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ABSTRACT

Research on data dependencies has experienced a revival as depen-
dency violations can reveal errors in data. Several data cleaning
systems use a DBMS to detect such violations. While DBMSs are
efficient for some kinds of data dependencies (e.g., unique con-
straints), it is likely to fall short of satisfactory performance for
more complex ones, such as order dependencies.

We present a novel system to efficiently detect violations of
denial constraints (DCs), a well-known formalism that generalizes
many kinds of data dependencies. We describe its execution model,
which operates on a compressed block of tuples at-a-time, and we
present various algorithms that take advantage of the predicate
form in theDCs to provide effective code patterns. Our experimental
evaluation includes comparisons with DBMS-based and DC-specific
approaches, real-world and synthetic data, and various kinds of
DCs. It shows that our system is up to three orders-of-magnitude
faster than the other solutions, especially for datasets with a large
number of tuples and DCs that identify a large number of violations.
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1 INTRODUCTION

A fundamental aspect of data quality is data consistency. Fan gives
a concise definition: “Data consistency refers to the validity and
integrity of data representing real-world entities” [6]. A natural
way to capture data inconsistencies is to detect violations of data
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dependencies [6]. Data dependencies express semantic properties
that data should satisfy to represent a valid state of the real-world. In
this regard, a dependency violation is a combination of values from
one or more records in the database that do not satisfy the value
relationship imposed by that dependency. A database is consistent
if it holds no violation of the dependencies defined for it.

There has been much research on reasoning, discovery, and use
of data dependencies [4, 6, 7]. An important question is whether a
dependency formalism is able to capture the inconsistencies com-
monly found in production data, i.e., its expressiveness. Early work
has proposed to capture inconsistencies of traditional dependencies,
such as functional dependencies and inclusion dependencies [3];
and extensions of such dependencies have been presented to over-
come expressiveness limitations [7]. These extensions include par-
tial, conditional, and approximate versions of the traditional de-
pendencies, which can capture exceptions or errors in the data [7].
Recent work has proposed to detect (and possibly repair) violations
of different types of dependencies at once [4, 16]. Denial constraints
(DCs) align with such a holistic view naturally. The formalism is
one of the most general forms of dependency discussed in the liter-
ature since it generalizes several different types of dependencies
[4, 6, 14]. A DC expresses a set of relational predicates that specify
constraints on the combination of column values. Any tuple, or set
of tuples, that disagrees with these constraints is a DC violation
that reflects inconsistencies in the database.

The detection of DC violations is an expensive operation [4, 16].
DC-based data cleaning either rely on DBMSs [16] or implement a
module [4] for this task. Asmany legitimate DCs express constraints
on pairs of tuples, detecting their violations exhibits a quadratic time
complexity in the number of tuples [4]. This complexity is perhaps
the reason the experimental evaluations of DC-based systems are
limited to simple dependencies (mainly functional dependencies)
or small datasets. In many real-world scenarios, however, data
cleaning has to deal with large datasets and complex DCs.

In this work, we present our DC violation detector VioFinder.
There are three central ideas in its design: (i) Specialized data struc-
tures that reduce memory overheads and enable the algorithms in
VioFinder to perform fast operations; (ii) A customizable operator
that enables us to use effective algorithms to deal with complex
DC predicates; and, (iii) An execution model that avoids the ma-
terialization of large intermediates and allows optimizations inter
operators. Our experimental evaluation shows that VioFinder de-
livers efficient performance for several different kinds of DCs.

The remainder of this paper is as follows. In Section 2, we discuss
the background and related work. In Section 3, we introduce the
design of VioFinder, and in Section 4, its several algorithms. Then,
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in Section 5, we present our experimental results: We compare
VioFinder with a DC-based tool and several DBMSs and demon-
strate that our tool is orders of magnitude faster than the competi-
tors in many cases. In Section 6, we present our final thoughts.

2 BACKGROUND AND RELATEDWORK

In this section, we first present the fundamentals to represent data
dependencies and data inconsistencies. Then, we review baseline
approaches for the detection of data inconsistencies.

2.1 Denial constraints

Denial constraints (DCs) generalize many kinds of dependencies,
and can express complex business rules [6, 14]. In this work, we
focus on DCs representing unique constraints, functional depen-
dencies, order dependencies, and dependencies that include com-
parisons of two tuples across two different columns—these types
of dependencies are some of the most common in practice [6].

DCs use relationships between predicates to specify inconsistent
states of column values. Let r denote a relation with schema R and 𝑛
tuples; t a tuple of r;A andB columns ofR; andO = {=,≠, <, ≤, >, ≥}
a set of comparison operators of the database. A predicate p has the
form t.A o t′.B:A,B ∈ R; t, t′ ∈ r; and o ∈ O. Predicates can compare
two tuples for the same column, i.e., (A = B); compare column
values to constants, or use many tuples at a time. Nonetheless, we
need only DCs containing predicates without constants, on two
different tuples, as they suffice to express the types of dependencies
in this work. We express DCs as follows:

𝜑 : ∀t, t′ ∈ r,¬(p1 ∧ . . . ∧ p𝑚),
We can translate each dependency into a set of predicates that

express their semantics. As an example, consider the relation hours
in Table 1. We can represent an unique constraint of the column
combination (EmpID, ProjID) on hours with the following DC (the
identifiers t, t′ are omitted from now on):

𝜑1 : ¬(t.EmpID = t′.EmpID ∧ t.ProjID = t′.ProjID)
For a relation to be consistent with a DC 𝜑 , there cannot exist

any pair of tuples such that the conjunction of the predicates of 𝜑
is true. Consider the following constraint: For any two employees
with the same role, the one who has worked more hours should not
receive a lower bonus than the other. This constraint is expressed
as a DC as follows:

𝜑2 : ¬(t.Role = t′.Role ∧ t.Hours > t′.Hours∧
t.Bonus < t′.Bonus)

In Table 1, tuples t1 and t2 share the same value of Role. Between
those two, tuple t1 has the highest value of Hours, so it should not
have the lowest value of Bonus. That means that the pair of tuples
(t1, t2) is a violation of 𝜑2, and hence Table 1 is inconsistent.

2.2 Detection of DC violations

A naive approach to detect the violations of a DC is to simply
evaluate its conjunction of predicates for each pair of tuples. If
the evaluation is true, then we add that pair of tuples to the result.
This approach exhibits a quadratic time complexity in the number
of records, which can be computationally prohibitive for large
relations. A straightforward alternative is to use SQL with the

Table 1: An instance of the relation hours.

EmpID ProjID Role Hours Bonus

t1 E1 P1 Developer 4 $2000
t2 E2 P1 Developer 2 $3000
t3 E3 P1 Developer 4 $4000
t4 E1 P2 DBA 4 $4000

query processing capabilities of DBMSs. However, this might not
eliminate the quadratic complexity either, as we discuss next.

