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Abstract 

This report examines the relative advantages 
of a storage model based on decomposition (of 
community view relations into binary relations 
containing a surrogate and one attribute) over 
conventional n-ary storage models 

There seems to be a general consensus among 
the database community that the n-ary approach is 
better This conclusion is usually based on a 
consideration of only one or two dimensions of a 
database system The purpose of this report is not 
to claim that decomposition is better Instead, we 
claim that the consensus opinion is not well 
founded and that neither is clearly better until a 
closer analysis is made along the many dimensions 
of a database system The purpose of this report 
is to move further in both scope and depth toward 
such an analysis We examine such dimensions as 
simplicity, generality, storage requirements, 
update performance and retrieval performance 

1 INTRODUCTION 

Most database systems use an n-ary storage 
model (NSM) for a set of records This approach 
stores data as seen in the conceptual schema 
Also, various inverted file or cluster indexes 
might be added for improved access speeds The key 
concept in the NSM is that all attributes of a 
conceptual schema record are stored together For 
example, the conceptual schema relation 
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( sl) vlll v211 v311 
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contains a surrogate for record identity and three 
attributes per record The NSM would store si, 
vli. v2i and v3i together for each record i 
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Some database systems use a fully transposed 
storage model, for example, RM (Lorie and Symonds 
1971), TOD (Wiederhold et al 1975), RAPID (Turner 
et al 1979), ALDS (Burnett and Thomas 19Sl), Delta 
(Shibayama et al 1982) and (Tanaka 1983) This 
approach stores all values of the same attribute of 
a conceptual schema relation together Several 
studies have compared the performance of transposed 
storage models with the NSM (Hoffer 1978, Batory 
1979, March and Severance 1977, March and Scudder 
1984) In this report, we describe the advantages 
of a fully decomposed storage model (DSM). which is 
a transposed storage model with surrogates 
included The DSM pairs each attribute value with 
the surrogate of its conceptual schema record in a 
binary relation For example, the above relation 
would be stored as 

allsurl vail a2lsurl vail a3lsurl vail 
1 sll Vlll 1 sll v211 1 sl( v311 
( s2( v12( 
1 s31 v131 IU s v ri.l-3 s v 

In addition, the DSM stores two copies of each 
attribute relation One copy is clustered on the 
value while the other is clustered on the 
surrogate These statements apply only to base 
(i e , extensional) data To support the 
relational model, intermediate and final results 
need an n-ary representation If a richer data 
model than normalized relations is supported, then 
intermediate and final results need a 
correspondingly richer representation 

This report compares these two storage models 
based on several criteria Section 2 compares the 
relative complexity and generality of the two 
storage models Section 3 compares their storage 
requirements Section 4 compares their update 
performance Section 5 compares their retrieval 
performance Finally, Section 6 provides a summary 
and suggests some refinements for the DSM 

2 SIMPLICITY AND GENERALITY 

This Section compares the two storage models 
to illustrate their relative simplicity and 
generality Others (Abrial 1974, Deliyanni and 
Kowalski 1977, Kowalski 1978, Codd 1979) have 
argued for the serantic clarity and generality of 
representing each basic fact individually within 
the conceptual schema as the DSM does within the 
storage schema 
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2 1 Support Of Multivalued Attributes 

A more comprehensive data model than 
normalized relations might allow multivalued 
attributes or repeating fields, where a single 
attribute of a record can have more than one value 
This is a feature of Childs’ extended set theory 
model (1977) For example, the relation Rl in 
Section 1 might have two values v23 and v24 for 
attribute a2 in record 93 

Rlrurl al I I I 
1 sl( vlll vi: I ZI, 
1 a21 ~121 v22 1 ~321 
1 s3l v13lv23,v24l v33J 

A practical example might be that each a2 contains 
a set of an employee’s children 

Support of multivalued attributes with the NSM 
leads to either reduced data independence or 
increased complexity 

One alternative is to always further normalize 
the relations containing multivalued attributes 
(Pagin 1977) That is, for each multivalued 
attribute, a new relation is formed by projection 
on that attribute and its surrogate This 
alternative reduces physical data independence, 
since a change from a single-valued attribute to a 
multivalued attribute, or vice versa, in the 
conceptual schema causes a change in the storage 
structure 

A second alternative is to directly support 
rultivalued attributes in the storage model This 
alternative leads to complexity A more complex 
storage structure is required which supports 
multiple values in a field Also, if the records 
of Rl are clustered on attribute a2, the two values 
might dictate that record s3 be placed in two 
different cluster blocks A copy of the entire 
record could be stored in each cluster block This 
causes complexity during update, since all copies 
of the record must be found and updated 
Alternatively, the entire record could be stored in 
only one of the cluster blocks with some sort of 
linkage mechanism among the blocks This causes 
complexity during update, since the linkages must 
be maintained It also causes retrieval to be 
asymmetric, since indirections are sometimes but 
not always required 

The DSM handles multivalued attributes with 
higher data independence and without additional 
complexity The second value would change only the 
a2 DSM relation 

a2lsurl vail 
( all v211 
1 821 v221 
1 s3( ~231 
1 931 ~241 

Changing an attribute from single valued to 
multivalued in the conceptual schema causes no 
change in the storage structure The storage 
structure is still the simple binary relation No 
update problems occur due to duplicated surrogates 
since surrogates are never modified 

