.
 - Data integration
 - •Concatenation, Equality, IntToStr.
 - Traceability
 - •Origin, Source, Evolution, Modified, Added
 - Composition
 - •Override, Merge, Delete.

 - Ontology alignment
 Equivalent, Equality, Resemblance, Proximity.

Extension operation

```
class InheritanceLink extends WLink {
  reference parents[1-*] container : WLinkEnd;
  reference child container : WLinkEnd;
}
```

```
\rm{MM}_{\rm{R}} = Extend (\rm{MM}_{\rm{W}}, \rm{MM}_{\rm{E}}, \rm{M}_{\rm{WD}})
```

Input:

 MM_{w} : the metamodel to be extended

 MM_{E} : the metamodel extension

 M_{WD} : a weaving model between the elements of MMw and MMe

Output:

```
MM_R : an extended MMw

/* add all elements and edges from MM_E into MM_W, if they do not already exist*/

for each mme \in MM_E and not mme \in MM_W

MM_W \leftarrow MM_W \cup mme

/* addLink gets the elements represented by M_{WD} and create a link between them*/

MM_W \leftarrow MM_W addLink (M_{WD})

return MMw
```


A simple weaving metamodel extension

```
package mw_base_ext {
      class Model extends WModel {
         -- @subsets wovenModel
         reference leftModel container : WModelRef;
         -- @subsets wovenModel
         reference rightModel container : WModelRef;
      class ElementRef extends WElementRef {
      ļ
      class ModelRef extends WModelRef {
      }
      class Association extends WAssociation {
      class AssociationEnd extends WAssociationEnd {
      class Link extends WLink {
        -- @subsets end
        reference left container : WLinkEnd;
        -- @subsets end
        reference right container : WLinkEnd;
      class LinkEnd extends WLinkEnd {
```

AtlanMod Model Weaver (AMW): a tool for editing weaving models

- Adapts to any weaving metamodel extension
 - The user interface is automatic generated according to the metamodel extensions
 - Reflective API of EMF (Eclipse Modeling Framework)
- A set of extension points is defined to enable to customize the standard user interface
 - Extension points to the panels, to the model elements, and to execute model transformations in ATL (Atlas Transformation Language)
 - New interfaces can be easily developed

AMW user interface

© Copyright IBM France 2010

Summary

- Relationship between model elements
 - Several solutions, specialized for different aspects
- Model weaving
 - Generic representation
 - Based on the core metamodel and extensions
 - ATLAS Model Weaver tool

Traceability

Data provenance

"the problem of discovering the origin of data after it was transformed from a source schema into a target schema"

Requirements traceability

"keeps track of all the steps of a development process: analysis, design, programming, testing. Some possible kinds of links are developed_by, allocated_to, performed, based_on, modify. The key processes are the identification of the possible kinds of links and the development of new traceability reference models".

- Static requirements traceability
 - Requirements to code (several stages)
- Event-based traceability
 - Subscribes to a service (observer pattern)
- Reference models
 - Models used just for referring traceable models

Traceability survey [Galvao I, Goknil A. Survey of Traceability Approaches in Model-Driven Engineering. EDOC 2007]

Traceability

Traceability of model transformations

"Similar to data provenance scenarios, it is often necessary to store the execution trace of model transformations. The execution trace of a transformation indicates, for a set of generated elements, which transformation rules are executed, and which input elements are used."

– Loosely coupled

- Batch execution of model transformation produces a weaving model
- Embedded traceability \rightarrow annotation
 - Merges a model and its trace information

Outline

Model weaving : state of the art and concepts

Practical work : schema mapping and traceability

Matching and transformation production

Practical work : matching and transformation production

© Copyright IBM France 2010

Weaving metamodel extension

Traceability of model transformations

Original transformation setting

How to store traceability information?

Traceability of model transformations

- Produce Mt' from Mt using a Higher Order Transformation
- Mt' produces an additional weaving model

Weaving metamodel extension

```
class TraceLink extends WLink{
    attribute ruleName : String;
    reference sourceElements[*] ordered container : WLinkEnd;
    reference targetElements[*] ordered container : WLinkEnd;
}
class TraceLinkEnd extends WLinkEnd {
}
class ElementRef extends WElementRef {
}
```


Outline

Model weaving : state of the art and concepts

Practical work : traceability and schema mapping

Matching and transformation production

Practical work : matching and transformation production

Matching

- Matching is the process of establishing relationships between elements belonging to different models
- Manual
 - User interface
- Automatic
 - Algorithms
- Semi-automatic
 - Utilization of heuristics

Matching heuristics

- String similarity
 - Date <-> BirthDate
- Dictionaries
 - Car <-> Vehicle
- Structural relations
 - Class.name <-> Table.name
 - •Class <-> Table
- Different problems
 - How to express this heuristics ?
 - How to support different extensions ?