The predicates of DCs compare the values of columns between
two tuples of the same table. Therefore, a simple self-join query
using the predicates of the DC in the where clause exposes the
violations. The following example shows a SQL query that finds
the EmpID’s of tuple pairs that violate the DC 𝜑2:

1 select t.EmpID, t′.EmpID
2 from hours t, hours t′

3 where t.Role = t′.Role
4 and t.Hours > t′.Hours
5 and t.Bonus < t′.Bonus;

Related work has reported that self-joins (and mainly inequality
self-joins) have received little attention in commercial DBMSs [11].
Indeed, our experiments with three different DBMSs exposed two
main issues: (i) excessive memory requirements; and (ii) use of
ineffective join algorithms. Some DBMSs run out of memory or
took more than one hour to execute queries for common functional
dependencies on samples with 200𝐾 tuples. Besides, most DBMSs
rely on nested-loop approaches for self-joins with range predicates,
which may result in extremely long runtimes.

Indices might not help either: some conditions to detect viola-
tions require validating all the records with table scans. The DBMS
may not use the indices in the query plans, and the few cases that
indices are chosen do not pay off for the costs of index creation. One
of the reasons for the poor performance of DBMSs is the expected
cost to materialize self-joins, which is quadratic in the number of
records in the worst case [1]. This cost is evident when DCs require
high-cardinality predicates, such as a range predicate for an order
dependency with many qualifying tuples. We refer to [15] for a
study related to self-join cardinality estimation.

2.3 Related work

The underlying violation detectionmechanism of several data clean-
ing tools is a traditional DBMS [5, 8, 16]. These tools inherit the
performance issues discussed earlier, and their evaluation exper-
iments used small datasets or only simple dependencies, such as
functional dependencies. Implementing a dedicated DC violation
module is an alternative, for instance, Chu et al. do so using pair-
wise comparisons [4]. However, their experimental evaluation also
used only a small number of records (i.e., up to 100𝐾 tuples).

The issue of scalability in data cleaning is studied by Khayyat et
al. [10]. The authors introduce a framework to perform violation
detection and database repairing in distributed settings. The core
idea is to translate data cleaning rules (expressed in UDF-based
form) into jobs that are executed on top of parallel data processing



frameworks. Although our approach focuses on centralized envi-
ronments, it is able to efficiently detect violations for very large
datasets. Nonetheless, extending our approach for distributed data
processing environments is an interesting topic for future work.

Closer to our work is the DC violation detection component of
Hydra – a state-of-the-art algorithm for DC discovery [2]. Efficient
detection of DC violations is a central part of the algorithm, so the
authors have proposed novel techniques to handle the problem.
There are two main ideas in this component: The use of specialized
data structures; and the customization of algorithms for different
predicate types.While these ideas have inspired our project, theway
VioFinder organizes and operates on its data structures is different
from Hydra. For example, Hydra uses the IEJoin algorithm, which
has been shown to deliver efficient performance for self-joins based
on range predicates [11]. Our system, in turn, uses a novel sort-
merge approach that can be even faster than IEJoin. We also use
different approaches for other types of predicate, as discussed later
in this paper. We use Hydra and IEJoin as the main baselines in
our experimental evaluation.

3 THE VIOFINDER SYSTEM

This section introduces principles that enable VioFinder to avoid
performance issues, such as materialization overheads and nested-
loop joins. As a result of these principles, VioFinder can deliver
robust performance for different types of data dependencies.

3.1 Cluster, cluster pairs, and partitions

VioFinder uses specialized data structures to represent enumera-
tions of pairs of tuples compactly. We define these structures first,
as they are key to understanding how VioFinderworks. A cluster 𝑐
is a set of tuple identifiers (the tuple position within the table). A
cluster pair is an ordered pair (𝑐1, 𝑐2) that represents the set of all
pairs of tuples (t, t′), such that t ∈ 𝑐1, t′ ∈ 𝑐2 and t ≠ t′. For in-
stance, the cluster pair ({t1}, {t1, t2, t3}) represents the set of pairs
of tuples (t1, t2), (t1, t3). A partition L is any set of cluster pairs. Par-
titions consume much less memory than exhaustive enumerations
of pairs of tuples. For a relation r with 𝑛 tuples, the cluster pair
({t1, . . . , t𝑛}, {t1, . . . , t𝑛}) represents the whole Cartesian product
r × r using only 2𝑛 integers, whereas the equivalent enumeration
of pairs of tuples requires 𝑛(𝑛 − 1) pairs of integers to do so.

3.2 Refinement of columns and partitions

A fundamental operation of VioFinder is the refinement of columns.
A column refiner takes as input one predicate and returns partitions
containing cluster pairs that represent every pair of tuples that is
true for the input predicate. As an example, consider the refinement
of columns for the predicate t.Role = t′.Role and the records in
Table 1. The refinement gives us a partitionwith a single cluster pair:
[({t1, t2, t3}, {t1, t2, t3})]—the cluster pair ({t4}, {t4}) is discarded
since it does not produce any pair of different tuples. The main
primitive here is a full table scan for each column of the predicate. In
Section 4, we describe how to implement the refinement of columns
for the different comparison operators. For now, we assume column
refiners to be “black-boxes.” We assume a random sequence of
refinements—we discuss the ordering of refinements in Section 3.5.

A second fundamental operation of VioFinder is the refinement
of partitions. Each partition refiner takes as input a predicate and a
partition and produces new partitions containing cluster pairs with
every pair of tuples that is true for the input predicate, and of course,
true for the predicates in the past refinements that produced the
input partition. As an example, consider the partition from pred-
icate t.Role = t′.Role described earlier: [({t1, t2, t3}, {t1, t2, t3})].
Pushing this partition into the refinement of partitions for the pred-
icate t.Hours > t′.Hours produces the partition: [({t1, t3}, {t2})].
If we push this last partition further into the refinement of parti-
tions for the predicate t.Bonus < t′.Bonus, we obtain the partition
[({t1}, {t2})]. This partition represents the violations of DC 𝜑2.

The refinement of partitions is similar to the refinement of
columns. However, the former requires fetching only the values of
columns of the tuples in the partitions, instead of entire columns
as the latter requires. Another difference is in the type of optimiza-
tions we can use within each kind of refinement—we describe these
optimizations in Section 4.