2 2 Support Of Entities 

A more comprehensive data model than the 
original relational model might support the notion 
of entities, where an object’s individual identity 
IS preserved by explicitly representing it 
independently of its value (Smith and Smith 1978) 
This is a feature of several data models, including 
RM/T (Codd 1979) For example, the existence of an 
object could be represented in the data model with 
none or only a few of its attribute values known 
A practical example would be an employee who is 
hired but most of the employee’s data is not yet 
known Entities also allow any or all of an 
employee’s attribute values to change, yet 
preserving the continuity that the employee is the 
same person 

Surrogates are a convenient technique for 
entity support In addition, the decomposition 
approach of the DSM dictates that a separate entity 
relation should be stored The DSM entity relation 
for the example in Section 1 would be 

rlsurl 

I “:I I& 
If one or more of the attribute values were unknown 
for one of the entities, then those attribute 
values would not have an entry in the corresponding 
DSM attribute relations Only one copy of r would 
be stored, clustered on the surrogate This 
approach involves little additional complexity for 
update and retrieval to support entities Only the 
additional update of the entity relations is 
required for update Only the additional test for 
membership in the entity relations is required for 
retrieval 

Without this degree of decomposition, the NSM 
would require explicit null values to be stored in 
the single relation 

2 3 Support Of Wultiple Parent Relations 

A data model with more generality than 
relations might allow multiple parent relations, 
where a single record can have more than one parent 
relation For example, the s3 record of relation R 
in Section 1 might also belong to a second relation 
Q 

Rlsurl al I a2 I a3 ] asurl al I a2 1 a3 I 
1 Sl( vlll v21( v311 1 ~31 v13( v23( v33( 
1 s2( ~121 v22( ~321 1 841 ~14) ~241 v34J 
1 ~31 ~131 ~231 ~331 

A practical example might be that R and Q describe 
employees for different companies which have 
recently merged and employee s3 now works for both 
companies 

Support of multiple parent relations in the 
NSM leads to complexity One alternative is to 
store the 93 record redundantly in both relations 
This leads to update complexity, since all copies 
of the duplicated data must be found and updated 
In particular, when s3 is updated within one 
relation, it is difficult to determine where eIse 
it is stored A second alternative is to actually 
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store the full record in one relation and to store 
a reference to it in all others This leads to 
complexity in both updating and retrieval An 
update to 83 within R would cause either cluster or 
inverted file indexes in Q to change Also, 
retrieval becomes asymmetric A third alternative 
is to completely reorganize the conceptual schema 
This reduces logical data independence, causing 
problems for existing applications, and reduces 
physical data independence, causing storage 
reorganization 

The DSM would represent the relations using 
entity relations 

rlsurl glsurl I Sll I; 12 s 8 

allsurl vail allsurl vail a3lsur( vail 
1 SlJ Vlll ) Sl) v211 1 SlJ v311 
1 921 v12( 1 921 v221 1 921 ~32) 
) s31 v131 1 a31 v23/ ) 931 v331 
1 s41 v141 1 941 ~241 ) 941 v34] 

This approach supports multiple parent relations 
without redundancy or reduced data independence 

2 4 Support Of Heterogeneous Records 

A data model with more generality than 
relations might allow heterogeneous records, where 
records of a single relation can have different 
attributes Such records usually have some 
attributes the same and some different For 
example, the following relation has two record 
types tl and t2 

RlsurityDel al I a2 I a3 I a4 ) 
( sl( tl I vll( ~211 ~311 NA ) 
1 ~21 t2 ( ~121 ~221 NA 1 ~421 
1 s3( t2 I ~131 ~23) NA 1 ~431 
1 S41 tl 1 ~141 ~241 ~34) NA I 

A practical example might be that the relation 
describes a set of employees, type tl would 
describe salesmen and t2 engineers Both types 
would include name (al) and birthdate (a2), but 
salesmen would have a company car (a3) and 
engineers would have a project (a4) 

Direct support of heterogeneous records in the 
NSM would require explicit storage in each record 
of record type and/or an indicator (NA) that 
certain attributes are not applicable For 
retrievals referencing attributes which are not 
applicable for some records (e g , retrieve al 
where a3=“v”), additional checking of type or NA 
would be required on each record, since records 
would be encountered of both types 

The DSM would represent the relation as 

allsurl vail a2lsurl vail a3lsurl vail arllsurl valj 
1 sll Vlll 1 Sll v21( 1 SlJ v31( 1 ~21 v42( 
( s2( v12( I s21 v221 1 a41 v341 
( s3) v131 

1 s31 v431 
I 831 ~231 

1 941 v14J I s4i v24i 

This approach does not require storage in each 
record of either record type or an indicator of not 

applicable attributes No additional checking in 
each record for retrievals would be required, since 
only records which have relevant attributes would 
be encountered 

The NSM could indirectly support heterogeneous 
records cleanly by partial decomposition, forming a 
new relation for each type The result for this 
example would be similar to the DSM representation 
above 

