
A DECOMPOSITION STORAGE MODEL

George P Copeland
Setrag N Khoshafian

Microelectronics And Technology Computer Corporation
9430 Research Blvd
Austin, Texas 78759

Abstract

This report examines the relative advantages
of a storage model based on decomposition (of
community view relations into binary relations
containing a surrogate and one attribute) over
conventional n-ary storage models

There seems to be a general consensus among
the database community that the n-ary approach is
better This conclusion is usually based on a
consideration of only one or two dimensions of a
database system The purpose of this report is not
to claim that decomposition is better Instead, we
claim that the consensus opinion is not well
founded and that neither is clearly better until a
closer analysis is made along the many dimensions
of a database system The purpose of this report
is to move further in both scope and depth toward
such an analysis We examine such dimensions as
simplicity, generality, storage requirements,
update performance and retrieval performance

1 INTRODUCTION

Most database systems use an n-ary storage
model (NSM) for a set of records This approach
stores data as seen in the conceptual schema
Also, various inverted file or cluster indexes
might be added for improved access speeds The key
concept in the NSM is that all attributes of a
conceptual schema record are stored together For
example, the conceptual schema relation

Rlsurl al I a2 I a3 1
(sl) vlll v211 v311
1 921 ~121 ~221 ~321
1 ~31 ~131 ~231 ~331

contains a surrogate for record identity and three
attributes per record The NSM would store si,
vli. v2i and v3i together for each record i

Permlsslon to copy wlthout fee all or part of this matcrlal IS granttd
provided that the copies are not made or dlstrlbuted for direct
commercial advantage, the ACM copyrlght nouce and the title of the
pubbcatlon and 11s date appear, and notlce IS given that copymg IS by
permlsslon of the Assoclatlon for Computmg Machmery To copy
otherwlse, or to repubhsh, requires a fee and/or specific permIssIon

@ 1985 ACM 0-89791-160-l/85/005/0268 $00 75

Some database systems use a fully transposed
storage model, for example, RM (Lorie and Symonds
1971), TOD (Wiederhold et al 1975), RAPID (Turner
et al 1979), ALDS (Burnett and Thomas 19Sl), Delta
(Shibayama et al 1982) and (Tanaka 1983) This
approach stores all values of the same attribute of
a conceptual schema relation together Several
studies have compared the performance of transposed
storage models with the NSM (Hoffer 1978, Batory
1979, March and Severance 1977, March and Scudder
1984) In this report, we describe the advantages
of a fully decomposed storage model (DSM). which is
a transposed storage model with surrogates
included The DSM pairs each attribute value with
the surrogate of its conceptual schema record in a
binary relation For example, the above relation
would be stored as

allsurl vail a2lsurl vail a3lsurl vail
1 sll Vlll 1 sll v211 1 sl(v311
(s2(v12(
1 s31 v131 IU s v ri.l-3 s v

In addition, the DSM stores two copies of each
attribute relation One copy is clustered on the
value while the other is clustered on the
surrogate These statements apply only to base
(i e , extensional) data To support the
relational model, intermediate and final results
need an n-ary representation If a richer data
model than normalized relations is supported, then
intermediate and final results need a
correspondingly richer representation

This report compares these two storage models
based on several criteria Section 2 compares the
relative complexity and generality of the two
storage models Section 3 compares their storage
requirements Section 4 compares their update
performance Section 5 compares their retrieval
performance Finally, Section 6 provides a summary
and suggests some refinements for the DSM

2 SIMPLICITY AND GENERALITY

This Section compares the two storage models
to illustrate their relative simplicity and
generality Others (Abrial 1974, Deliyanni and
Kowalski 1977, Kowalski 1978, Codd 1979) have
argued for the serantic clarity and generality of
representing each basic fact individually within
the conceptual schema as the DSM does within the
storage schema

268

2 1 Support Of Multivalued Attributes

A more comprehensive data model than
normalized relations might allow multivalued
attributes or repeating fields, where a single
attribute of a record can have more than one value
This is a feature of Childs’ extended set theory
model (1977) For example, the relation Rl in
Section 1 might have two values v23 and v24 for
attribute a2 in record 93

Rlrurl al I I I
1 sl(vlll vi: I ZI,
1 a21 ~121 v22 1 ~321
1 s3l v13lv23,v24l v33J

A practical example might be that each a2 contains
a set of an employee’s children

Support of multivalued attributes with the NSM
leads to either reduced data independence or
increased complexity

One alternative is to always further normalize
the relations containing multivalued attributes
(Pagin 1977) That is, for each multivalued
attribute, a new relation is formed by projection
on that attribute and its surrogate This
alternative reduces physical data independence,
since a change from a single-valued attribute to a
multivalued attribute, or vice versa, in the
conceptual schema causes a change in the storage
structure

A second alternative is to directly support
rultivalued attributes in the storage model This
alternative leads to complexity A more complex
storage structure is required which supports
multiple values in a field Also, if the records
of Rl are clustered on attribute a2, the two values
might dictate that record s3 be placed in two
different cluster blocks A copy of the entire
record could be stored in each cluster block This
causes complexity during update, since all copies
of the record must be found and updated
Alternatively, the entire record could be stored in
only one of the cluster blocks with some sort of
linkage mechanism among the blocks This causes
complexity during update, since the linkages must
be maintained It also causes retrieval to be
asymmetric, since indirections are sometimes but
not always required

The DSM handles multivalued attributes with
higher data independence and without additional
complexity The second value would change only the
a2 DSM relation

a2lsurl vail
(all v211
1 821 v221
1 s3(~231
1 931 ~241

Changing an attribute from single valued to
multivalued in the conceptual schema causes no
change in the storage structure The storage
structure is still the simple binary relation No
update problems occur due to duplicated surrogates
since surrogates are never modified

