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ABSTRACT
We propose a stochastic framework to evaluate the impact of miss-
ing data on the performance of predictive models. The framework
allows full control of important aspects of the data set structure.
These include the number and type of the input variables, the cor-
relation between the input variables and their general predictive
power, and sample size. The missing process is generated from a
multivariate Bernoulli distribution, which allows us to simulate
missing patterns corresponding to the MCAR, MAR and MNAR mech-
anisms. Although the framework may be applied to virtually all
types of predictive models, in this article, we focus on the logistic
regression model and choose the accuracy as the predictive mea-
sure. The simulation results show that the effects of missing data
disappear for large sample sizes, as expected. On the other hand,
as the number of input variables increases, the accuracy decreases
mainly for binary inputs.
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1 INTRODUCTION
The quality of data is key in supporting data-centric systems, ma-
chine learning routines, and predictive models. Research on data
quality aims to define, identify, and repair inconsistencies in the
data [9]. A common source of inconsistency is missing data, in
which no data is stored for the variable in an observation, which
potentially hides important information.

Although the popularity of predictive analytics using machine
learning tools has been increasing, the quality of the input and
output variables have been neglected on the proposition of new
predictive models. Consequently, the effect of missing data in many
of the standard predictive models is completely unknown. Two
strategies are often used to handle missing data: i) removingmissing
records, and ii) data imputation. Imputation techniques replace
missing values with probable values [1, 4]. However, it is hard
to verify the effectiveness of the imputation techniques and their
impact on data analysis.

The studies that evaluate the performance of predictive models
in the presence of missing data use real data sets that already have
missing data or data sets with artificially inserted missing data. In
any case, the analysis requires some imputation technique to repair
the missing records, followed by a predictive model’s fitting. The
predictive performance is usually compared with the one without
missing data [2, 3, 7, 10]. Another limitation of these approaches is
that they use a small number of data sets, and do not use statistical
methods to analyze the results. Extensive studies about the number
of data sets are presented by [8] and [6]. However, by using real
data sets, they could not control the aspects concerning missing
data (e.g., distribution, types). Consequently, their conclusions do
not take into account the uncertainty associated with these aspects.

In this paper, we propose a stochastic framework to evaluate
the impact of missing data on predictive models’ performance.
The framework is based on a stochastic generation of data sets
with control of essential aspects of the missing data and the input
variables for the predictive models. Our framework has four steps:
i) generating the whole data set; ii) inserting missing observations;
iii) fitting a predictive model and measuring performance, and iv)
evaluating the results using a statistical tool. The framework allows
us to design a wide range of simulation scenarios to evaluate the
impact of important factors, such as sample size, type and predictive
power of the input variables, and the correlation between variables.
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To generate missing data, we use the mechanisms MCAR (missing
completely at random), MAR (missing at random), and MNAR (missing
not at random) using different specifications of the correlation
matrix of a multivariate Bernoulli distribution.

2 PROPOSED FRAMEWORK
The effect of missing data depends on data set aspects. Thus, we
propose to control the sample size, number, and type of the input
variables, and the correlation between these variables. We call a
controlled independent variable as factor and call level the values
that each factor assumes. Let X be a 𝑛 × 𝑝 matrix of input vari-
ables. We fixed the sample size at 𝑛 = 500, 1000 and 10000, and
for the input variables we fixed at 𝑝 = 10, 50, and 200. To explore
the impact of the type of input variables we designed three scenar-
ios: i) the input variables are binaries generated from a Bernoulli
distribution with success probability equals to 0.5, ii) the input
variables are integers generated from a Poisson distribution with
parameter equals to 10 and iii) the input variables are continu-
ously generated from a standard Gaussian distribution. Finally, to
simulate non-Gaussian correlated input variables, we adopted the
NORTA (Normal to Anything) algorithm as it is implemented in
the SIMCORMULTRES package for the statistical software R [11]. For
increasing levels of redundancy between the input variables, we
consider three correlation levels 𝜌 = 0, 0.5, and 0.8.