3.3 Cluster indexes

A basic step in the refinement of columns is the creation of clus-
ter indexes on the columns of predicates. Let 𝑉 be the set of val-
ues in the domain of column A. For every value 𝑣 ∈ 𝑉 , we as-
sign a cluster 𝑐 with all tuples having 𝑣 as the value in column A.
The cluster index HA is a hash map where each entry maps a
value 𝑣 ∈ 𝑉 into its cluster 𝑐 . For instance, the cluster indexHRole
is: [⟨“Developer”, {t1, t2, t3}⟩, ⟨“DBA”, {t4}⟩]. Similarly, the refine-
ment of partitions requires the creation of conditioned cluster in-
dexesHA,𝑐 . We fetch column values of the tuples in the cluster then
create a hash map such that each distinct value fetched is mapped
into a cluster with all tuples having that value. For example, the
conditioned cluster indexHHours,{t1,t2,t3 } is: [⟨2, {t2}⟩, ⟨4, {t1, t3}⟩].

We considered three facts to choose an implementation for clus-
ters, which are essentially sets of integers. First, the size of cluster
indexes grows linearly with the number of distinct values of a col-
umn since these values are mapped to one cluster each. Second,
refinement algorithms produce partitions containing many cluster
pairs. Third, these algorithms have to compute unions or differ-
ences of clusters. These facts led us to employ Roaring (compressed)
bitmaps, a hybrid data structure that combines bitmaps with sorted
arrays to achieve good compression rates [13]. As a result, we can
store large numbers of clusters with many integers using less mem-
ory. Besides, Roaring bitmaps perform fast unions and differences
as bitwise OR and AND NOT operations, which are, in many cases,
even faster than non-compressed counterparts. For algorithmic
details on Roaring bitmaps, we refer the reader to [13].

3.4 Partition pipelines

VioFinder assigns a refiner to each DC predicate based on the
predicate’s form and refiners connect through a partition pipeline.
VioFinder keeps each column of the dataset as an in-memory
array so that refiners can readily fetch the values of the columns in
their predicates. Partition pipelines work as push-based iterations.
Figure 1 illustrates a pipeline with three refiners. Each partition is
linked to either a next refiner or to the output. In the former case,
the current refiner produces a new partition and pushes it to the



next refiner, which immediately starts consuming the cluster pairs
one by one. In the latter case, no more refinement is necessary,
so partitions are pushed to the output. At this point, the concrete
violations are materialized.

Dataset

refinerp2refinerp1 refinerp3 output

[({. . .}, {. . .}),
({. . .}, {. . .}),
({. . .}, {. . .})]

...
[({. . .}, {. . .})]

Partitions

VioFinder

¬(p1 ∧ p2 ∧ p3)

[({. . .}, {. . .}),
({. . .}, {. . .})]

...
[({. . .}, {. . .}),
({. . .}, {. . .})]

Partitions

[({. . .}, {. . .})]
...

[({. . .}, {. . .}),
({. . .}, {. . .}),
({. . .}, {. . .})]

Partitions

t1, t2

...
t2, t3
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Figure 1: Example of a partition pipeline.

The partition pipeline has the following properties:
Customizable refinement. Conceptually, refiners implement a
produce/consume interface so they can use different refinement im-
plementations and optimizations at different stages of the pipeline.
Instead of using a general-purpose refinement strategy (e.g., nested
loop), VioFinder uses different refinement strategies depending on
the form of each predicate.
Controlled intermediates. Some refinementsmight produce large
intermediates. Thus, our refinement algorithms check the size of
current partitions before pushing new tuples into the pipeline to
avoid excessive resource utilization. As a result, refinements can
use logical optimizations that work for multiple tuples at a time,
while avoiding materializing large intermediates.
Late materialization. VioFinder does not need to materialize re-
sults until after the last refinement in the pipeline. Column refiners
fetch only values of the columns in its predicates, and partition refin-
ers do so only for tuples from previous refinements. Such a scheme
maximizes the use of memory bandwidth: only the necessary parts
of relevant tuples are fetched in each stage of the pipeline.
Cluster pair processing. The actual refinement is computed at
the level of cluster pairs with four primary steps:

(a) Iteration over the tuples in each cluster—a tight loop suffices
to iterate entire clusters fast, because they usually have far
fewer tuples than the relation.

(b) Fetch of column values—as already mentioned, only the col-
umn values that are relevant for a refinement are fetched.

(c) Build of auxiliary data structures—the auxiliary data struc-
tures in refinements usually have a low memory footprint
since they grow with the size of clusters.

(d) Refinement logic—some forms of partitions enable refine-
ments to skip tuple fetches, which improves performance.

The steps above also apply to column refiners, with the difference
that entire columns are fetched in Steps (a) and (b).

3.5 Order of refinements

The order of the DC predicates (and, therefore, refinements) has
a significant impact on performance. Choosing a poor predicate
order might produce large intermediate partitions, which causes
significant overhead in intermediate refinements. We choose the
order of predicates based on predicate selectivity. The selectivity of
a predicate is the fraction of pairs of tuples in a relation that satisfy
that predicate. We estimate approximate selectivities using a small
random sample of pairs of tuples without replacement, and then
we order the predicates from most selective to least selective. This
technique is also used in Hydra [2]; however, the algorithm uses a
larger sample. For every tuple in the dataset,Hydra samples a small
number of other tuples to form pair of tuples. In our experiments,
we use a small sample bounded to 1𝑀 elements, as it consistently
produced the same predicate order as Hydra’s samples, and it was
faster to estimate. We refer to [9] for a discussion on selectivity
estimation, such a discussion is beyond the scope of the paper.

4 REFINEMENT ALGORITHMS

DCs express predicates of different forms to support a wide range
of data dependencies. These predicates include comparison within
a single column or across two different columns and use different
operators. In the following, we present refinement algorithms that
take the predicate form into account for efficiency. For convenience,
we present our algorithms as equijoins with the equal to operator =,
antijoins with the not equal to operator ≠, and non-equijoins with
range operators {<, ≤, >, ≥}. Most of the algorithms handle a single
predicate at a time. For better performance, one of the algorithms
handles multiple predicates at a time.

4.1 Equijoins

The most basic form of refinement is the refinement of columns
for equality predicates on a single column, such as t.A = t′.A. The
first step is to build a cluster index HA. Each cluster 𝑐 of HA is
precisely a set of tuples having the same value 𝑣 , so we can use
cluster pairs in the form of reflexive relations (𝑐, 𝑐) to represent all
pairs of tuples that have the same value 𝑣 in column A. Clusters
with only one tuple are ignored, because they cannot produce pairs
of distinct tuples. We insert each valid cluster pair (𝑐, 𝑐) into the
output partition L and check its size. If the number of cluster pairs
in the partition L exceeds a threshold, we stop iterating the clusters
in the cluster indexHA, and push the partition L into the next level
of the pipeline. The next call to the refiner skips the clusters pairs
ofHA that have already been processed.