2 2 Support Of Entities

A more comprehensive data model than the
original relational model might support the notion
of entities, where an object’s individual identity
IS preserved by explicitly representing it
independently of its value (Smith and Smith 1978)
This is a feature of several data models, including
RM/T (Codd 1979) For example, the existence of an
object could be represented in the data model with
none or only a few of its attribute values known
A practical example would be an employee who is
hired but most of the employee’s data is not yet
known Entities also allow any or all of an
employee’s attribute values to change, yet
preserving the continuity that the employee is the
same person

Surrogates are a convenient technique for
entity support In addition, the decomposition
approach of the DSM dictates that a separate entity
relation should be stored The DSM entity relation
for the example in Section 1 would be

rlsurl

I “:I I&
If one or more of the attribute values were unknown
for one of the entities, then those attribute
values would not have an entry in the corresponding
DSM attribute relations Only one copy of r would
be stored, clustered on the surrogate This
approach involves little additional complexity for
update and retrieval to support entities Only the
additional update of the entity relations is
required for update Only the additional test for
membership in the entity relations is required for
retrieval

Without this degree of decomposition, the NSM
would require explicit null values to be stored in
the single relation

2 3 Support Of Wultiple Parent Relations

A data model with more generality than
relations might allow multiple parent relations,
where a single record can have more than one parent
relation For example, the s3 record of relation R
in Section 1 might also belong to a second relation
Q

Rlsurl al I a2 I a3] asurl al I a2 1 a3 I
1 Sl(vlll v21(v311 1 ~31 v13(v23(v33(
1 s2(~121 v22(~321 1 841 ~14) ~241 v34J
1 ~31 ~131 ~231 ~331

A practical example might be that R and Q describe
employees for different companies which have
recently merged and employee s3 now works for both
companies

Support of multiple parent relations in the
NSM leads to complexity One alternative is to
store the 93 record redundantly in both relations
This leads to update complexity, since all copies
of the duplicated data must be found and updated
In particular, when s3 is updated within one
relation, it is difficult to determine where eIse
it is stored A second alternative is to actually

269

store the full record in one relation and to store
a reference to it in all others This leads to
complexity in both updating and retrieval An
update to 83 within R would cause either cluster or
inverted file indexes in Q to change Also,
retrieval becomes asymmetric A third alternative
is to completely reorganize the conceptual schema
This reduces logical data independence, causing
problems for existing applications, and reduces
physical data independence, causing storage
reorganization

The DSM would represent the relations using
entity relations

rlsurl glsurl I Sll I; 12 s 8

allsurl vail allsurl vail a3lsur(vail
1 SlJ Vlll) Sl) v211 1 SlJ v311
1 921 v12(1 921 v221 1 921 ~32)
) s31 v131 1 a31 v23/) 931 v331
1 s41 v141 1 941 ~241) 941 v34]

This approach supports multiple parent relations
without redundancy or reduced data independence

2 4 Support Of Heterogeneous Records

A data model with more generality than
relations might allow heterogeneous records, where
records of a single relation can have different
attributes Such records usually have some
attributes the same and some different For
example, the following relation has two record
types tl and t2

RlsurityDel al I a2 I a3 I a4)
(sl(tl I vll(~211 ~311 NA)
1 ~21 t2 (~121 ~221 NA 1 ~421
1 s3(t2 I ~131 ~23) NA 1 ~431
1 S41 tl 1 ~141 ~241 ~34) NA I

A practical example might be that the relation
describes a set of employees, type tl would
describe salesmen and t2 engineers Both types
would include name (al) and birthdate (a2), but
salesmen would have a company car (a3) and
engineers would have a project (a4)

Direct support of heterogeneous records in the
NSM would require explicit storage in each record
of record type and/or an indicator (NA) that
certain attributes are not applicable For
retrievals referencing attributes which are not
applicable for some records (e g , retrieve al
where a3=“v”), additional checking of type or NA
would be required on each record, since records
would be encountered of both types

The DSM would represent the relation as

allsurl vail a2lsurl vail a3lsurl vail arllsurl valj
1 sll Vlll 1 Sll v21(1 SlJ v31(1 ~21 v42(
(s2(v12(I s21 v221 1 a41 v341
(s3) v131

1 s31 v431
I 831 ~231

1 941 v14J I s4i v24i

This approach does not require storage in each
record of either record type or an indicator of not

applicable attributes No additional checking in
each record for retrievals would be required, since
only records which have relevant attributes would
be encountered

The NSM could indirectly support heterogeneous
records cleanly by partial decomposition, forming a
new relation for each type The result for this
example would be similar to the DSM representation
above

Rllsurl al I a2 I tllsurl a3 l t2lsurl a4 I
I sl(vlll v21l
1 ~21 ~12; v22i

I Sll v311
i s4i ~34j

I 921 ~421
i s3i ~43;

1 93) ~131 ~23)
) 941 ~141 ~241

Of course, the DSM has the advantage of doing this
automatically without knowledge of the types

2 5 Support Of Directed Graphs

A data model with more generality than
relations might allow a directed graph structure,
where any object can have any nurber of objects as
either parents or values This is the data
structure of object-oriented languages such as
Smalltalk (Goldberg and Robson 1983)

Decomposition can support directed graphs with
minimum complexity Two types of binary relations
are needed One type is the same as in the basic
DSM, which represents the relationships between
pure values and their entities A second type has
the form

I oarent sur I child sur I I I I
This second type represents the parent/child
relationships between entities Grouping of sets
of relationships into relations could be based
either on common instance set or on common type