Matching tools

	Input (internal and external representation)	Matching techniques	Mapping nature	Application scenario
CUPID	DB and XML schemas (rooted graphs)	Structural and linguistic	1:1 correspondences	Generic matching tool
GLUE	Unified ontology (rooted graph)	Data instances, probability distribution	1:1 mappings	Generic matching tool
PROMPT	Ontologies (general knowledge model)	Set of iterative operations	None: merges the ontologies	Ontology merging and alignment
COMA / COMA++	SQL, XML and OWL schemas (rooted directed graphs)	Library of heuristics	Equivalence 1:1 correspondences	Generic matching tool
ONION	Ontologies (directed graphs)	Interoperation operators	Articulation ontologies	Ontology integration
MAFRA	RDF schemas	Multi strategies (lexical and structural)	Semantic bridging ontology (SBO)	Alignment of distributed ontologies
S-Match	Ontologies (propositional formulas)	Propositional unsatisfiability problem	Logical relations	Generic framework
API for ontology alignment	RDF graphs	Provides an API	Simple 1:1 correspondences translated into XSLT, C-OWL,RDF	Generic ontology matching
iMAP	Database schemas (graphs)	Different machine learn searchers. Use of domain knowledge	1:1 mappings and complex functions	Data integration
Xu et al.	Database schemas	Different matchers and domain ontologies	Complex mapping expressions	Data integration

Matching transformations

- A matching transformation is a domain-specific transformation that takes two or more models as input, and that transform them into a new weaving model
 - $T_{MATCHING} \rightarrow model x \dots x model \rightarrow weaving model$

Simple matching extension

```
class Element extends WLinkEnd {
}
class Equivalent extends WLink {
    attribute similarity : Double;
    reference source container : Element;
    reference target container : Element;
}
class <Type>Equal extends Equivalent {
}
class AttributeToRef extends Equivalent {
    reference targetAttribute container : Element
}
```


Cumulative matching

Cumulative matching

- Different kinds of matching transformations
- Element creation
- Similarity calculation and propagation
- Link rewriting
- Link selection

Matching rule for creating simple links

rule CPClass {

from

left : Ecore!EClass, right : Ecore!EClass

to

```
AMW!ClassEqual
```

}

```
rule CPAttr {
```

from

left : Ecore!EAttribute, right : Ecore!EAttribute

to

```
AMW!AttributeEqual
```

1

Cumulative matching: similarity + link filtering

Slide from: Univ. Rey Juan Carlos

Calculating similarity

Simple element-to-element similarities

```
rule AttributeSimilarity {
```

from

mmw : AMW!AttributeEqual

to

)

```
alink : AMW!AttributeEqual (
similarity <- (mmw.similarity + mmw.left.similarityName(mmw.right)) * weight
```

Structural similarity

```
rule UpdateStructuralSim {
from
    mmw : MMw!Equal mmw.source.isTypeOf(KM3!Attribute) and mmw.target.isTypeOf(SQLDDL!Column))
to
    alink : MMw!Equal (
    similarity <- ( mmw.similarity + mmw.source.requiredSim( mmw.target )) * weight
    )
}
helper context KM3!Attribute def: requiredSim (column : SQLDDL!Column) : Real =
    if (self.lower = 0 and column.canBeNull) then
        1
        else
        0
        endif;</pre>
```


Similarity flooding (SF) : a generic structural algorithm

- Input
 - Two metamodels M_a and M_b ,
 - Model elements $a, \ddot{a'} \in M_a$ and $b, b' \in M_{b.}$
 - Elements a and a' are connected by a labeled edge (a, "containment", a').
 - Elements *b* and *b*' are connected by a labeled edge (*b*, "containment", *b*').
- Initial setup and execution
 - Link creation : Cartesian product of $M_a \times M_b$
 - Similarity assignment for every pair of elements.
- Iterative propagation
 - General idea: consider the pairs (a, b) and (a', b'), with similarities x and y, respectively. The algorithm propagates x to (b, b') and it updates the similarity value y.
 - Propagation formula
 - y = y + (p * x).
 - Calculation of *p*
 - number of edges connecting a given pair of elements
 - Ex.: if (a, a') has 10 neighbors, then p = 1/10.
 - Propagation graph : stores the propagation information.