Rllsurl al I a2 I tllsurl a3 l t2lsurl a4 I 
I sl( vlll v21l 
1 ~21 ~12; v22i 

I Sll v311 
i s4i ~34j 

I 921 ~421 
i s3i ~43; 

1 93) ~131 ~23) 
) 941 ~141 ~241 

Of course, the DSM has the advantage of doing this 
automatically without knowledge of the types 

2 5 Support Of Directed Graphs 

A data model with more generality than 
relations might allow a directed graph structure, 
where any object can have any nurber of objects as 
either parents or values This is the data 
structure of object-oriented languages such as 
Smalltalk (Goldberg and Robson 1983) 

Decomposition can support directed graphs with 
minimum complexity Two types of binary relations 
are needed One type is the same as in the basic 
DSM, which represents the relationships between 
pure values and their entities A second type has 
the form 

I oarent sur I child sur I I I I 
This second type represents the parent/child 
relationships between entities Grouping of sets 
of relationships into relations could be based 
either on common instance set or on common type 

2 6 Differential Files And Temporal Support 

Forward differential files (Severance and 
Lohman 1976) provide a way to use RAM to reduce the 
number of disk accesses for update, while not 
increasing disk accesses for retrieval Backward 
differential files provide a way to reduce storage 
requirements and provide fast access to current 
data for a temporal data model (Copeland and Maier 
1984), which maintains and provides access to the 
history of database states 

Differential files could be directly Supported 

in the NSM by representing an attribute 
modification by storing the full record This 
would result in low storage utilization To 
improve storage utilization in NSM systems, 
complexity is usually increased by the addition of 
individual attribute identifiers to distinguish 
which attributes are modified 

Differential files can be directly supported 
in the DSM with efficient storage utilization, so 
that additional complexity is not needed Each 
attribute modification would be directly 
represented by a separate shorter DW record 
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2 7 Storage Structures 

The NSM must support records containing a 
variable and unbounded number of attributes Many 
alternative strategies have been used to represent 
n-ary records, such as a linked list, an index per 
record to its attributes and others (Batory 1984) 
The complexity of such strategies is evidenced by 
the fact that systems place an upper bound on the 
number of attributes allowed 

For base (I e , extensional) data, the DSM 
need support only the simple binary relation 
Furthermore, the first attribute containing the 
surrogate is fixed in length Only one possibly 
variable-length value need be supported With the 
DSM, any number of conceptual schema attributes can 
be supported without additional complexity For 
temporary or final results, the DSM must support 
whatever structures are present in the data model 

2 8 Access Methods 

The NSM may employ many different access 
methods to improve performance over an exhaustive 
scan of all records We divide these into two 
classes, clustering and inverted files Clustering 
(Chang and Pu 1978) is usually faster when a large 
number of records qualify for retrieval, while 
inverted files (Cardenas 1975) are usually faster 
when few records qualify In either case, speed is 
a strong function of how many attributes in the 
retrieval predicate are also chosen as an index 
However, choosing all attributes as indexes usually 
yields update performance problems as well as 
additional storage space Thus, complex tradeoffs 
are required by users to efficiently tune the 
database system 

The DSM in this report requires no tradeoffs 
and is automated Each decomposed relation is 
binary, containing one attribute value and one 
surrogate Two physical copies of each binary 
relation are stored, one indexed only on the 
attribute value and the other only on the 
surrogate Since each binary relation has a single 
index, single key clustering is always used for 
improved performance over a wide range of number of 
qualifying records Inverted files for secondary 
indexes are never needed No decisions are 
required by users or even by the system 

2 9 Physical Data Independence And Availability 

Physical data independence means that changes 
to either the conceptual or the storage schema have 
minimal impact on each other Physical data 
independence is desirable because it allows the 
logical and physical aspects of the database system 
to be more quickly and easily controlled, so that 
the database system is more stable as it tries to 
adapt to changes in the dynamic real world The 
DSW provides a cleaner separation between the 
conceptual and storage schema than the NSM does 
We have already described how the DSM supports 
various extensions to the basic relational model 
with a higher level of data independence than the 
NSM 

Using the DSM, changes in the conceptual 
schema have less impact on the storage schema For 
example, the addition or removal of an attribute to 

a conceptual schema relation is seen at the storage 
level as simply adding a new relation rather than 
modifying an existing one 

Using the DSM, no changes in the storage 
schema are required for performance enhancement 
Since there are no changes in the storage schema, 
none can propagate up to the conceptual schema 
The NSM may require modification of either 
clustering or inverted file methods for performance 
tuning These modifications not only require 
complex human intervention, but may cause data in 
the conceptual schema to become unavailable during 
the modification 

In addition, the impact of locking on 
availability can be q lnlmized using the DSM with 
less complexity than using the NSM For example, 
locking a single attribute in the conceptual schema 
is seen at the storage level as locking only one of 
the DSM relations The other attributes are 
available for other transactions, as long as the 
attributes are not linked by integrity constraints 
This is true regardless of whether the concurrency 
control subsystem uses relation-level, record-level 
or block-level locking For the NSH, either the 
entire relation would have to be locked, or a more 
complex scheme for indicating which attributes are 
locked would have to be employed Block-level 
locking would force entire records to be locked 
using the NSW On the other hand, if locking of 
entire records is needed, the NSH would be more 
efficient 