2 6 Differential Files And Temporal Support

Forward differential files (Severance and
Lohman 1976) provide a way to use RAM to reduce the
number of disk accesses for update, while not
increasing disk accesses for retrieval Backward
differential files provide a way to reduce storage
requirements and provide fast access to current
data for a temporal data model (Copeland and Maier
1984), which maintains and provides access to the
history of database states

Differential files could be directly Supported

in the NSM by representing an attribute
modification by storing the full record This
would result in low storage utilization To
improve storage utilization in NSM systems,
complexity is usually increased by the addition of
individual attribute identifiers to distinguish
which attributes are modified

Differential files can be directly supported
in the DSM with efficient storage utilization, so
that additional complexity is not needed Each
attribute modification would be directly
represented by a separate shorter DW record

270

2 7 Storage Structures

The NSM must support records containing a
variable and unbounded number of attributes Many
alternative strategies have been used to represent
n-ary records, such as a linked list, an index per
record to its attributes and others (Batory 1984)
The complexity of such strategies is evidenced by
the fact that systems place an upper bound on the
number of attributes allowed

For base (I e , extensional) data, the DSM
need support only the simple binary relation
Furthermore, the first attribute containing the
surrogate is fixed in length Only one possibly
variable-length value need be supported With the
DSM, any number of conceptual schema attributes can
be supported without additional complexity For
temporary or final results, the DSM must support
whatever structures are present in the data model

2 8 Access Methods

The NSM may employ many different access
methods to improve performance over an exhaustive
scan of all records We divide these into two
classes, clustering and inverted files Clustering
(Chang and Pu 1978) is usually faster when a large
number of records qualify for retrieval, while
inverted files (Cardenas 1975) are usually faster
when few records qualify In either case, speed is
a strong function of how many attributes in the
retrieval predicate are also chosen as an index
However, choosing all attributes as indexes usually
yields update performance problems as well as
additional storage space Thus, complex tradeoffs
are required by users to efficiently tune the
database system

The DSM in this report requires no tradeoffs
and is automated Each decomposed relation is
binary, containing one attribute value and one
surrogate Two physical copies of each binary
relation are stored, one indexed only on the
attribute value and the other only on the
surrogate Since each binary relation has a single
index, single key clustering is always used for
improved performance over a wide range of number of
qualifying records Inverted files for secondary
indexes are never needed No decisions are
required by users or even by the system

2 9 Physical Data Independence And Availability

Physical data independence means that changes
to either the conceptual or the storage schema have
minimal impact on each other Physical data
independence is desirable because it allows the
logical and physical aspects of the database system
to be more quickly and easily controlled, so that
the database system is more stable as it tries to
adapt to changes in the dynamic real world The
DSW provides a cleaner separation between the
conceptual and storage schema than the NSM does
We have already described how the DSM supports
various extensions to the basic relational model
with a higher level of data independence than the
NSM

Using the DSM, changes in the conceptual
schema have less impact on the storage schema For
example, the addition or removal of an attribute to

a conceptual schema relation is seen at the storage
level as simply adding a new relation rather than
modifying an existing one

Using the DSM, no changes in the storage
schema are required for performance enhancement
Since there are no changes in the storage schema,
none can propagate up to the conceptual schema
The NSM may require modification of either
clustering or inverted file methods for performance
tuning These modifications not only require
complex human intervention, but may cause data in
the conceptual schema to become unavailable during
the modification

In addition, the impact of locking on
availability can be q lnlmized using the DSM with
less complexity than using the NSM For example,
locking a single attribute in the conceptual schema
is seen at the storage level as locking only one of
the DSM relations The other attributes are
available for other transactions, as long as the
attributes are not linked by integrity constraints
This is true regardless of whether the concurrency
control subsystem uses relation-level, record-level
or block-level locking For the NSH, either the
entire relation would have to be locked, or a more
complex scheme for indicating which attributes are
locked would have to be employed Block-level
locking would force entire records to be locked
using the NSW On the other hand, if locking of
entire records is needed, the NSH would be more
efficient

2 10 Reliability And Recovery

The simplicity of the DSM should improve the
reliability of the database system There is less
to implement and less chance of Introducing bugs
The KISS principle applies here The replicated
data of the DSM should allow faster and simpler
recovery from media failure

3 STORAGE REQUIREMENTS

This Section describes the relative storage
requirements of the two storage models We first
describe data storage, then index storage, then
total storage

3 1 Data Storage Requirements

The DSM requires two copies of the data
This has the obvious effect of a factor of 2
increase in the data storage requirements of the
DSM compared to the NSM

The DSM requires the storage of duplicated
surrogates A copy of each surrogate is required
for each of the attributes This has the effect of
a factor of from 1 to 2 increase in the data
storage requirements of the DSM compared to the
NSM, depending on the relative size of attribute
values and surrogates

Various compression techniques exist for
multiple attributes with the same value For
example, run-length compression has been proposed
for decomposed files (Eggere 1981) This property
has been recognized in statistical databases
(Shoshani et al 1982) With surrogates

271

incorporated In the DSM, some of the versatility
for compression is lost For example, the DSM
relation clustered on surrogates cannot easily be
compressed, except for the repeating surrogates
involved in multivalued attributes However, the
DSM still offers nore flexibility for storage
compression than the NSM For example, the DSM
relation copy clustered on attribute values could
store the set of records with the same attribute
value together with the attribute value stored only
once along with a list of their surrogates

The net effect of these three differences is
quantified by the following ratio of DSM to NSM
data storage requirements