Adaptation of SF for model weaving and matching transformations

- Choose one kind of structural information
 - Containment graph
 - Inheritance tree
 - Relation graph
 - Any other relations
- Define how to calculate p
- Create a propagation weaving model
- Write the propagation transformation

Propagation weaving metamodel extension

Propagation extension : propagation from one link into another

```
package mmw_propagation {
    class PropagationElement extends WAssociation {
        reference incomingLink : Equivalent;
        reference outgoingLink : Equivalent;
        attribute propagation : Double;
    }
}
- Creation of propagation planments
```

Creation of propagation elements

```
rule CreatePropagationElement {
    from
        source_link : AMW!Equivalent,
        target_link : AMW!Equivalent ( <semantic guard> )
to
    out : AMW!PropagationElement (
        propagation <- 1 / <propagation_value>,
        outgoingLink <- source_link,
        incomingLink <- target_link
    )
}</pre>
```


Containment propagation model creation

from

```
source_link : AMW!ClassEqual,
```

target_link : AMW!AttributeEqual (

```
target_link.getReferredLeft.owner = source_link.getReferredLeft
```

```
and target_link.getReferredRight.owner = source_link.getReferredRight
```

to

```
out : AMW!PropagationElement (
   outgoingLink <- source_link,
   incomingLink <- target_link
   propagation <-
        1 /
        ( source_link.getReferredLeft.getAttributeCount()->size() *
        source_link.getReferredRight.getAttributeCount()->size()
```


Propagation rule : valid for any kind of propagation model

```
rule PropagationClass {
  from
     mmw : AMW!Equivalent
  to
     alink : AMW!Equivalent()
do {
   thisModule.aTuple <-
     AMW!PropagationElement.allInstances()->
     select ( e | e.incomingLink = mmw)->
     iterate (e1; acc : TupleType(value : Real, count : Integer) =
        Tuple {value = 0, count = 0} |
        Tuple {
          value = acc.value + (e1.outgoingLink.similarity * e1.propagation),
          count = acc.count + 1
    );
    alink.similarity <- mmw.similarity +</pre>
    thisModule.aTuple.value / thisModule.aTuple.count;
```

47

Link filtering

48

Called-rule for selecting better similarities

```
rule getMaxLink (aSource : MMa!ModelElement) {
using {
  newLink : MMw!Equivalent = null;
  maxSim : Real = 0;
}
do {
   for(e in MMw!Equivalent.allInstaces()->select(e.source=aSource)){
   if (e.similarity > maxSim) {
        maxSim <- e.similarity;</pre>
        newLink <- e;
```


Link rewriting

- The final similarity weaving model may not have the right connections
 - Nested relationships
 - Hierarchy
 Others

```
rule NestedRewriting {
  from
    attr_link : MMw!AttributeEqual,
    class_link : MMw!ClassEqual (
        attr_link.source.owner = class_link.source and
        attr_link.target.owner = class_link.target
     )
  to
    link : MMw!AttributeEqual (
        parent <- class_link</pre>
    )
1
```


Configuration model : setting up an execution chain

🖨 Matching transformation set up						
Link generation						
Name Restricted cartesian product Execute 🗹 ?						
Element to element						
Name Name equality Weight 0.8 Execute 🗹 ?						
Name Cardinality Weight 0.2 Execute 2						
Name Type and conformance Weight 0.0 Execute 2						
Structural						
Name Propagation graph Execute ?						
Name Similarity flooding Execute 2						
Filtering						
Name Select from a threshold Threshold 0.6 Execute 🗹 ?						
Name Link rewriting Threshold 0.0 Execute ?						
Name Not equivalence Threshold 0.0 Execute ?						
Name Normalization Threshold Execute 🗹 ?						
Save intermediate models 🗹						
OK Cancel						

Configuration metamodel

Finding the good combination of transformations/parameters is fundamental

Transformation production : how to use these weaving models?

- Typical situation
 - Weaving model between 2 metamodels (source and target)
 - Transformation between source and target terminal models
- Based on 3 observations
 - Transformations have frequently-used expressions (e.g., equality, concatenation)
 - Metamodel has link types and link endpoints
 - Transformation languages are similar
- Pattern for generating transformations
 - **TransfGen** : weaving model \rightarrow transformation model

Some solutions in DB community

- Typically called *query discovery*
- Difficult when using complex mappings
- Specific to the corresponding application domain

	Input	Mapping nature	Transformations	
Clio	A pair of relational and XML nested schemas (internal nested format)	1:1/n:m value correspondences	Produces logical operational mappings that are translated in SQL or XSLT	
Kedad et al.	Two or more XML schemas	1:1 value correspondences	XQuery	
An et al.	Relational schemas plus a conceptual model	1:1 value correspondences and the mappings between a schema and its conceptual model	Relational mappings	
SMART	XML schemas and conceptual schemas	1:1 value correspondences with inclusion labels	XML transformations	

Definitions

- Higher order transformation. A higher-order transformation is a transformation T_{OUT} : MM_T = T_{HOT} (T_{IN} : MM_T), such that the input and/or the output models are transformation models. Higher-order transformations either take a transformation model as input, either produce a transformation model as output, or both.
- TransfGen. TransfGen is a higher-order transformation that takes a weaving model M_w as input and that produces a transformation model M_T as output. The weaving model conforms to a data interoperability metamodel extension MM_w.