Let M be an 𝑛 × 𝑝 indicator matrix representing the missing
data process. Little and Rubin [5] proposed an extensive theory to
determine the probability distribution ofM givenX = (X𝑜𝑏𝑠 ,X𝑚𝑖𝑠 ),
where X𝑜𝑏𝑠 contains all the elements X𝑖 𝑗 where M𝑖 𝑗 = 1 and X𝑚𝑖𝑠

contains all the elements X𝑖 𝑗 where M𝑖 𝑗 = 0. Thus, three types
of missing data mechanisms are represented by the conditional
distribution 𝑓 (M|X, 𝜙), where 𝜙 is a set of unknown parameters
to describe the relationship between M and the data. We briefly
discuss the missing data mechanisms, as follows:

• Missing Completely at Random (MCAR): It happens when the
events that lead to the missing data are unrelated to the
value of other observed or unobserved variables. We have in
probabilistic terms:

𝑓 (M|X, 𝜙) = 𝑓 (M|𝜙) . (1)

• Missing at Random (MAR): In this mechanism, the missing
pattern is related to other observed values. One can think that
the missing pattern observed for a particular input variable is
a function, in general unknown, of the other input variables.
We have in probabilistic terms:

𝑓 (M|X, 𝜙) = 𝑓 (M|X𝑜𝑏𝑠 , 𝜙). (2)

• Missing Not at Random (MNAR): In this mechanism, the vari-
able correlated to missing data is not present in the data set.
MNAR is the most complex to identify because the reasons
for the missing data are unknown. We have in probabilistic
terms:

𝑓 (M|X, 𝜙) = 𝑓 (M|X𝑚𝑖𝑠 , 𝜙) . (3)
The simulation of the MCAR mechanism is done by simulating M

from independent Bernoulli distributions, and the success proba-
bility determines the amount of missing data in the data set. On
the other hand, the simulation of MAR and MNAR mechanisms are
more complex. In this paper, we adopted a strategy based on a

Algorithm 1: Calibration algorithm
Input:
𝛼 : predictive power of input variables;
Output: The effect size value given simulation conditions
initialization;
begin

for 𝑢 = 0 to 10 do
generate X using rnorta function given simulation
conditions
for 𝑘 = 0 to 15 do

repeat
Δ ← Through the range (0,30) search the
root of the function that results 0.9
accuracy ;
generate vector 𝛽 𝑗 ∼ 𝐺 (𝛼) for 𝑗 = 1, . . . , 𝑝;
𝛽 ′ ← Δ ∗ 𝛽 𝑗/𝑠𝑢𝑚(𝛽 𝑗 );
generate 𝑌𝑖 ∼ 𝐵(𝑝𝑖 ) shown in Equation 5;
𝑚𝑜𝑑 ← fit a logistic regression model;
acc← accuracy of the𝑚𝑜𝑑 ;

until acc = 0.9;
𝑒 𝑓 𝑓 ← store each Δ value when 𝑎𝑐𝑐 = 0.9;

end
𝑒 𝑓 𝑓 𝑒𝑐𝑡𝑠 ← store all 𝑒 𝑓 𝑓 vectors;

end
𝑒 𝑓 𝑓 𝑒𝑐𝑡𝑆𝑖𝑧𝑒 ←𝑚𝑒𝑎𝑛(𝑒 𝑓 𝑓 𝑒𝑐𝑡𝑠);
𝑟𝑒𝑡𝑢𝑟𝑛(𝑒 𝑓 𝑓 𝑒𝑐𝑡𝑆𝑖𝑧𝑒);

end

multivariate Bernoulli distribution, which in turn is specified by a
vector 𝑝 × 1 of probabilities and a 𝑝 × 𝑝 covariance matrix.

In the MAR mechanism, the distribution of the missing values
is controlled by the values of the observed input variables. Con-
sequently, the columns of M should be correlated, since they are
generated based on the same set of X. Thus, we simulate M from a
multivariate Bernoulli distribution fixing the correlation parameter
at 𝜌 = 0.5 and 0.8. Note that 𝜌 = 0 corresponds to the MCAR mech-
anism. Finally, MNAR is the most challenging mechanism because
the missing data pattern depends on unobserved input variables.
We introduce an extra assumption: although the missing patterns
depends on unobserved variables, the unobserved or latent vari-
ables induce an special pattern on the covariance matrix of the
multivariate Bernoulli distribution. The idea is similar to factor
analyses where the covariance pattern is interpreted as the effects
of latent variables.