2 , A*IAS+SS) l (AS/RV+SS)+(AS+SS)
A*AS+SS 2*(AS+SS) ,

where A is the number of attributes in the
conceptual schema relation, AS is the average
attribute size, SS is the surrogate size and RV is
the average number of repeating fields The first
factor accounts for the two copies of each DSM
relation The second factor is the ratio of
storage required for a conceptual schema record
If attribute values are about the same size as
surrogates, then this factor is about 2 If
attribute values are much larger than surrogates,
then this factor is about 1 The third factor is
the ratio of compacted to non-compacted DSM
storage If attribute values are much larger than
surrogates and RV is large, this factor approaches
l/2 As RV approaches 1, this factor approaches 1
The net effect is that the NSM has between a 1 to 4
advantage for data storage Assuming typical
constants to be A=lO, AS=15, 88-5, RV=2, the
factors are approximately

2*13*081,

so a typical value for the ratio of DSM to NSM data
storage is 2 1

For data stored in a cache buffer. the DSM has
an advantage Without considerable complexity, the
NM forces all attributes of a relation to be
buffered together, even if the attributes differ
significantly in usage frequency The DSM allows
those attributes having a high usage frequency to
easily be buffered independently from those in the
same conceptual schema relation with a low usage
frequency Thus, for a given buffer performance,
the DSM usually requires less buffer space

3 2 Index Storage Requirements

An inverted file, such as a B-tree (Bayer and
McCreight 1972), must resolve addressability down
to each record That is, each B-tree must contain
a key and a pointer for each record in its leaf
nodes Even if abbreviated keys are used as in
prefix B-trees (Bayer and Unterauer 1977). the size
of a leaf node key approaches the size of an
attribute value, since It must discriminate between
each record’s attribute value This causes the
size of each B-tree to be about l/A of the size of
the relation, or more when pointers and non-leaf
nodes are included Typically, several inverted
files are needed per relation in the NSM, so that
the total index storage requirements of the NSM

often equals the size of its data storage
requirements (Cardenas 1975)

Each of the two copies of a DSM relation has
only one single key cluster index A cluster index
is considerably smaller than the size of an
inverted file index for two reasons The major
reason is that a cluster index requires
addressability only down to each disk block instead
of each record This reduces the size of the
cluster index by a factor equal to the number of
DSM records per block, a number that would
typically be several hundred A second reason is
that the size of cluster keys are smaller than
inverted file keys, since they need discriminate
between ranges of values of large blocks of records
instead of between each record’s attribute value
This reduces the size of a cluster index

The NSM could use a multikey clustering index
(Bentley 1979, Nievergelt et al 1984) However, we
discuss in Section 5 2 the linited utility of this
approach

Even though 2*A cluster indexes are required
for the DSR and only several inverted file indexes
are required for the NSM. the total index
requirements would typically be two orders of
magnitude less for the DSM For the NSM. index
size is of the same order as data size A typical
value might be 50% For the DSM, index size is not
significant compared to data size

3 3 Total Storage Requlrements

The DSM is expected to increase data storage
by a factor of between 1 and 4 with a typical value
of 2 1 The DSM is expected to decrease index
storage by roughly two orders of magnitude Index
storage for the NSM often equals its data storage
with a typical value of 50%. while DSM index
requirements are not significant Thus, the total
storage is larger for the DSM by a factor of
between l/2 and 4 with a typical value of 1 4

In most database applications today, storage
capacity is a less critical Issue than performance
Most technological projections expect the storage
capacity per dollar for magnetic disks to continue
to improve by a factor of about two every three
years However, seek times are expected to improve
by only a factor of about two over the next decade,
and latency times are not expected to improve
significantly Write-once and rewritable optical
disks are expected to provide even higher capacity
per dollar than magnetic disks but with higher seek
and latency times due to the more massive optical
heads and slower rotation speeds Thus, for future
databases, storage capacity will be an increasingly
less critical issue than performance

4 UPDATE PERFORMANCE

This Section compares the update performance
of the two storage models

4 1 Modifying An Attribute

Modifying a single attribute under the NSW
requires one disk write for the block containing
the attribute’s record If the attribute has an

272

inverted file, then an additional (usually single
but sometimes multiple) disk write is required for
the block containing that part of the inverted file
that must be updated The probability that an
attribute has an inverted file is I/A, where I is
the number of inverted files for the relation
Thus, the average number of writes is slightly
greater than 1+1/A

The DSM requires three disk writes, one for
the DSM relation clustered on surrogate and two for
the DSM relation clustered on value since the
modified record will usually have to move In
addition, there is a low probability that each of
the cluster indexes will require change This
probability is inversely proportional to the number
of DSM records per block (typically several
hundred), since a cluster index requires change
only upon overflow/underflow Thus the average
number of writes is roughly 3

The above comparison assumes that the
modification must be written to disk If instead,
battery backup is used to make the RAM buffer non-
volatile, disk writes can be delayed by storing the
modification in differential files in the buffer
Writes to disk can then be done later as a periodic
or background task

4 2 Inserting Or Deleting A Record

Inserting or deleting an entire record under
the NSM requires one disk write for the block
containing the new or old record In addition, a
(usually single but sometimes multiple) disk write
is required eor each inverted file of the NSM
relation, so that the average number of disk writes
is slightly greater than l+I

The DSM requires two disk writes for each
attribute of the record, one for each copy In
addition, there is a low probability that each of
the cluster indexes may require change, so that the
average number of disk writes is slightly greater
than 2*A

If battery backup is used to make the RAW
bufeer non-volatile, disk writes can be delayed by
using a differential file in the buffer

5 RETRIEVAL PBRFORMAWCB

This Section compares the retrieval
performance of the two storage models We first
present performance equations and families of
curves for several parameters for conjunctive
retrieval patterns Then we discuss the key
parameters causing performance differences in the
two storage models Next we discuss the impact of
limited buffer space for intermediate results
Finally, we examine the potential concurrency of
the two storage models and the impact of multiple
disks