2 10 Reliability And Recovery 

The simplicity of the DSM should improve the 
reliability of the database system There is less 
to implement and less chance of Introducing bugs 
The KISS principle applies here The replicated 
data of the DSM should allow faster and simpler 
recovery from media failure 

3 STORAGE REQUIREMENTS 

This Section describes the relative storage 
requirements of the two storage models We first 
describe data storage, then index storage, then 
total storage 

3 1 Data Storage Requirements 

The DSM requires two copies of the data 
This has the obvious effect of a factor of 2 
increase in the data storage requirements of the 
DSM compared to the NSM 

The DSM requires the storage of duplicated 
surrogates A copy of each surrogate is required 
for each of the attributes This has the effect of 
a factor of from 1 to 2 increase in the data 
storage requirements of the DSM compared to the 
NSM, depending on the relative size of attribute 
values and surrogates 

Various compression techniques exist for 
multiple attributes with the same value For 
example, run-length compression has been proposed 
for decomposed files (Eggere 1981) This property 
has been recognized in statistical databases 
(Shoshani et al 1982) With surrogates 
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incorporated In the DSM, some of the versatility 
for compression is lost For example, the DSM 
relation clustered on surrogates cannot easily be 
compressed, except for the repeating surrogates 
involved in multivalued attributes However, the 
DSM still offers nore flexibility for storage 
compression than the NSM For example, the DSM 
relation copy clustered on attribute values could 
store the set of records with the same attribute 
value together with the attribute value stored only 
once along with a list of their surrogates 

The net effect of these three differences is 
quantified by the following ratio of DSM to NSM 
data storage requirements 

2 , A*IAS+SS) l (AS/RV+SS)+(AS+SS) 
A*AS+SS 2*(AS+SS) , 

where A is the number of attributes in the 
conceptual schema relation, AS is the average 
attribute size, SS is the surrogate size and RV is 
the average number of repeating fields The first 
factor accounts for the two copies of each DSM 
relation The second factor is the ratio of 
storage required for a conceptual schema record 
If attribute values are about the same size as 
surrogates, then this factor is about 2 If 
attribute values are much larger than surrogates, 
then this factor is about 1 The third factor is 
the ratio of compacted to non-compacted DSM 
storage If attribute values are much larger than 
surrogates and RV is large, this factor approaches 
l/2 As RV approaches 1, this factor approaches 1 
The net effect is that the NSM has between a 1 to 4 
advantage for data storage Assuming typical 
constants to be A=lO, AS=15, 88-5, RV=2, the 
factors are approximately 

2*13*081, 

so a typical value for the ratio of DSM to NSM data 
storage is 2 1 

For data stored in a cache buffer. the DSM has 
an advantage Without considerable complexity, the 
NM forces all attributes of a relation to be 
buffered together, even if the attributes differ 
significantly in usage frequency The DSM allows 
those attributes having a high usage frequency to 
easily be buffered independently from those in the 
same conceptual schema relation with a low usage 
frequency Thus, for a given buffer performance, 
the DSM usually requires less buffer space 

3 2 Index Storage Requirements 

An inverted file, such as a B-tree (Bayer and 
McCreight 1972), must resolve addressability down 
to each record That is, each B-tree must contain 
a key and a pointer for each record in its leaf 
nodes Even if abbreviated keys are used as in 
prefix B-trees (Bayer and Unterauer 1977). the size 
of a leaf node key approaches the size of an 
attribute value, since It must discriminate between 
each record’s attribute value This causes the 
size of each B-tree to be about l/A of the size of 
the relation, or more when pointers and non-leaf 
nodes are included Typically, several inverted 
files are needed per relation in the NSM, so that 
the total index storage requirements of the NSM 

often equals the size of its data storage 
requirements (Cardenas 1975) 

Each of the two copies of a DSM relation has 
only one single key cluster index A cluster index 
is considerably smaller than the size of an 
inverted file index for two reasons The major 
reason is that a cluster index requires 
addressability only down to each disk block instead 
of each record This reduces the size of the 
cluster index by a factor equal to the number of 
DSM records per block, a number that would 
typically be several hundred A second reason is 
that the size of cluster keys are smaller than 
inverted file keys, since they need discriminate 
between ranges of values of large blocks of records 
instead of between each record’s attribute value 
This reduces the size of a cluster index 

The NSM could use a multikey clustering index 
(Bentley 1979, Nievergelt et al 1984) However, we 
discuss in Section 5 2 the linited utility of this 
approach 

Even though 2*A cluster indexes are required 
for the DSR and only several inverted file indexes 
are required for the NSM. the total index 
requirements would typically be two orders of 
magnitude less for the DSM For the NSM. index 
size is of the same order as data size A typical 
value might be 50% For the DSM, index size is not 
significant compared to data size 

3 3 Total Storage Requlrements 

The DSM is expected to increase data storage 
by a factor of between 1 and 4 with a typical value 
of 2 1 The DSM is expected to decrease index 
storage by roughly two orders of magnitude Index 
storage for the NSM often equals its data storage 
with a typical value of 50%. while DSM index 
requirements are not significant Thus, the total 
storage is larger for the DSM by a factor of 
between l/2 and 4 with a typical value of 1 4 