Some refinements might produce large intermediate results. Af-
ter all, refinements are equivalent to the self-joins in the predicates
of a DC, which often join non-key columns. Nonetheless, we can
avoid the full materialization of large intermediates by controlling
the size of partitions currently being processed, as in our first re-
finement algorithm. Refinements stop producing new cluster pairs
as soon as the number of cluster pairs in a partition exceeds a
threshold, or when it has no more pairs of tuples to compute. In the
former case, the state of the refinement is saved so that the next
call to it starts producing new cluster pairs from where it stopped
earlier. For simplicity, we do not elaborate on these procedures for
the remainder refinement algorithms.



Equality predicates on single columns are very common in DCs.
For instance, DCs use them to represent unique constraints or the
left-hand side of functional dependencies. Compared to other forms
of predicates, equality predicates have higher selectivity so they
usually come first in the refinement pipeline. Also, partitions can
only reduce in size as they go through the pipeline stages for sets of
predicates with this form. For instance, the partition for predicate
t.Role = t′.Role is [({t1, t2, t3}, {t1, t2, t3})], and the partition for
the conjunction of predicates t.Role = t′.Role∧ t.Hours = t′.Hours
is [({t1, t3}, {t1, t3})]. We take advantage of this fact with a code
pattern that reduces clusters as fast as possible and, therefore, re-
duces the materialization of intermediate partitions.

Algorithm 1 is a special case of refinement that handles multiple
predicates at once, namely multiple equality predicates on single
columns. In the initial call refineCluster(𝑐r, A1, L) in Line 12
we build a cluster index with every tuple in the table. When we
call refineCluster(𝑐 , A𝑖 , L) for 𝑖 > 1, every tuple in 𝑐 has the same
combination of values in columns A1, . . . ,A𝑖−1. As a consequence,
the tuples in the clusters 𝑐 ′ of the conditioned cluster indexHA𝑖 ,𝑐

(Line 2) have the same combination of values in columns A1, . . . ,A𝑖 .
The base case occurs when there are no further predicates to check,
in which case we insert cluster pair (𝑐, 𝑐) into the output partition
L (Line 9).

Algorithm 1: Refinement of columns for predicate se-
quence of the form p1 : t.A1 = t′.A1, . . . , p𝑖 : t.Ai = t′.Ai
1 Function refineCluster(𝑐 , A𝑖 , L)
2 letHA𝑖 ,𝑐 be a conditioned cluster index
3 let C′ be the set of clusters inHA𝑖 ,𝑐

4 foreach 𝑐 ′ ∈ C′ do
5 if 𝑐 ′.𝑠𝑖𝑧𝑒 > 1 then
6 if there exists a predicate p𝑖+1 then
7 refineCluster(𝑐 ′,A𝑖+1,L)
8 else

9 Insert cluster pair (𝑐 ′, 𝑐 ′) into L

10 initialize an empty partition L
11 initialize a cluster 𝑐r with every tuple of table r
12 refineCluster(𝑐r, A1, L)
13 return L

The refinement of columns for equality predicates on two dif-
ferent columns, t.A = t′.B, is similar to traditional hash joins. We
first build cluster indexesHA andHB. The cluster indexHA acts
as the “build input”, whereas cluster indexHB acts as the “probe
input”—we assume column A to produce fewer entries than column
B. We iterate the values 𝑣 in the cluster index HA and, for each
of those, we probe cluster indexHB. If cluster indexHB contains
the value 𝑣 , then we combine the cluster assigned to the value 𝑣 in
HA, denoted 𝑐A, with the cluster assigned to the value 𝑣 inHB, de-
noted 𝑐B. The cluster pair (𝑐A, 𝑐B) indicates that every tuple t ∈ cA
have the same value in column A, which is equal to the value of
every tuple t′ ∈ cB in column B.

Algorithm 2 shows the refinement of partitions for an equality
predicate on two (not necessarily different) columns. We iterate

each cluster pair (𝑐1, 𝑐2) in the input partition, for which we retrieve
two conditioned cluster indexes:HA,𝑐1 andHB,𝑐2 . The remainder of
the algorithm is analogous to the refinement of columns for equality
predicates on two different columns. The difference is that build-
inputs are conditioned cluster indexesHA,𝑐1 , whereas probe-inputs
are conditioned cluster indexesHB,𝑐2 .

Algorithm 2: Refinement of partition L𝑖𝑛 for predicates of
the form t.A = t′.B (A and B can be equal)
1 initialize an empty partition L𝑜𝑢𝑡
2 foreach cluster pair (𝑐1, 𝑐2) ∈ L𝑖𝑛 do

3 letHA,𝑐1 andHB,𝑐2 be conditioned cluster indexes
4 let 𝑉 be the set of values inHA,𝑐1
5 foreach 𝑣 ∈ 𝑉 do

6 𝑐B ←HB (𝑣)
7 if 𝑐B is not null then
8 𝑐A ←HA (𝑣)
9 Insert cluster pair (𝑐A, 𝑐B) into L𝑜𝑢𝑡

10 return L𝑜𝑢𝑡

The algorithms we have presented so far take linear time in the
number of tuples. In short, we fetch column values, build cluster
indexes using hashing, and iterate the entries in these clusters to
emit partitions.

4.2 Antijoins

The following refinement of columns detects pairs of tuples having
different values of a single column, i.e., predicates of the form t.A ≠

t′.A. We need to insert cluster pairs (𝑐, 𝑐 ′) into the result partition:
Cluster 𝑐 is each cluster of the cluster indexHA; and cluster 𝑐 ′ is
the relative complement of cluster 𝑐 in a cluster with all tuples in
the table 𝑐r— also termed set difference 𝑐 ′ ← 𝑐r \ 𝑐 .

We do as follows to detect pairs of tuples having different values
for two different columns, t.A ≠ t′.B. Given an entry ⟨𝑣, 𝑐A⟩ in the
cluster indexHA, we check whether there exists an entry ⟨𝑣, 𝑐B⟩
in the cluster indexHB. If so, we insert a cluster pair (𝑐A, 𝑐 ′) into
the result partition, where 𝑐 ′ ← 𝑐r \ 𝑐B. Otherwise, the value in
column A of the tuples in 𝑐A is different from the values in column
B of every tuple in the table. In this case, we can insert a cluster
(𝑐A, 𝑐r) into the result.

The refinement of partitions for antijoin predicates is given as
Algorithm 3. For each cluster pair (𝑐1, 𝑐2) in the input partition L𝑖𝑛 ,
we retrieve the conditioned cluster indexesHA,𝑐1 andHB,𝑐2 . Then,
for each value 𝑣 (with assigned cluster 𝑐A) of cluster index HA,𝑐1
we search for a cluster 𝑐B in the cluster indexHB,𝑐2 . In a successful
search, we use the relative complement of cluster 𝑐B in the cluster
𝑐2 to form the result cluster pair with 𝑐A (Lines 8–10). Otherwise,
cluster 𝑐2 has no tuple whose value in B is 𝑣 , so it can be directly
combined with cluster 𝑐A in Line 12.