5 1 Conjunctive Retrieval Patterns

A comparison of retrieval performance is
complicated by a dependence on the retrieval
pattern We approach this problem by limiting our
comparison to a generalized conjunctive retrieval
pattern

The comparison is also complicated by a
dependence on the number of records r that qualify
for each step in the retrieval process We
approach this problem by defining performance
comparisons as a function of r Where multiple
steps are involved, we make the simplifying
assumption that r is the same for each step

We assume that the NSM has an inverted file
index on each attribute constrained in a predicate
This assumption favors the NSM, since it is rarely
the case that all attributes of a relation have an
inverted file index because of update overhead
Thus, we are actually comparing the DSM, which
requires no performance tuning, with a well tuned
NSM In reality, the DSM should have an advantage
where workload characteristics are not static

We assume for simplicity that each relation
has A attributes of equal size AS plus a surrogate
of size SS, and all relations have R records
Using an effective disk block size of BS. the
number of blocks NB required by a NSM relation is

N8 = ceiling(R/floor(BS/(A*AS+SS)))

The number of blocks DB required by each DSM
relation is

DB = celling(R/floor(BS/(AS+SS)))

We assume that all relations are on disk prior
to retrieval execution and that the number of disk
reads/writes provide a reasonable approxiration to
retrieval performance We ignore processor costs,
since processor speed is projected to improve
faster than disk speed We also ignore disk
accesses for indexes for simplicity When
retrieving qualified records from disk, the
required number of disk block reads is strongly
aefected by whether the records are clustered or
randonly distributed Clustering allows r
qualifying records to be retrieved with the
following number of disk block reads

CLB(BS,AS,SS,a,r) - ceillng(r*(a*AS+SS)/BS),

where a is the number of attributes in each storage
relation For the NSM, a=A, and for the DSM, a=1

For accessing records randomly distributed
onto disk blocks, a formula for the expected number
of disk blocks containing at least one of r records
la given by Yao (1977)

RMB(B.R,r) = B*(l -k
R-R/B-i+1

R-i+1).
14

where 8 is the total number of blocks For the
NSM, B=NB, and for the DSM, B=DB

The following is a generalized conjunctive
retrieval expression

ANS(X1, ,Xnpa) <==
Rl(S1, (“Vl” , , “V2 ”) ,x1,),
R2(S2, ,x2, ,Sl, ,Xnpa,),

Rnjr(,” Vnca” ,Sn jr-l)

273

where npa is the number of projected attributes
needed for the final result, njr is the number of
joined relations, and nca is the number of
constrained attributes The Xi ‘8 and “VL”‘s can be
spread throughout any of the relations Joins on
surrogate Si are required between adjacent
relations We assume the constrained attributes
and the projected attributes are disjoint, so that

nca + npa =< A*njr

An equation for the number of disk blocks nb
accessed using the NSM is

nb = njr*RMB(NB,R,r),

since r records are randomly distributed across
each of the njr relations

The DSM equivalent retrieval expression is

ANS(X1) ,Xnpa) <==
Rll(Sl,“Vl”),Rl2(Sl,“V2”),R13(Sl,Xl) ,
R2l(S2,X2),R22(S2,Sl),R23(S2,Xnpa) ,

.
Rnjrl(Snjr,“Vnca”).RnjrP(Snjr,Snjr-1)

An equation for the number of disk blocks db
accessed for the DSM is

db = nca*CLB(BS,AS,SS,l.r)
+ (njr-l+npa)*RWB(DB.R,r),

since r records are clustered in each of the nca
relations which have a constrained value, r
surrogates are randomly distributed over each of
the relations involved in the njr-1 joins and the
npa projections

Graphs of the nb/db ratio as a function of r
are provided in Figures 2 through 4, assuming
typical constants to be R=lOO,OOO, BS=5,000, A=lO,
AS=15, SS=5 We discuss these graphs in the
following Section

5 2 Key Parameters For Retrieval

There are five key parameters causing
performance differences in the two storage models
One is full clustering on attribute values in the
DSM vs inverted files for the NSM A second is the
reduced size of the DSM relations A third is the
number of attributes constrained in each retrieval
A fourth is the number of attributes projected in
each retrieval A fifth is the number of join
relations in the conceptual schema

An inherent property of the DSM is that each
attribute relation is fully clustered on its
attribute value Full clustering is possible if
only a single attribute requires indexing in each
relation If a relation has multiple attributes
which require a cluster indexing, then clustering
must be compromised, so that the records containing
a particular attribute are spread over many cluster
blocks An approximation for the number of blocks
which must be read using multidimensional
clustering is given by (Chang and Fu 1978)

b p Bl-P/d

where B is the total number of blocks containing a
relation, d is the number of cluster attributes
(i e , dimensions), and p is the number of
attributes bound to a constant in a conjunctive
retrieval predicate that are also cluster
attributes For the DSM. d=l, so that b=l This
function assumes that r is small enough so that all
qualifying records fit into one block For larger
r, CLB blocks are required If clustering were
used for the NSM, d would typically be much larger
than 1, so that b is quite large unless all cluster
attributes are bound in a conjunctive retrieval
predicate For the example used in Section 5 1,
B=3125 for the NSM If d were only 2 and p were 1.
b would be about 58 blocks even if r were 1 For
this reason, inverted files usually offer higher
performance with the NSM Inverted files do not
cluster records on any attribute, so that RMB
blocks are required Figure 1 illustrates the
ratio of random to full clustered access with the
number of blocks held constant (i e , we use B=NB
in RWB and a=A in CLB), so that the size difference
of the two storage models is factored out

RWB(NB,R,r)
CLB(BS,AS,SS,A,r)