In most database applications today, storage 
capacity is a less critical Issue than performance 
Most technological projections expect the storage 
capacity per dollar for magnetic disks to continue 
to improve by a factor of about two every three 
years However, seek times are expected to improve 
by only a factor of about two over the next decade, 
and latency times are not expected to improve 
significantly Write-once and rewritable optical 
disks are expected to provide even higher capacity 
per dollar than magnetic disks but with higher seek 
and latency times due to the more massive optical 
heads and slower rotation speeds Thus, for future 
databases, storage capacity will be an increasingly 
less critical issue than performance 

4 UPDATE PERFORMANCE 

This Section compares the update performance 
of the two storage models 

4 1 Modifying An Attribute 

Modifying a single attribute under the NSW 
requires one disk write for the block containing 
the attribute’s record If the attribute has an 
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inverted file, then an additional (usually single 
but sometimes multiple) disk write is required for 
the block containing that part of the inverted file 
that must be updated The probability that an 
attribute has an inverted file is I/A, where I is 
the number of inverted files for the relation 
Thus, the average number of writes is slightly 
greater than 1+1/A 

The DSM requires three disk writes, one for 
the DSM relation clustered on surrogate and two for 
the DSM relation clustered on value since the 
modified record will usually have to move In 
addition, there is a low probability that each of 
the cluster indexes will require change This 
probability is inversely proportional to the number 
of DSM records per block (typically several 
hundred), since a cluster index requires change 
only upon overflow/underflow Thus the average 
number of writes is roughly 3 

The above comparison assumes that the 
modification must be written to disk If instead, 
battery backup is used to make the RAM buffer non- 
volatile, disk writes can be delayed by storing the 
modification in differential files in the buffer 
Writes to disk can then be done later as a periodic 
or background task 

4 2 Inserting Or Deleting A Record 

Inserting or deleting an entire record under 
the NSM requires one disk write for the block 
containing the new or old record In addition, a 
(usually single but sometimes multiple) disk write 
is required eor each inverted file of the NSM 
relation, so that the average number of disk writes 
is slightly greater than l+I 

The DSM requires two disk writes for each 
attribute of the record, one for each copy In 
addition, there is a low probability that each of 
the cluster indexes may require change, so that the 
average number of disk writes is slightly greater 
than 2*A 

If battery backup is used to make the RAW 
bufeer non-volatile, disk writes can be delayed by 
using a differential file in the buffer 

5 RETRIEVAL PBRFORMAWCB 

This Section compares the retrieval 
performance of the two storage models We first 
present performance equations and families of 
curves for several parameters for conjunctive 
retrieval patterns Then we discuss the key 
parameters causing performance differences in the 
two storage models Next we discuss the impact of 
limited buffer space for intermediate results 
Finally, we examine the potential concurrency of 
the two storage models and the impact of multiple 
disks 

5 1 Conjunctive Retrieval Patterns 

A comparison of retrieval performance is 
complicated by a dependence on the retrieval 
pattern We approach this problem by limiting our 
comparison to a generalized conjunctive retrieval 
pattern 

The comparison is also complicated by a 
dependence on the number of records r that qualify 
for each step in the retrieval process We 
approach this problem by defining performance 
comparisons as a function of r Where multiple 
steps are involved, we make the simplifying 
assumption that r is the same for each step 

We assume that the NSM has an inverted file 
index on each attribute constrained in a predicate 
This assumption favors the NSM, since it is rarely 
the case that all attributes of a relation have an 
inverted file index because of update overhead 
Thus, we are actually comparing the DSM, which 
requires no performance tuning, with a well tuned 
NSM In reality, the DSM should have an advantage 
where workload characteristics are not static 

We assume for simplicity that each relation 
has A attributes of equal size AS plus a surrogate 
of size SS, and all relations have R records 
Using an effective disk block size of BS. the 
number of blocks NB required by a NSM relation is 

N8 = ceiling(R/floor(BS/(A*AS+SS))) 

The number of blocks DB required by each DSM 
relation is 

DB = celling(R/floor(BS/(AS+SS))) 

We assume that all relations are on disk prior 
to retrieval execution and that the number of disk 
reads/writes provide a reasonable approxiration to 
retrieval performance We ignore processor costs, 
since processor speed is projected to improve 
faster than disk speed We also ignore disk 
accesses for indexes for simplicity When 
retrieving qualified records from disk, the 
required number of disk block reads is strongly 
aefected by whether the records are clustered or 
randonly distributed Clustering allows r 
qualifying records to be retrieved with the 
following number of disk block reads 

CLB(BS,AS,SS,a,r) - ceillng(r*(a*AS+SS)/BS), 

where a is the number of attributes in each storage 
relation For the NSM, a=A, and for the DSM, a=1 

For accessing records randomly distributed 
onto disk blocks, a formula for the expected number 
of disk blocks containing at least one of r records 
la given by Yao (1977) 

RMB(B.R,r) = B*(l -k 
R-R/B-i+1 

R-i+1 ). 
14 

where 8 is the total number of blocks For the 
NSM, B=NB, and for the DSM, B=DB 

The following is a generalized conjunctive 
retrieval expression 

ANS(X1, ,Xnpa) <== 
Rl(S1, ( “Vl” , , “V2 ” ) ,x1, ), 
R2(S2, ,x2, ,Sl, ,Xnpa, ), 