We specify the covariance matrix of the multivariate Bernoulli
distribution as a diagonal block matrix, where each block is attrib-
uted to the effect of a latent variable. For simplicity, we divide the
covariance matrix into two equal-size blocks. In the first block we
use correlation 𝜌 = 0.5, and in the second block we use 𝜌 = 0.8.
Finally, we combine all factors and their levels exhaustively to
compose 2.187 simulation scenarios.

The next step is to simulate the target variable. We focus on
the performance of the logistic regression model because of its
popularity for classification problems. However, other predictive
models could be evaluated in a similar way. In this context, given



a set of input variables represented in a matrix X the target or
response variable 𝑌𝑖 is simulated based on the logistic model,

𝑌𝑖 ∼ B(𝑝𝑖 ) (4)

𝑝𝑖 = E(𝑌𝑖 |𝑋𝑖 𝑗 ) = P(𝑌𝑖 = 1) =
𝑒𝑥𝑝 (𝑋⊤

𝑖 𝑗
𝜷)

1 + 𝑒𝑥𝑝 (𝑋⊤
𝑖 𝑗
𝜷)

. (5)

The vector 𝑝 × 1 of regression coefficients 𝜷 is simulated from a
geometric distribution, whose parameter 𝛼 controls the predictive
power of the input variables, i.e, 𝛽 𝑗 ∼ Δ𝐺 (𝛼) for 𝑗 = 1, . . . , 𝑝 . Also,
we include a parameter Δ to control the expected accuracy of the
predictive model. Algorithm 1 shows how to select Δ. It is impor-
tant to keep the comparability of the results among the different
simulation scenarios. We select a value Δ for each simulation sce-
nario, such that we can then analyze the data set results in 90% of
accuracy.

Given the structure of the geometric distribution, the first input
variable is the most important, and the importance decreases ex-
ponentially. Δ is selected for each simulation scenario, but 𝛼 was
fixed at 0.2, 0.5 and 0.8 to have one scenario where we have a uni-
form and asymmetric distribution for the regression coefficients,
respectively.

We use the statistical software R and the function glm() to fit
the logistic regression model. For each simulation scenario, we
simulated 150 data sets, fit the model, and compute the accuracy.
The last step can easily be done using the linear regression model,
which allows us to quantify each factor’s main effect on the accuracy
of the logistic regression model, taking the uncertainty into account.
The framework code is available on a public repository 1.

3 RESULTS
In this section, we present the results of our simulation study. Fig-
ure 1 presents an overview of our main results. For a better plot
visualization, we opted to plot the results concerning the number
and type of the input variables, sample sizes, and predictive power.
Regarding the correlation between the input variables, we show
only the most challenging scenario, i.e., the correlation of 0.8. Con-
cerning the missing pattern mechanisms, we present one scenario
for each of them, i.e., complete (COM), MCAR, MAR with correlation
0.5, and MNAR with correlations 0.5 and 0.8. For all scenarios, we
show only the cases where we simulate 30% of missing data. Finally,
we decided to summarise the results using bars representing the
first and third quantiles. Thus, we evaluate the results taking into
account the uncertainty associated with them in each scenario.

Figure 1 shows that for large sample sizes the missing data effects
disappear, for all missing data mechanisms. It is also clear that
the precision of the accuracy increases, i.e. narrower bars. On the
other hand, as the number of input variables increases the accuracy
decreases quickly, and consequently, the generalization power of
the model is weak. The combination of small sample sizes and a
large number of input variables is the worst scenario in terms of
accuracy as well as the most affected by MAR and MNAR.

Regarding the type of input variables, we note an increase in
the accuracy from Bernoulli to Poisson and Gaussian, respectively.
Similarly, the accuracy tends to decrease from the MCAR to MAR and
MNAR mechanisms. Overall the MNAR mechanism shows the worst
1https://github.com/fsantore/missing_data_analysis

Parameter Estimate Parameter Estimate
Intercept 79.61∼(0.04) TINPUT_Poisson 4.06∼(0.03)
NINPUT_50 -4.52∼(0.03) TINPUT_Gauss 8.50∼(0.03)
NINPUT_200 -19.53∼(0.03) PPINPUT_0.5 -0.07∼(0.03)
SS_1000 6.31∼(0.03) PPINPUT_0.8 0.36∼(0.03)
SS_10000 14.89∼(0.03) TMD_MCAR -1.46∼(0.04)
CINPUT_0.5 -0.08∼(0.03) TMD_MAR -4.07∼(0.04)
CINPUT_0.8 -0.23∼(0.03) TMD_MNAR -4.67∼(0.04)

PMD_0.9 2.27∼(0.03)
Table 1: Parameter estimates and standard errors.

results in terms of accuracy in all considered scenarios. However,
when combined with large samples and a low number of input
variables the accuracy is barely below the 90% level.