About time complexity, building, and probing cluster indexes
takes linear time in the number of tuples. Also, the algorithms
for antijoin predicates have the additional cost of set difference
operations (e.g., Line 9 in Algorithm 3). The selectivity of these
types of predicates are usually low, so their respective refinements



Algorithm 3: Refinement of partition L𝑖𝑛 for predicates of
the form t.A ≠ t′.B (A and B can be equal)
1 initialize an empty partition L𝑜𝑢𝑡
2 foreach cluster pair (𝑐1, 𝑐2) ∈ L𝑖𝑛 do

3 letHA,𝑐1 andHB,𝑐2 be conditioned cluster indexes
4 let 𝑉 be the set of values inHA,𝑐1
5 foreach 𝑣 ∈ 𝑉 do

6 𝑐A ←HA (𝑣)
7 𝑐B ←HB (𝑣)
8 if 𝑐B is not null then
9 𝑐 ′ ← 𝑐2 \ 𝑐B

10 Insert cluster pair (𝑐A, 𝑐 ′) into L𝑜𝑢𝑡
11 else

12 Insert cluster pair (𝑐A, 𝑐2) into L𝑜𝑢𝑡

13 return L𝑜𝑢𝑡

might produce large intermediate partitions. In practice, these types
of refinement come last in the pipeline, at a point where most pairs
of tuples have already been filtered out.

4.3 Non-equijoins with range operators

Let us next consider the refinement of columns for range predicates
of the form t.A > t′.A. We build the cluster indexHA and sort its
entries in ascending order according to the keys (the distinct values
of the column). For clarity, we denote such sortedmapswith ®HA. For
the sorted entries ⟨𝑣1, 𝑐1⟩, . . . , ⟨𝑣𝑖 , 𝑐𝑖 ⟩ ∈ ®HA we have the following:
Every tuple in the cluster 𝑐𝑖 has a value 𝑣𝑖 that is greater than
the values 𝑣 𝑗 in the tuples of clusters 𝑐 𝑗 , for all 𝑗 < 𝑖 . For each
cluster 𝑐𝑖 , we form a cluster pair (𝑐𝑖 , 𝑐𝑖 ′) such that 𝑐𝑖 ′ =

⋃𝑖−1
𝑗=1 𝑐 𝑗 .

At each iteration 𝑖 , we compute the cluster 𝑐𝑖 ′ using a copy of the
last cluster 𝑐𝑖−1 ′ and only one union operation. Finally, we insert
each cluster pair (𝑐𝑖 , 𝑐𝑖 ′) into the output partition L. For predicates
of the form t.A >= t′.A we must include 𝑐𝑖 into the right-hand
side of the cluster pair, so we compute clusters 𝑐𝑖 ′ =

⋃𝑖
𝑗=1 𝑐 𝑗 . The

algorithm is symmetric for predicates of the form t.A < t′.A and
t.A ≤ t′.A with the entries of the cluster indexHA in descending
order according to the keys. In the worst case, the values of column
A are all distinct; thus, cluster indexes have 𝑛 entries. In this case,
the time complexity is dominated by the time spent to sort these 𝑛
entries plus the time to perform 𝑛 union operations.

The remaining of the refinement algorithms are based on the sort-
merge paradigm. The general idea is to iterate sorted cluster indexes
to find and build matching cluster pairs from previous iterations
incrementally. Algorithm 4 shows the refinement of columns for
a predicate on two different columns, such as t.A > t′.B. After
building sorted cluster indexes ®HA and ®HB in Line 2, we filter their
values out for those entries that cannot form cluster pairs that
satisfy the predicate. That is, we remove from cluster index ®HA
the entries with values that are smaller than the smallest value of
cluster index ®HB, and from ®HB the entries with values that are
greater than the greatest value of ®HA. If the cluster indexes ®HA and
®HB are empty at this point, there are no matching cluster pairs so
the algorithm returns an empty partition. Otherwise, the first entry

⟨𝑣high, 𝑐high⟩ of cluster index ®HA has a value that is strictly greater
than the value of the first entry ⟨𝑣low, 𝑐low⟩ of cluster index ®HB, so
we form the first cluster pair that satisfy the predicate (Lines 4– 7).
Such cluster pairs are kept in variables 𝑝𝑎𝑖𝑟 that are updated as we
find new matching clusters.

Algorithm 4: Refinement of columns for predicate of the
form t.A > t′.B
1 initialize an empty partition L

2 let ®HA and ®HB be sorted cluster indexes
3 remove from ®HA and ®HB those entries that do not produce

cluster pairs for t.A > t′.B

4 ⟨𝑣high, 𝑐high⟩ ← ®HA.next()
5 ⟨𝑣low, 𝑐low⟩ ← ®HB.next()
6 𝑝𝑎𝑖𝑟 ← (𝑐high, 𝑐low)
7 Insert 𝑝𝑎𝑖𝑟 into L

8 if
®HA.hasNext() or ®HB.hasNext() then

9 while
®HB.hasNext() do

10 ⟨𝑣low, 𝑐low⟩ ← ®HB.next()
11 if 𝑣high > 𝑣low then

12 𝑝𝑎𝑖𝑟 .rhs← 𝑝𝑎𝑖𝑟 .rhs ∪ 𝑐low
13 else

14 while
®HA.hasNext() do

15 ⟨𝑣high, 𝑐high⟩ ← ®HA.next()
16 if 𝑣high <= 𝑣low then

17 𝑝𝑎𝑖𝑟 .lhs← 𝑝𝑎𝑖𝑟 .lhs ∪ 𝑐high
18 else

19 𝑐temp ← a copy of 𝑝𝑎𝑖𝑟 ..rhs
20 𝑐low ← 𝑐temp ∪ 𝑐low
21 𝑝𝑎𝑖𝑟 ← (𝑐high, 𝑐low)
22 Insert 𝑝𝑎𝑖𝑟 into L
23 break