 $-M_{\rm T}$: $MM_{\rm W}$ = TransfGen ($M_{\rm w}$: $MM_{\rm w}$).

TransfGen: input metamodel extension

TransfGen: output metamodel

Transformation metamodel (an abstraction of ATL metamodel)

```
class Module {
 reference rules [1-*] container : Rule;
ļ
class Rule {
 attribute name : DataType;
 reference input container: InputElement;
 reference output[*] container: OutputElement;
class InputElement {
 reference element : ReferredElement;
 reference condition [0-1] : Expression;
class OutputElement {
 reference element : ReferredElement;
 reference bindings [*] : Binding;
class Binding {
 reference target : ReferredElement;
 reference source : Expression;
```

Transformation model

```
rule <name> {
    from
        input (condition)
    to
        output1 (
           target1 <- source1
           target2 <- source2
           targetN <- sourceN
    ),
        outputN ...
}
rule <name2> ...
```


TransfGen operation template

```
1 Module TransfGen (C: \omega_{c})
2
3 inputModel: C/* a correspondence model conforming to a correspondence metamodel \omega_c^{*}
4 outputModel: T /* a transformation model conforming to \omega_{\rm T} */
5
6 rule newModule
  input WModel
7
8
   output Module
       rules ← ownedElement (ownedElement isA WLinkST)
9
10
11 rule newRule
12 input WLinkST (parent isA WModel)
                                                /*classifiers (classes, references, attributes)*/
13 output Rule
14
        input \leftarrow source
       output ← target
15
16
17 rule newInput
18 input WLinkEnd (link.source = self)
19 output InputElement
       element \leftarrow \rho (element.ref)
20
       condition \leftarrow /*depends on the WLinkST and WLinkEnd types*/
21
22
23 rule newOutput
24 input WLinkEnd (link.target = self)
25 output OutputElement
       element \leftarrow \rho (element.ref)
26
       bindings ← link.child /*get the sibling WLinkEnd*/
27
28
29 rule newExpression
30 input WLinkST (parent is A WLinkST)
31 output Binding
       source \leftarrow MapExp (\rho (source.element.ref))/*mapping expressions here,*/
32
33
       target \leftarrow \rho (target.element.ref)
                                                 /*according to the WLinkST type*/
```


Outline

Model weaving : state of the art and concepts

Practical work : schema mapping and traceability

Matching and transformation production

Practical work : matching and transformation production

General view

- Two major points

 Transformations are models
 - Different transformation metamodels (e.g., ATL or XSLT)

Case study : Comparison and migration – putting all together

- Two versions
 - Scade of Esterel Technologies (v1 and v2)
 - Autosar (v2.0 and v2.1)

Creation of the weaving model

Comparison and migration (cont'd)

Scalability

		Elements	Classes	Attributes	References
 Scade 	Version 1	449	106	105	231
	Version 2	381	95	89	190
				2.00	-

Links: 379 Transformation: 1030 lines

Autosai

ar		Elements	Classes	Attributes	References	
	Version 2.0	4569	700	2262	1607	
	Version 2.1	6360	1020	3254	2086	
	Links: 3411	Transformation: 7990 lines				

- Remarks
 - Identical executions

 - Optimized transformationsGraphical interface essential

Summary

- Matching
 - Several solutions
 - (semi) automatic creation of weaving models
 - Coupling of transformations and weaving models provide a generic framework
 - Necessary for real world model integration/migration scenarios
- Transformation production
 - Uses the result of a matching operation
 - Generates the final model transformation
 - Relies on higher-order transformations : difficult to write, but quite useful

General conclusions

- Relationships between model elements are ubiquitous
- Several solutions, different application domains, implementations, techniques
- Model weaving
 - Generic MDE solution
 - Simple core that is extended to a given application domain
- Others
 - TGG : transformation by example
 - Model link : simple Ecore2Ecore links
- Several use cases
 - Traceability
 - Model integration and comparison
 - Model merging
 - Annotation
 - Others

Q & A