The predictive power of the input variables is an important
factor to determine the impact of the missing data on the predictive
performance of the model. In general, when the predictive power
is concentrated in a few continuous (Gaussian) input variables
(𝛼 = 0.8) the accuracy is less affected by the missing data than in
the other scenarios. On the other hand, for binary inputs a more
even distribution of the regression coefficients implies a smaller
effect of the missing data mechanisms.

Finally, to measure the impact of the main factors considered in
our simulation study we fit a multiple linear regression model. The
response variable is the accuracy and the factors are: the number
of input variables (NINPUT) with levels (10, 50, and 200); sample
size (SS) with levels 500, 1000, and 10000; correlation between the
input variables (CINPUT) with levels 0, 0.5, and 0.8; type of the
input variables (TINPUT) with levels Bernoulli, Gaussian and Pois-
son; predictive power of the input variables (PPINPUT) with levels
0.2, 0.5 and 0.8; type of missing (TMD) data with levels MCAR, MAR
and MNAR and proportion of missing data (PMD) with levels 0.7 and
0.9. Table 1 presents parameter estimates and standard error for the
regression coefficients associated with each of the factors and their
different levels. It is important to emphasise that we fit the model
using only the main effects. We could fit the model using the inter-
active effects as well. However, only the main effects explain 67.91%
of the accuracy variability, which we considered satisfactory.

Results in Table 1 quantify the effect of each factor on the expect
value of the accuracy. Thus, we have that by increasing the number
of input variables from 10 to 50 and 200 we expect an average
decrease in the accuracy of 4.52% and 19.53%, respectively. Similarly,
by increasing the sample size from 500 to 1000 and 10000 we expect
an average accuracy increase of 6.31% and 14.89%, respectively. The
correlation between the input variables and the distribution of their
predictive power present lower impact on the accuracy. However,
the type of the input variables is an important factor to explain
the variability of the accuracy. The accuracy tends to increase in
average 4.06% and 8.50% for Integers and continuous inputs in
relation to binary inputs. Finally, concerning the type of missing
data mechanism our results show that from the complete case to
MCAR, MAR and MNAR we expect an accuracy decrease of 1.46%, 4.07%
and 4.67%, respectively.

https://github.com/fsantore/missing_data_analysis


Figure 1: Accuracy quantile intervals by sample sizes andmissing data mechanisms (X-Axis on the top), CINPUT and NINPUT
(Y-Axis to the left and right), and predictive power of the input variables (X-Axis on the bottom).

4 DISCUSSION
This paper presents a framework to evaluate the impact of missing
data in predictive models. Our framework uses a stochastic process
to control different factors of the input variables: predictive power,
sample size, number, type, and the correlation between each other.
Besides, we consider different variations of missing data generation
mechanisms, namely, MCAR, MAR, and MNAR. We use graphical tools
and a linear regression model to quantify how each factor impacts
the expected accuracy.

Our results show that, as the sample size increases, the missing
data impact decreases drastically. On the other hand, as the number
of input variables increases, the accuracy values decrease. That
fact reinforces that input selection is essential in increasing the
predictive power of a model. The type of input variables is also an
essential factor to explain the accuracy of the model. In general
continuous inputs benefit from better accuracy. Finally, the correla-
tion between input variables and their missing mechanism presents
a low impact on predictive performance.

The set of controlled factors explains the accuracy variability.
Thus, we argue that our framework can effectively evaluate the
impact of missing data and other essential aspects of a data set
in the predictive performance of a logistic regression model. Our
framework can be adopted as a practical framework to evaluate
the effectiveness of new approaches that handle missing data. For
future works, we suggest extending our framework to evaluate
other predictive models, such as neural networks and random forest.
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