Rnjr( ,” Vnca” ,Sn jr-l) 
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where npa is the number of projected attributes 
needed for the final result, njr is the number of 
joined relations, and nca is the number of 
constrained attributes The Xi ‘8 and “VL”‘s can be 
spread throughout any of the relations Joins on 
surrogate Si are required between adjacent 
relations We assume the constrained attributes 
and the projected attributes are disjoint, so that 

nca + npa =< A*njr 

An equation for the number of disk blocks nb 
accessed using the NSM is 

nb = njr*RMB(NB,R,r), 

since r records are randomly distributed across 
each of the njr relations 

The DSM equivalent retrieval expression is 

ANS(X1) ,Xnpa) <== 
Rll(Sl,“Vl”),Rl2(Sl,“V2”),R13(Sl,Xl) , 
R2l(S2,X2),R22(S2,Sl),R23(S2,Xnpa) , 

. 
Rnjrl(Snjr,“Vnca”).RnjrP(Snjr,Snjr-1) 

An equation for the number of disk blocks db 
accessed for the DSM is 

db = nca*CLB(BS,AS,SS,l.r) 
+ (njr-l+npa)*RWB(DB.R,r), 

since r records are clustered in each of the nca 
relations which have a constrained value, r 
surrogates are randomly distributed over each of 
the relations involved in the njr-1 joins and the 
npa projections 

Graphs of the nb/db ratio as a function of r 
are provided in Figures 2 through 4, assuming 
typical constants to be R=lOO,OOO, BS=5,000, A=lO, 
AS=15, SS=5 We discuss these graphs in the 
following Section 

5 2 Key Parameters For Retrieval 

There are five key parameters causing 
performance differences in the two storage models 
One is full clustering on attribute values in the 
DSM vs inverted files for the NSM A second is the 
reduced size of the DSM relations A third is the 
number of attributes constrained in each retrieval 
A fourth is the number of attributes projected in 
each retrieval A fifth is the number of join 
relations in the conceptual schema 

An inherent property of the DSM is that each 
attribute relation is fully clustered on its 
attribute value Full clustering is possible if 
only a single attribute requires indexing in each 
relation If a relation has multiple attributes 
which require a cluster indexing, then clustering 
must be compromised, so that the records containing 
a particular attribute are spread over many cluster 
blocks An approximation for the number of blocks 
which must be read using multidimensional 
clustering is given by (Chang and Fu 1978) 

b p Bl-P/d 

where B is the total number of blocks containing a 
relation, d is the number of cluster attributes 
(i e , dimensions), and p is the number of 
attributes bound to a constant in a conjunctive 
retrieval predicate that are also cluster 
attributes For the DSM. d=l, so that b=l This 
function assumes that r is small enough so that all 
qualifying records fit into one block For larger 
r, CLB blocks are required If clustering were 
used for the NSM, d would typically be much larger 
than 1, so that b is quite large unless all cluster 
attributes are bound in a conjunctive retrieval 
predicate For the example used in Section 5 1, 
B=3125 for the NSM If d were only 2 and p were 1. 
b would be about 58 blocks even if r were 1 For 
this reason, inverted files usually offer higher 
performance with the NSM Inverted files do not 
cluster records on any attribute, so that RMB 
blocks are required Figure 1 illustrates the 
ratio of random to full clustered access with the 
number of blocks held constant (i e , we use B=NB 
in RWB and a=A in CLB), so that the size difference 
of the two storage models is factored out 

RWB(NB,R,r) 
CLB(BS,AS,SS,A,r) 

Note that the fluctuations in the curve are due to 
the ceiling and floor functions, having break 
points at multiples of the number of records per 
block for the NSM (32) and DSM (250) Full 
clustering has no effect for either r=l or r=R, but 
has a major effect for intermediate values of r 
The effect 0e clustering should have an 
increasingly important impact as database usage 
patterns move from single record to set retrieval 
One example of this would be retrievals with 
nonunique access keys or with ranges (Bentley 
1979) Another example would be an environment 
with workstations and database servers on local 
area networks, where communications overhead is 
high 

The reduced size of the DSM relations reduces 
the total number of blocks for each stored binary 
relation, since only one attribute is present in 
each DSM relation instead of A for the NSM Note 
that we have assumed attributes of equal length in 
our comparison Actually, the effect of reduced 
size of the DSM relations is even more important 
when the size of different attributes vary greatly, 
such as a mixture of text and formatted data in the 
same NSM relation The ratio of the number of 
blocks is approximately (i e , neglecting the 
ceiling and floor functions included earlier in NB 
and DB) 

NB 
DB- 

A*AS+SS 
AS+SS 

For the constants of Section 5 1 used In the 
graphs, this is 7 8 This provides an advantage 
for the DSM whenever an attribute must be 
exhaustively scanned Figure 1 illustrates the 
effect of size on random access 

RWB(NB,R,r) 
RWB(DB,R,r) 

This iaproves performance significantly for 
internediate to large r The RHB function is 
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almost linear in r for small r Figure 1 also 
illustrates the effect of size on clustered access 