Note that the fluctuations in the curve are due to
the ceiling and floor functions, having break
points at multiples of the number of records per
block for the NSM (32) and DSM (250) Full
clustering has no effect for either r=l or r=R, but
has a major effect for intermediate values of r
The effect 0e clustering should have an
increasingly important impact as database usage
patterns move from single record to set retrieval
One example of this would be retrievals with
nonunique access keys or with ranges (Bentley
1979) Another example would be an environment
with workstations and database servers on local
area networks, where communications overhead is
high

The reduced size of the DSM relations reduces
the total number of blocks for each stored binary
relation, since only one attribute is present in
each DSM relation instead of A for the NSM Note
that we have assumed attributes of equal length in
our comparison Actually, the effect of reduced
size of the DSM relations is even more important
when the size of different attributes vary greatly,
such as a mixture of text and formatted data in the
same NSM relation The ratio of the number of
blocks is approximately (i e , neglecting the
ceiling and floor functions included earlier in NB
and DB)

NB
DB-

A*AS+SS
AS+SS

For the constants of Section 5 1 used In the
graphs, this is 7 8 This provides an advantage
for the DSM whenever an attribute must be
exhaustively scanned Figure 1 illustrates the
effect of size on random access

RWB(NB,R,r)
RWB(DB,R,r)

This iaproves performance significantly for
internediate to large r The RHB function is

274

32l-

30--

28.-

26~-

24--

22.-

20--

r I%--
B

04 I i IO ioo $000 ,oooo iooooo

P

275

almost linear in r for small r Figure 1 also
illustrates the effect of size on clustered access

CLB(BS,AS,SS,A,r)
CLB(BS.AS,SS,l,r)

This would improve performance for all but very
small r, even if the NSR could use full clustering
Note again the break points at multiples of the
number of records per block for the NSM (32) and
DSM (250)

Figure 2 illustrates the effect of varying the
number of projected attributes npa For low npa,
the DSM Is worse for low r but better for
intermediate to large r However, when wa
approaches A, the DSM is worse for all r This is
due to the large number of joins required for the
DSM Figure 3 illustrates the effect of varying
the number of constrained attributes nca The
lower right portion of Figure 3 is unlikely to
occur in reality, since a large nca should
considerably limit r The effect of varying nca is
similar to varying npa, but with some improvement
for the DSM due to clustering Later in Section 5.
we describe other phenomena which reduces these
negative effects for the DSM

Figure 4 illustrates the effect of varying the
number of joined relations njr in the conceptual
schema The DSM is slightly worse for low r, but
much better for intermediate to large r As njr
increases, the DSM improves This is due to the
fact that joins are faster for the DSM, so that
when the number of joins in the conceptual schema
are increased, NSM performance decreases faster
than for the DSM

5 3 Effect Of Limited Buffer Space

The above retrieval performance comparison
assumed unlimited buffer space for intermediate
results of database operations such as join In
this Section, we describe the eefecta of limited
buffer space In NSM systems, limited buffer space
eor intermediate results often causes many
additional disk accesses

The join operation between two relations is
used here as an example of the effect of limited
buffer space for intermediate results within an
operation If both relations are already fully
sorted on the join attribute, then a merge join
(Bitton et al 1983) is possible A merge join can
be performed with a single pass on each relation,
since it requires little buffer space for
intermediate results If one or both of the
relations are not sorted on the join attribute,
then sorting is required before the merge can take
place If the size exceeds the available buffer
space, then a slow external sort is required NSM
relations are seldom sorted on the join attribute,
since only one attribute or surrogate can be used
for sorting of each stored relation Since DSM
relations are sorted (fully clustered relations are
sorted) on each attribute and surrogate, fewer
sorts are required When a sort is required. the
reduced size of the DSM relations will more often
allow a fast internal sort

The DSM also has an advantage because most
intermediate results between different operations

are smaller For example, let us examine
attributes which are required in the final result
but are not involved in other operations It is
simple with the DSM to delay access of these
attributes until the last steps in retrieval
processing For the NSM, it is tempting to capture
these attributes earlier if they occur in the same
records as attributes required ear other
operations This is because these attributes must
be accessed anyway and accessing them as a separate
operation is relatively inefficient for the NSM
The problems are that they can significantly
increase the size of intermediate results and that
many of them are not required in the final result
because of later restrictions

5 4 Potential Concurrency

We consider three types of concurrency in
database operations parallelism within each
operation, and both parallelism and pipelining
among q ultiple operations

The potential of parallelism within each
operation is the same for the two storage models,
since the number of records in each DSM relation is
the same as in the NSM

The potential of parallelism and pipelining
among multiple operations is greater for the DSM
The DSM relations which correspond to the same
conceptual schema relation are often joined on the
surrogate For example, the DSM pattern

ANS(Xl,X2,X3) <==
Ri(S,Xl).Rj(S,X2),Rk(S,X3),Rl(S,”v”)

has a potential 0e either parallelism or
pipelining The algebra tree for this pattern
would be

join(sur)/project(val)
I

I I I I
Ri Rj Rk select(“v”)/project(sur) I

RI

The select/project on Rl is performed first since
it is relatively east due to clustering on the
attribute value and since most of Rl would
typically be filtered The result is a set of
surrogates which need to be sorted to begin a merge
join This sorting prevents pipelining the select
result into the join operation After the sort,
however, either a a-way parallel or a 3-stage
pipeline merge join can begin using the DSM copy
clustered on surrogate for Ri, Rj and Rk

5 5 Wultiple Disks

The DSM allows a simple scheme to exploit
multiple disks It is based on the heuristic that
clustering among blocks is important for the select
operator with a constrained attribute but is not
important for joins on surrogate which require
random access It is also based on the heuristic
that placement of each copy of a DSM relation on
different disks improves reliability