24 while
®HA.hasNext() do

25 ⟨𝑣high, 𝑐high⟩ ← ®HA.next()
26 𝑝𝑎𝑖𝑟 .lhs← 𝑝𝑎𝑖𝑟 .lhs ∪ 𝑐high

27 return L

The merging part of the algorithm begins in Line 9. We take the
value 𝑣high used to form the current 𝑝𝑎𝑖𝑟 and find matching entries
⟨𝑣low, 𝑐low⟩ in the cluster index ®HB that also satisfy the predicate.
Then, we update the right-hand side of 𝑝𝑎𝑖𝑟 to include the tuples
of clusters 𝑐low (Lines 9-12). Whenever we find a non-matching
entry, we update the left-hand side of 𝑝𝑎𝑖𝑟 (Lines 14–17). That is
because there might be entries in ®HA with values 𝑣high that, despite
being smaller than the current 𝑣low, are greater than the values
𝑣low previously used in Lines 9-12. By doing this, we keep as much
tuples as possible within the the same cluster pair. We find the
starting point of a new matching cluster pair whenever we find a
new entry ⟨𝑣high, 𝑐high⟩ in ®HA with a value 𝑣high greater than the
current 𝑣low (the else clause in Line 18). At this point, the left-hand



side of the new cluster pair is 𝑐high and its right-hand side is the
union of the tuples in the current 𝑐low with all tuples in the 𝑐low
from previous iterations. In other words, the right-hand side of 𝑝𝑎𝑖𝑟
can only expand. We repeat the while loop in Line 9 until there is
no entry in ®HB to visit. Finally, we perform a last update in the
left-hand side of the last 𝑝𝑎𝑖𝑟 with any left entry of cluster index
®HA (Lines 24–26).
The time complexity for Algorithm 4 is given by the time spent

to build and sort cluster indexes, plus the time spent in merging
these clusters. While the merge loop runs in O(2𝑛) (assuming 𝑛
entries in each cluster index), performing cluster unions and copies
depends on the internal states of their bitmaps.

Algorithm 4 requires minor changes to work with operator ≥,
and it is symmetric for operators in {<, ≤}, with cluster indexes
®HA and ®HB sorted in descending order of keys. The refinement
of partitions for predicates with operators in {>, ≥, <, ≤} and two
(not necessarily different) columns also follows Algorithm 4 with
minor changes. The starting point is building conditioned cluster
indexes for each cluster pair in the input partition. The remainder
of the algorithm is the same as described above.

4.4 Cached cluster indexes

The partitions produced by refinements of range predicates, with
operators in {>, ≥, <, ≤}, have a great deal of redundancy across
the right-hand sides of their cluster pairs. As an example, observe
the output of the refinement of columns for predicate t.Bonus <
t′.Bonus: [({t2}, {t1}), ({t3, t4}, {t1, t2})]. If we were to compute
conditioned cluster indexes for cluster {t1} and {t1, t2} from scratch,
we would require to fetch tuple t1 twice instead of just once. For
larger clusters, the waste would be high, and the running time
would increase dramatically. To avoid unnecessary tuple fetches,
VioFinder employs a simple but efficient cache mechanism.

The cache works for the refinement of partitions holding incre-
mental redundancy on the right-hand side of their cluster pairs.
Such partitions derive from refinements (of both columns or parti-
tions) that use predicates with operators in {>, ≥, <, ≤}. VioFinder
maintains a conditioned cluster indexHA,𝑐cache , where cluster 𝑐cache
is a set of tuples with its values of column A already fetched. As-
sume we are about to build a conditioned cluster indexHA,𝑐 . We
compute the relative difference of 𝑐cache in 𝑐 , that is, 𝑐diff = 𝑐 \𝑐cache.
If this result is non-empty, then we already have a portion of the
cluster index HA,𝑐 as the cluster index HA,𝑐cache . In this case, we
fetch the remaining values of column A we need: the tuples of 𝑐diff.
We use these values to update HA,𝑐cache . At this point, the cluster
indexHA,𝑐cache holds the entries required forHA,𝑐 , so that we can
proceed with the remaining parts of the refinement. On the other
hand, an empty result of the relative difference means that the se-
quence of redundant tuple has stopped, so we can no longer use the
previousHA,𝑐cache . In this case, we must build a new cluster index
HA,𝑐cache from scratch.

5 EXPERIMENTAL EVALUATION

We ran several experiments with VioFinder, three DBMSs, and
a system tailored for DCs. In this section, we compare the perfor-
mance of these systems and analyze the design choices of VioFinder.

5.1 Experimental setup

Datasets andDCs.Weused three datasets and eight DCs, as shown
in Table 2. The Tax dataset is a synthetic compilation of tax-records
of US individuals. We generated several Tax instances (with up to
100𝑀 records) using the data generator from [7]. The DCs 𝜑3–𝜑5
are defined for the single table of the Tax dataset. The TPC-H dataset
is extracted from the synthetic TPC-H benchmark1. We used a scale
factor of ten to produce TPC-H instances with up to 60𝑀 records.
The DC 𝜑6 is defined for the denormalization of tables lineitem and
orders, and the DCs𝜑7 and𝜑8 are defined for the lineitem table alone.
The IMDB dataset is extracted from the real-world movie dataset 2
described in [12]. The DC 𝜑9 is defined for the denormalization
(with up to 2.5𝑀 records) of tables title and kind_type, and the DC
𝜑10 is defined for the denormalization (with up to 5.8𝑀 records) of
tables cast_info, title, aka_name, name, role_type, and char_name.
These DCs were designed to cover various types of dependencies:
Unique constraints (𝜑3, and 𝜑10), functional dependencies (𝜑4 and
𝜑9), order dependencies (𝜑7), and other dependencies with complex
relationships (𝜑5, 𝜑6, and 𝜑8). Although some of them may not
hold in production, they have complex predicate structures that
challenge the performance of the evaluated systems.

Table 2: Datasets and denial constraints for experiments.

Dataset DC

Tax 𝜑3 : ¬(t.AreaCode = t′.AreaCode ∧ t.Phone = t′.Phone)

Tax 𝜑4 : ¬(t.State = t′.State ∧ t.HasChild = t′.HasChild
∧t.ChildExemp ≠ t′.ChildExemp)

Tax 𝜑5 : ¬(t.State = t′.State ∧ t.Salary > t′.Salary
∧t.Rate < t′.Rate)

TPC-H 𝜑6 : ¬(t.Customer = t′.Supplier ∧ t.Supplier = t′.Customer)

TPC-H 𝜑7 : ¬(t.Extended_price > t′.Extended_price
∧t.Discount < t′.Discount)

TPC-H 𝜑8 : ¬(t.Receiptdate ≥ t′.Shipdate ∧ t.Shipdate ≤ t′.Receiptdate)

IMDB 𝜑9 : ¬(t.Title = t′.Title ∧ t.ProductionYear = t′.ProductionYear
∧t.Kind ≠ t′.Kind)

IMDB 𝜑10 : ¬(t.Title = t′.Title ∧ t.Role = t′.Role
∧t.Name = t′.Name ∧ t.CharName = t′.CharName)

Baselines.We compareVioFinderwith the DC violation detection
component described in [2], referred to here as Hydra–IEJoin.
Besides, we compared our system with three DBMSs: PostgreSQL
(v.12.1), MonetDB (v.11.35.3), and SQLServer (v.2019 CU3). These
systems have different query processing models, with different
impacts on the materialization of intermediate data. PostgreSQL
implements the tuple-at-a-time model that moves entire tuples
around the memory hierarchy. In contrast, the column-at-a-time
processing model of MonetDB fetches only the columns in the
SQL statement but keeps the intermediate data in memory during
processing. Finally, SQLServer implements a middle ground with a
vector-at-a-time model.