CLB(BS,AS,SS,A,r) 
CLB(BS.AS,SS,l,r) 

This would improve performance for all but very 
small r, even if the NSR could use full clustering 
Note again the break points at multiples of the 
number of records per block for the NSM (32) and 
DSM (250) 

Figure 2 illustrates the effect of varying the 
number of projected attributes npa For low npa, 
the DSM Is worse for low r but better for 
intermediate to large r However, when wa 
approaches A, the DSM is worse for all r This is 
due to the large number of joins required for the 
DSM Figure 3 illustrates the effect of varying 
the number of constrained attributes nca The 
lower right portion of Figure 3 is unlikely to 
occur in reality, since a large nca should 
considerably limit r The effect of varying nca is 
similar to varying npa, but with some improvement 
for the DSM due to clustering Later in Section 5. 
we describe other phenomena which reduces these 
negative effects for the DSM 

Figure 4 illustrates the effect of varying the 
number of joined relations njr in the conceptual 
schema The DSM is slightly worse for low r, but 
much better for intermediate to large r As njr 
increases, the DSM improves This is due to the 
fact that joins are faster for the DSM, so that 
when the number of joins in the conceptual schema 
are increased, NSM performance decreases faster 
than for the DSM 

5 3 Effect Of Limited Buffer Space 

The above retrieval performance comparison 
assumed unlimited buffer space for intermediate 
results of database operations such as join In 
this Section, we describe the eefecta of limited 
buffer space In NSM systems, limited buffer space 
eor intermediate results often causes many 
additional disk accesses 

The join operation between two relations is 
used here as an example of the effect of limited 
buffer space for intermediate results within an 
operation If both relations are already fully 
sorted on the join attribute, then a merge join 
(Bitton et al 1983) is possible A merge join can 
be performed with a single pass on each relation, 
since it requires little buffer space for 
intermediate results If one or both of the 
relations are not sorted on the join attribute, 
then sorting is required before the merge can take 
place If the size exceeds the available buffer 
space, then a slow external sort is required NSM 
relations are seldom sorted on the join attribute, 
since only one attribute or surrogate can be used 
for sorting of each stored relation Since DSM 
relations are sorted (fully clustered relations are 
sorted) on each attribute and surrogate, fewer 
sorts are required When a sort is required. the 
reduced size of the DSM relations will more often 
allow a fast internal sort 

The DSM also has an advantage because most 
intermediate results between different operations 

are smaller For example, let us examine 
attributes which are required in the final result 
but are not involved in other operations It is 
simple with the DSM to delay access of these 
attributes until the last steps in retrieval 
processing For the NSM, it is tempting to capture 
these attributes earlier if they occur in the same 
records as attributes required ear other 
operations This is because these attributes must 
be accessed anyway and accessing them as a separate 
operation is relatively inefficient for the NSM 
The problems are that they can significantly 
increase the size of intermediate results and that 
many of them are not required in the final result 
because of later restrictions 

5 4 Potential Concurrency 

We consider three types of concurrency in 
database operations parallelism within each 
operation, and both parallelism and pipelining 
among q ultiple operations 

The potential of parallelism within each 
operation is the same for the two storage models, 
since the number of records in each DSM relation is 
the same as in the NSM 

The potential of parallelism and pipelining 
among multiple operations is greater for the DSM 
The DSM relations which correspond to the same 
conceptual schema relation are often joined on the 
surrogate For example, the DSM pattern 

ANS(Xl,X2,X3) <== 
Ri(S,Xl).Rj(S,X2),Rk(S,X3),Rl(S,”v”) 

has a potential 0e either parallelism or 
pipelining The algebra tree for this pattern 
would be 

join(sur)/project(val) 
I 

I I I I 
Ri Rj Rk select(“v”)/project(sur) I 

RI 

The select/project on Rl is performed first since 
it is relatively east due to clustering on the 
attribute value and since most of Rl would 
typically be filtered The result is a set of 
surrogates which need to be sorted to begin a merge 
join This sorting prevents pipelining the select 
result into the join operation After the sort, 
however, either a a-way parallel or a 3-stage 
pipeline merge join can begin using the DSM copy 
clustered on surrogate for Ri, Rj and Rk 

5 5 Wultiple Disks 

The DSM allows a simple scheme to exploit 
multiple disks It is based on the heuristic that 
clustering among blocks is important for the select 
operator with a constrained attribute but is not 
important for joins on surrogate which require 
random access It is also based on the heuristic 
that placement of each copy of a DSM relation on 
different disks improves reliability 

For example, suppose we have four attributes 
and four disks Each of the DSM relations 
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clustered on attribute would be placed on a 
separate disk 

disk1 disk2 disk3 disk4 
al a2 a3 a4 

This placement provides clustering within each 
attribute for efficient execution of the select 
operation, since head noveaent between blocks of an 
attribute value interval is minimized It also 
provides parallel access to different attributes 
for retrieval patterns with nca>l, effectively 
making nca-1 

Each of the DSM relations clustered on 
surrogate would be spread across three disks in 
equal surrogate ranges (Sri) 

disk1 disk2 disk3 disk4 
al erl ar2 sr3 
a2 sr3 arl sr2 
a3 ar2 sr3 srl 
a4 arl er2 ar3 