For example, suppose we have four attributes
and four disks Each of the DSM relations

276

clustered on attribute would be placed on a
separate disk

disk1 disk2 disk3 disk4
al a2 a3 a4

This placement provides clustering within each
attribute for efficient execution of the select
operation, since head noveaent between blocks of an
attribute value interval is minimized It also
provides parallel access to different attributes
for retrieval patterns with nca>l, effectively
making nca-1

Each of the DSM relations clustered on
surrogate would be spread across three disks in
equal surrogate ranges (Sri)

disk1 disk2 disk3 disk4
al erl ar2 sr3
a2 sr3 arl sr2
a3 ar2 sr3 srl
a4 arl er2 ar3

This placement provides parallel access within each
attribute for efficient joins on surrogate Since
the surrogate ranges are skewed so that the same
range on different attributes are on separate
disks, it provides parallel access of multiple
attributes for efficient m-way merge joins on
surrogate This is important for retrieval
patterns with npa>l, effectively making npa=l for
small r, which is the case where the DSH
performance is lowest It also provides increased
reliability from disk failure by ensuring that the
two copies of a DSM relation are on different
disks

This simplified scheme assumes that the number
of disks is the same as the number of attributes
and that attributes are of equal size so that disks
have equal space utilization These unrealistic
assumptions can be relaxed at the expense of some

parallelism Multiple attributes could be stored
per disk for small attributes or if disks are fewer
than attributes Alternatively, attributes could
be spread over multiple disks for large attributes
or if attributes are fewer than disks

For the NSM. some gains can be obtained by
distributing the NSM relation over multiple disks
This is similar to the second placement above for
the DSM However, this provides no corresponding
advantage to the first placement above for the DSH
where each attribute is clustered on a different
disk, nor are there any gains in reliability

8 SUMMARY AND FUTURE WORK

The DSM offers simplicity Simple systems
have several major advantages over complex systems
One advantage is that a set of fewer and simpler
functions, given fixed development resources, can
be either further tuned in software or pushed
further into hardware to improve performance This
Is similar to the RISC (Patterson and Ditzel 1980)
approach in general purpose architectures A
second advantage is that many alternative cases
with different processing strategies can less often
be exploited, since the cases are not always
recognized A third advantage is reduced user

involvement, since less performance tuning is
required by users A fourth advantage of
simplicity is reliability

The DSM offers more generality with simple
extensions Section 2 described how the DSM can
support data models which allow multivalued
attributes, entities, multiple parent relations,
heterogeneous records, directed graphs and a
temporal dimension with some simple extensions

The DSM offers increased physical data
independence and availability

The DSM requires from l/2 to 4 times as much
total storage with a typical value 0e 1 4
However, it offers improved recovery from failure
Also, storage requirements are not as critical in
most database systems as performance and
reliability

The relative update performance of the two
storage models is dependent on whether attribute
modifications or record inserts and deletes are
more frequent and on the number of NSM inverted
files In general, the DSH reduces update
performance However, as RAM becomes cheaper,
differential files can be used to reduce this
difference

The relative retrieval performance of the two
storage models is dependent on the nurber of
attributes involved in retrievals and the size of
intermediate and einal results In general, the
DSW requires more disk accesses for a large number
of retrieval attributes and saall intermediate and
final results, but otherwise requires fewer disk
accesses It is not clear at this time whether
current or future database or knowledge base
retrieval pattern mixes favor the DSM Some
experience with logic programming in knowledge base
applications indicates that the average number of
attributes on the left side of Horn clause
predicate is 2 8 (Murakami et al 1984)
Statistical database applications often have a
large number of attributes per record but very few
attributes per retrieval (Turner et al 1979, Teitel
1977) Many of the DSM performance problems can be
reduced using multiple disks Also, as RAM becomes
cheaper, more of the database can be cached The
DSW allows individual attributes to be cached
This better utilizes cache space, since not all
attributes of a conceptual schema relation have the
same frequency 0e use Although more joins are
required by the DSM, each join is faster This is
again similar to the RISC approach where more
instructions are generated but each is simpler and
executes faster

Our retrieval performance comparison assumed
the NSM was highly tuned, so that every constrained
or join attribute had an inverted file index This
is unlikely in reality Thus the DSM would have an
advantage in an environment where workload
characteristics are not static This is again
similar to the RISC approach where a neutral
instruction set is provided The complex
instructions in CISC architectures are highly tuned
to efficiently implement a certain language and OS
at the expense of others

277

We have examined a particular type of DSM.
where two copies of each DSM relation are stored,
one fully clustered on the attribute and the second
fully clustered on the surrogate Several other
types of DSM deserve examination One might store
only one copy of each DSM relation, fully clustered
on the attribute value and with an inverted file on
the surrogate This alternative has the advantage
of reducing storage and update requirements Such
a comparison would make clearer the performance
impact of the second DSM copy Delta (Shibayama et
al 1982) uses a DSM that stores a single copy with
primary clustering on attribute values and
secondary clustering on surrogates Yet another
alternative is a hybrid which stores two copies,
one copy is a set of DSM relations fully clustered
on attribute value and the second copy is an NSM
relation fully clustered on the surrogate Other
alternative DSM types are also possible and deserve
examination In addition, our retrieval
performance model should be enhanced to directly
include the effects of limited buffer space,
concurrency, index searching, multiple disks, more
general retrieval patterns, and other phenomena A
major purpose of this report is to encourage
research in these areas

Acknowledgements

Thanks to David Maier of Oregon Graduate
Center and Haran Boral of MCC for their helpful
comments and encouragement

References

JR Abrial, “Data Semantics, ” in Data, Base
Management, J W Klimbie and K L Koffeman, eds ,
North-Holland Pub Co (1974)