1http://www.tpc.org/tpch/
2https://homepages.cwi.nl/~boncz/job/

http://www.tpc.org/tpch/
https://homepages.cwi.nl/~boncz/job/


Implementation. We implemented VioFinder as a standalone
tool in Java that runs in main-memory after dataset loading. We
used the Roaring bitmap library to implement clusters3. Hydra–
IEJoin is also a standalone tool running in main-memory. We used
the Java implementation provided by the authors. To use the DBMSs,
we translated each DC in Table 2 into a SQL query and executed it
using the vanilla version of the three DBMSs. We created indexes
on all predicate columns to investigate if and when the DBMSs
improve their execution plans. We checked all implementations
separately, and all return the same result. As we did not need to
materialize the violations, we used select count(*) in each query
to return only the number of violations, and we set the standalone
tools to return a count with the number of violations they found.
Infrastructure and execution. We used a server running De-
bian 10 (buster) as the experimentation platform. The server is
equipped with twelve sockets, each with an Intel(R) Xeon(R) CPU
E7-8837 octa-core processor running at 2.67GHz, 756GB of RAM,
and 2TB of disk. All executions were single-threaded. VioFinder
and Hydra–IEJoin run on an Oracle’s JDK 64-Bit Server VM 1.8.0
with the maximum heap size set to 32GB. The numbers in the re-
ports are the average measurement of three independent runs. We
used a default threshold of ten cluster pairs for VioFinder.

5.2 Performance evaluation

Comparison with baselines. We measured the runtime of all
DC violation detectors on different datasets and DCs. To be able
to run the SQL queries within a time limit of 3 hours, we used a
sample with 200𝐾 records of each dataset. Runtimes are broken
down into loading, preprocessing, and querying. For the DBMSs,
these measures are, respectively, the time spent to load the raw
files into the DBMS, create indexes, and execute the query. For
Hydra-IEJoin, these measures are, respectively, the time spent to
load the raw files into memory, map the input into integer domains
plus the time to decide predicate order, and execute the algorithm.
VioFinder’s runtime composition is similar to Hydra-IEJoin’s,
except that it does not include the input mapping time.

Figure 2 depicts the measured runtimes of all five systems for
all datasets and DCs of Table 2. In summary, the results in this
experiment demonstrate that VioFinder performs best in every
scenario and that it can be at times orders of magnitude faster than
the DBMS approaches. For DCs 𝜑7 and 𝜑8, VioFinder finished in a
matter of few seconds, PostgreSQL and SQLServer in amatter of few
hours, and MonetDB did not finish due to memory limit exceptions.
We can see speedups of 1625×, for example, when VioFinder is
compared to SQLServer for DC 𝜑8. Moreover, VioFinder delivered
between 3× and 17.5× faster executions than Hydra-IEJoin.

The execution plans and performance among the evaluated
DBMSs varied considerably. For the keys in DCs 𝜑3 and 𝜑10 and the
functional dependency in DC𝜑9, PostgreSQL used a sort-merge join
approach slower than the hashjoins in SQLServer and MonetDB—
we can see the performance impact from algorithm choice in the
querying time. All systems used hashjoins for the relationship of
mutual inclusion in DC 𝜑6 and reported fast querying. In contrast,
we measured the worst runtimes for DCs that express relationships

3https://github.com/RoaringBitmap/RoaringBitmap

of order between columns (i.e., DCs 𝜑5, 𝜑7 and 𝜑8). MonetDB threw
memory limit exceptions for DCs 𝜑7 and 𝜑8 and reported the slow-
est runtime for DC 𝜑5. The system used a thetajoin implementation
based on a Cartesian product that produced large intermediates
and impaired performance. PostgreSQL and SQLServer relied on
nested loops for those three DCs and performed poorly considering
the small number of tuples in the experiment.

Regarding index usage, the DBMSs used table scans for most of
the executions due to the selectivity of the predicates. MonetDB and
SQLServer used no indices, whereas PostgreSQL used index scans
on column Extended_price for the DC 𝜑7 and on column Shipdate
for the DC 𝜑8. The order of predicate evaluation also influenced
performance: For DC 𝜑4, SQLServer used hashjoins to evaluate the
equijoin predicates, then checked the non-equijoin as a residual
predicate. The two other DBMSs also used hashjoins, but evaluated
the non-equijoin filter first, yielding the worst runtime. For DC
𝜑5, all systems evaluated the equijoin predicate first, which helped
reducing intermediates and improved performance.

The differences in the executions of the DBMSs were expected:
after all, they differ from each other internally. These results sup-
port our design decisions with VioFinder, though. By processing
partitions of limited size at-a-time, VioFinder bounds the material-
ization of intermediates. Choosing the order of DC predicates based
on predicate selectivity leads VioFinder to process predicates that
produce smaller intermediates first. Besides, VioFinder carefully
selects refinement algorithms. Notice that the best results reported
by the DBMSs use hash-based approaches. VioFinder mirrors this
observation and uses hash-like approaches whenever possible. For
range predicates, VioFinder uses algorithms that are more effective
than the nested loop solutions in the DBMSs. We observe similar
concerns with Hydra-IEJoin. However, VioFinder spends much
less time than Hydra-IEJoin in preprocessing.

Scalability in the number of tuples. This experiment considers
only querying times (i.e., execution times without loading, index
creation, or preprocessing times), because it focuses on the algorith-
mic efficiency of each system. The previous experiment is a baseline
comparison, so we used Hydra-IEJoin as its authors originally con-
ceived it. However, Hydra-IEJoin has to map the input into an
integer domain, because its implementation is based on integer
comparisons. VioFinder does not need this step, and also uses a
faster approach to decide predicate order. Thus, to eliminate the
additional costs of Hydra-IEJoin, we integrated Hydra-IEJoin’s
algorithms into VioFinder’s platform for this experiment.