This placement provides parallel access within each 
attribute for efficient joins on surrogate Since 
the surrogate ranges are skewed so that the same 
range on different attributes are on separate 
disks, it provides parallel access of multiple 
attributes for efficient m-way merge joins on 
surrogate This is important for retrieval 
patterns with npa>l, effectively making npa=l for 
small r, which is the case where the DSH 
performance is lowest It also provides increased 
reliability from disk failure by ensuring that the 
two copies of a DSM relation are on different 
disks 

This simplified scheme assumes that the number 
of disks is the same as the number of attributes 
and that attributes are of equal size so that disks 
have equal space utilization These unrealistic 
assumptions can be relaxed at the expense of some 

parallelism Multiple attributes could be stored 
per disk for small attributes or if disks are fewer 
than attributes Alternatively, attributes could 
be spread over multiple disks for large attributes 
or if attributes are fewer than disks 

For the NSM. some gains can be obtained by 
distributing the NSM relation over multiple disks 
This is similar to the second placement above for 
the DSM However, this provides no corresponding 
advantage to the first placement above for the DSH 
where each attribute is clustered on a different 
disk, nor are there any gains in reliability 

8 SUMMARY AND FUTURE WORK 

The DSM offers simplicity Simple systems 
have several major advantages over complex systems 
One advantage is that a set of fewer and simpler 
functions, given fixed development resources, can 
be either further tuned in software or pushed 
further into hardware to improve performance This 
Is similar to the RISC (Patterson and Ditzel 1980) 
approach in general purpose architectures A 
second advantage is that many alternative cases 
with different processing strategies can less often 
be exploited, since the cases are not always 
recognized A third advantage is reduced user 

involvement, since less performance tuning is 
required by users A fourth advantage of 
simplicity is reliability 

The DSM offers more generality with simple 
extensions Section 2 described how the DSM can 
support data models which allow multivalued 
attributes, entities, multiple parent relations, 
heterogeneous records, directed graphs and a 
temporal dimension with some simple extensions 

The DSM offers increased physical data 
independence and availability 

The DSM requires from l/2 to 4 times as much 
total storage with a typical value 0e 1 4 
However, it offers improved recovery from failure 
Also, storage requirements are not as critical in 
most database systems as performance and 
reliability 

The relative update performance of the two 
storage models is dependent on whether attribute 
modifications or record inserts and deletes are 
more frequent and on the number of NSM inverted 
files In general, the DSH reduces update 
performance However, as RAM becomes cheaper, 
differential files can be used to reduce this 
difference 

The relative retrieval performance of the two 
storage models is dependent on the nurber of 
attributes involved in retrievals and the size of 
intermediate and einal results In general, the 
DSW requires more disk accesses for a large number 
of retrieval attributes and saall intermediate and 
final results, but otherwise requires fewer disk 
accesses It is not clear at this time whether 
current or future database or knowledge base 
retrieval pattern mixes favor the DSM Some 
experience with logic programming in knowledge base 
applications indicates that the average number of 
attributes on the left side of Horn clause 
predicate is 2 8 (Murakami et al 1984) 
Statistical database applications often have a 
large number of attributes per record but very few 
attributes per retrieval (Turner et al 1979, Teitel 
1977) Many of the DSM performance problems can be 
reduced using multiple disks Also, as RAM becomes 
cheaper, more of the database can be cached The 
DSW allows individual attributes to be cached 
This better utilizes cache space, since not all 
attributes of a conceptual schema relation have the 
same frequency 0e use Although more joins are 
required by the DSM, each join is faster This is 
again similar to the RISC approach where more 
instructions are generated but each is simpler and 
executes faster 

Our retrieval performance comparison assumed 
the NSM was highly tuned, so that every constrained 
or join attribute had an inverted file index This 
is unlikely in reality Thus the DSM would have an 
advantage in an environment where workload 
characteristics are not static This is again 
similar to the RISC approach where a neutral 
instruction set is provided The complex 
instructions in CISC architectures are highly tuned 
to efficiently implement a certain language and OS 
at the expense of others 
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We have examined a particular type of DSM. 
where two copies of each DSM relation are stored, 
one fully clustered on the attribute and the second 
fully clustered on the surrogate Several other 
types of DSM deserve examination One might store 
only one copy of each DSM relation, fully clustered 
on the attribute value and with an inverted file on 
the surrogate This alternative has the advantage 
of reducing storage and update requirements Such 
a comparison would make clearer the performance 
impact of the second DSM copy Delta (Shibayama et 
al 1982) uses a DSM that stores a single copy with 
primary clustering on attribute values and 
secondary clustering on surrogates Yet another 
alternative is a hybrid which stores two copies, 
one copy is a set of DSM relations fully clustered 
on attribute value and the second copy is an NSM 
relation fully clustered on the surrogate Other 
alternative DSM types are also possible and deserve 
examination In addition, our retrieval 
performance model should be enhanced to directly 
include the effects of limited buffer space, 
concurrency, index searching, multiple disks, more 
general retrieval patterns, and other phenomena A 
major purpose of this report is to encourage 
research in these areas 
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