D S Batory, “On Searching Transposed Files, ” ACM
Transactions On Database Systems, Vol 4, No 4
(December 1979)

D S Batory, “Modeling The Storage Architectures Of
Commercial Database Systems,” University of Texas
at Austin (1984)

R Bayer and E McCreight, “Organization And
Maintenance Of Large Ordered Indexes, ” Acta
Infornatica, Vol 1 (1972)

R Bayer and K Unterauer, “Prefix B-Trees, ” ACM
Transactions On Database Systems, Vol 2. No 1
(March 1977)

J L Bentley, “Multidimensional Binary Search Trees
In Database Applications,” IEEE Transactions On
Software Engineering, Vol SE-5, No 4 (July 1979)

R Burnett and J Thomas, “Data Management Support
For Statistical Data Editing,” Proceedings Of The
First Lawrence Berkeley Laboratory Workshop On
Statistical Database Management (December 1981)

D Bitton, H Boral, D J Dewitt and W K
Wilkinson, “Parallel Algorithms For The Execution
Of Relational Database Operations, I’ ACM
Transactions On Database Systems, Vol 8, No 3
(September 1983)

AF Cardenas , “Analysis And Performance Of
Inverted Data Base Structures,” Communications Of
The ACM, Vol 18, No 5 (May 1975)

JM Chang and K S Fu, “Dynamic Clustering
Techniques For Physical Database Design,” School of
Electrical Engineering. Purdue University TREE 78-
49 (December 1978)

D L Childs, “Extended Set Theory A General Model
For Very Large, Distributed, Backend Information
Systems, n Proceedings Of The Third International
Conference On Very Large Databases (October 1977)

EF Codd , “Extending The Data Base Relational
Model To Capture More Meaning,” ACM Transactions On
Database Systems, Vol 4, No 4 (December 1979)

G P Copeland and D Maier, “Making Smalltalk A
Database System, ” Proceedings Of The ACM SIGMOD
Conference, SIGMOD Record, Vol 14, No 2 (June
1984)

A Deliyanni and R A Kowalski, “Logic And Semantic
Networks,” Proceedings of the Workshop On Logic And
Data Bases, Toulouse (November 1977)

SJ Eggera, F Olken and A Shoshani, “A
Compression Technique For Large Statistical
Databases, ” Proceedings Of The Seventh
International Conference On Very Large Databases
(September 1981)

R Fagin, “Multivalued Dependencies And A New
Normal Porn For Relational Databases, ” ACM
Transactions On Database Systems, Vol 2, No 3
(September 1977)

A Goldberg and D Robson, Snalltalk-80 The
Language And Its Implementation, Addison-Wesley
Pub Co (1983)

A J Hoffer, “An Integer Programming Formulation Of
Computer Data Base Design Problems,” Information
Sciences 11 (1978)

R A Kowalski, “Logic For Data Description,” in
Logic And Data Bases, H Gallaire and J Winker
(eds), Plenum Press, New York (1978)

R A Lorie and A J Symonda, “A Relational Access
Method For Interactive Applications, 11 Data Base
Systems, Courant Computer Science Symposia, Vol 8,
Prentice-Hall (1971)

S T March and D G Severance, “The Determination
Of Efficient Record Segmentations And Blocking
Factors For Shared Data Files,” ACM Transactions On
Database Systems, Vol 2, No 3 (September 1977)

S T March and G D Scudder, ‘On The Selection Of
Eeficient Record Segmentations And Backup
Strategies For Large Shared Files,” ACM
Transactions On Database Systems, Vol 9, No 3
(September 1984)

K Murakami, T Kakuta and R Onai, “Architectures
And Hardware Systems Parallel Inference Machine
And Knowledge Base Machine,” Proceedings Of The
International Conference On Fifth Generation
Computer Systems, Tokyo (Noveuber 1984)

278

J Nievergelt, H Hinterberger and K C Sevcik,
“The Grid File An Adaptable, Symmetric Multikey
File Structure,” ACM Transactions On Database
Systems, Vol 9, No 1 (March 1984)

D Patterson and D Ditzel, “The Case For The
Reduced Instruction Set Computer, ” Computer
Architecture News, Vol 8, No 8, ACM (October
1980)

DC Severance and C M Lehman, “Differential
Files Their Application To The Maintenance Of
Large Databases, ” ACM Transactions On Database
Systems, Vol 1, No 3 (September 1978)

S Shibayama, T Kakuta, N Miyazaki, H Yokota and
K Murakami , A Relational Database Machine With
Large Semiconductor Disk And Hardware Relational
Algebra Processor, ” New Generation Computing Vol 2
(1984)

A Shoshani , F Olken and HKT Wang ,
“Characteristics Of scientific Databases,” Lawrence
Berkeley Laboratory, LBL-17582 (1982)

JM Smith and D C P Smith, “Principles of
Database Conceptual Design,” Proceedings Of The NYU
Symposium On Database Design, New York (May 1978)

Y Tanaka, “A Data-Stream Database Machine With
Large Capacity,” in Advanced Database Machine
Architectures, D K Hsiao, ed , Prentice-Hall
(1983)

R F Teitel. “Relational Database Models and Social
Science Computing, 11 Proceedings Of Computer Science
And Statistics Tenth Annual Symposium On The
Interface, Gaitheraburg, Maryland, National Bureau
Of Standards (April 1977)

M J Turner R Hammond and F Cotton, “A DBMS For
Large Statistical Databases,” Proceedings Of The
Fifth International Conference On Very Large
Databases (October 1979)

G Wiederhold, J F Fries and S Weyl, “Structured
Organization Of Clinical Data Bases,” Proceedings
Of The National Computer Conference, AFIPS Press
(Hay 1975)

279