Figure 3 shows the runtimes (only querying times) measured for
the datasets with an increasing number of rows—mind that some
plots have different scales. The plots show SQLServer as the only
DBMS approach, over only DCs without range predicates: None of
the DBMSs finished execution for DCs with range predicates in less
than twenty-four hours or without throwing a memory exception.
MonetDB faced the same issue executing functional dependencies,
and, in the cases PostgresSQL finished, the observed runtimes were
orders of magnitude higher than the other DBMSs. In practice,
SQLServer was the fastest among the DBMSs for most DCs and
datasets. The DBMS approach scaled better than VioFinder for DC
𝜑6. The columns in this DC are keys, for which DBMSs are well-
optimized. In this case, VioFinder has less opportunity to use its

https://github.com/RoaringBitmap/RoaringBitmap
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Figure 2: Runtime comparison between VioFinder (VF), Hydra-IEJoin (HI), PostgresSQL (DB1), MonetDB (DB2) and

SQLServer (DB3). The datasets are table samples with 200𝐾 records each.
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Figure 3: Scalability of VioFinder, Hydra-IEJoin, and SQLServer for an increasing number of rows.

optimizations (e.g., it does not use Algorithm 1). For all other DCs
and datasets, VioFinder performs better than the DBMSs solutions.

Although both VioFinder and Hydra-IEJoin show character-
istics of linear growth for DCs 𝜑3, 𝜑4, 𝜑6, 𝜑9 and 𝜑10, the relative
performance difference consistently grows as the number of records
grows. Both systems use hash-based approaches with such DCs, but
differ in key implementation details. VioFinder deals with multiple
equality predicates on single columns at once (with Algorithm 1),
whereas Hydra-IEJoin does so one predicate at a time. As a result,
Hydra-IEJoin requires larger partitions (with larger cluster pairs)
to be moved through the pipeline, which may decrease performance.
Moreover, VioFinder uses bitmaps with sorted arrays to imple-
ment set operations (e.g., set difference in different than predicates),
whereas Hydra-IEJoin uses hash sets. The former approach has
been shown to be consistently faster [13].

The performance of VioFinder and Hydra-IEJoin was roughly
similar for DC 𝜑5, but significantly differed for DCs 𝜑7 and 𝜑8.
For instance, VioFinder was on average 307× faster than Hydra-
IEJoin for DC 𝜑8 on 10𝑀 rows. Notice that DCs 𝜑5, 𝜑7 and 𝜑8 are
those with range predicates. VioFinder uses our proposed sort-
merge approaches to process range predicates, whereas Hydra-
IEJoin uses the IEJoin algorithm [11]. Both approaches include a
phase that builds auxiliary data structures and a phase that uses
those data structures to produce the results. The costs of the initial
phase in the VioFinder’s sort-merge algorithms consist of building
cluster indexes and sorting its entries, and the costs to produce

results consist of a merge loop that triggers logical operations and
bitmap copying. In contrast, the IEJoin algorithm in Hydra-IEJoin
evaluates two range predicates in a single pass. The initial costs
of the algorithm involve the computing of auxiliary arrays based
on sorted versions of column values. As for its second part, the
basic idea is to iterate the relative positions of the auxiliary arrays;
operate on a bitmap to mark positions of tuples that satisfy the first
predicate; then find tuples that also satisfy the second predicate
by iterating another auxiliary array and the marked bitmap. The
primitives in the second phase of both approaches have a high
impact on performance.

We broke down the executions and observed the following. For
DC 𝜑5, the first phase occupied most of the execution time in both
approaches; that is, they spent most of the time in sorting. The
refinement of the equality predicate of DC 𝜑5 occupied only a
small fraction of the execution time for both approaches. For DCs
𝜑7 and 𝜑8, however, both approaches spent most of the time in
their second phase. IEJoin has to iterate auxiliary arrays to find and
collect qualifying tuples. For DCs with a larger number of violations,
as it is the case of DCs 𝜑7 and 𝜑8, this primitive is heavily penalized,
because many tuples qualify. In contrast, the sort-merge approach
builds the results incrementally from previous iterations with the
copying of bitmaps. While the approach is also penalized for DCs
with a large number of violations, its incremental processing saves
plenty of computations and yields lower runtimes.



5.3 Additional evaluation of VioFinder

The next set of experiments focuses onVioFinder.We evaluated the
effects that the cache mechanism has on runtime, maximum mem-
ory usage, and the number of tuple fetches. We used DC 𝜑8, because
its execution exemplifies how caching can benefit performance. Fig-
ure 4 shows the measurements using a cache-disabled version of
VioFinder relative to the measurements using the original—the
Y-axis is on a log scale. The cache-disabled version has to perform
dramatically more tuple fetches and runs considerably slower than
its cache-enabled counterpart. The larger the number of tuples in
the input, the higher the relative differences in tuple fetches and
runtime. Although VioFinder consumed more memory using the
cache mechanism for fewer tuples (i.e., less than 400𝐾), it stably
consumed about the same amount of memory for larger inputs. This
effect happened because the larger inputs produced clusters with a
higher density that took better advantage of bitmap compression.

We evaluated the impact of varying cluster pair thresholds on
runtime and maximum memory usage. We observed that perfor-
mance and memory usage was relatively stable for small thresholds
(i.e., less than 100). Partitions with more than one cluster pair bene-
fited the performance of refinements dealing with a few of tuples
at-a-time, because there was less interpretation overhead. We used
a default threshold of 10, because it is the median value of those
thresholds that produced the best runtimes for each DC. However,
memory usage increased with larger thresholds as partitions are
more likely to store more cluster pairs. Large partitions create long-
living data objects in the heap that persist for long portions of the
pipeline. This effect degrades runtime, because garbage collection
needs to perform additional tracing and marking of long-living
objects, consuming additional CPU time. Figure 5 illustrates such
behavior for DC 𝜑8 by showing the memory usage and runtime
with increasing tuple pair thresholds relative to these measures
with the default threshold.
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For this last experiment, we measured the size of the in-memory
data structures storing the datasets, and themaximummemory used
by VioFinder during each execution. Figure 6 shows the results for
four DCs—the plots also include the number of violations detected.
For most DCs, the contributing factor to the linear increase in
memory use is the number of tuples. Notice, however, that DC
𝜑8 has a huge number of violations. In that case, handling the
large intermediates used to produce output consumed much more
memory than the in-memory datasets. Nonetheless, these results
show that VioFinder is not expensive in terms of memory use.

6 SUMMARY

In this paper, we introduced a DC violation detection system to
handle a wide range of data dependencies, from unique constraints
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to other dependencies that express complex relationships between
columns. VioFinder shows efficient performance through parti-
tion pipelines and effective refinement strategies. Even for larger
inputs, or DCs that produce sizeable intermediates and results, our
system’s performance degrades much more gracefully than the
performance of baselines. Our future directions include develop-
ing an optimizer for selecting different refinement strategies and
leveraging VioFinder in distributed data processing platforms.
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