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Abstract. Integrity constraints (ICs) are meant for many data manage-
ment tasks. However, some types of ICs can express semantic rules that
others ICs cannot, or vice versa. Denial constraints (DCs) are known to
be a response to this expressiveness issue because they generalize im-
portant types of ICs, such as functional dependencies (FDs), conditional
FDs, and check constraints. In this regard, automatic DC discovery is es-
sential to avoid the expensive and error-prone task of manually designing
DCs. FASTDC is an algorithm that serves this purpose, but it is highly
sensitive to the number of records in the dataset. This paper presents
BFASTDC, a bitwise version of FASTDC that uses logical operations
to form the auxiliary data structures from which DCs are mined. Our
experimental study shows that BFASTDC can be more than one order
of magnitude faster than FASTDC.
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1 Introduction

Production databases often generate large and disordered datasets which become
challenging to explore over time. Sometimes analysts will spend more time look-
ing for relevant and clean data than they will do producing useful insights [1]. A
research field that helps with this challenge is data profiling: the set of activities
to gather statistical and structural properties, i.e, metadata, about datasets [2].

Data profiling research continually focus on developing efficient methods to
discover integrity constraints (ICs) satisfied by datasets [2]. ICs validate the in-
tegrity and consistency of real-world entities that are represented in data and,
although were initially devised for database schema design, are commonly used
in other data management tasks, such as data integration [3] and data cleaning
[4]. Well known exemplars of ICs include attribute dependencies (e.g, functional
dependencies (FDs)), which express semantic relationships for data. Notice, how-
ever, that attribute dependencies may not be able to express important rules that
hold in data, as shown by the examples below.

Consider an instance of relation, employees, as shown in Table 1. An FD could
state that (1) employees’ names identify their manager. A check constraint could
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state that (2) employees’ salaries must be greater than their bonus. Denial con-
straints (DCs) [5, 6] could state rules 1-2, and more expressive ones, for example,
(3) if two employees are managed by the same person, the one earning a higher
salary has a higher bonus. Thus, DCs are able to express many business rules,
and subsume other types of ICs [6].

Table 1: An instance of relation employees.
Name Manager Salary Bonus

t0 John Jim $1000 $300
t1 Brad Frank $1000 $400
t2 Jim Mark $3000 $1100
t3 Paul Jim $1200 $400

DCs define sets of predicates that databases must satisfy to prevent attributes
from taking combinations of values considered semantically inconsistent. For ex-
ample, the FD (1) mentioned earlier can be defined as a sequence of (in)equality
predicates: if two tuples from employees agree on Name (tx.Name = ty.Name),
then, they cannot disagree on Managers (tx.Manager 6= ty.Manager). Notice
that predicates of DCs are easily expressed by SQL queries and, therefore, DCs
can be readily used with commercial databases.

DCs have been adopted as the IC language in various scenarios [5, 7]. Par-
ticularly, they have received considerable attention in data cleaning (violation
of DCs usually indicates that data is dirty). Holoclean [7] and LLUNATIC [8]
are examples of cleaning tools that use DCs. However, they assume DCs to
be user-provided. Designing DCs is challenging because it requires expensive
domain expertise that is not always available. Furthermore, DCs may become
obsolete as business rules and data evolve. To overcome these limitations, DC-
based cleaning tools (or any other DC-dependent solution) should also provide
mechanisms to discover DCs holding on sample data.

Discovering DCs is nontrivial because the search space for DCs grows expo-
nentially with the number of predicates. Predicates are defined over attributes,
tuples and operators. For example, the Salary attribute in the relation employees
define six predicates with the form {tx.Salary wo ty.Salary}, wo ∈ W : {=, 6=
, <,≤, >,≥}. Additionally, predicates are allowed to be defined over combina-
tions of attributes and tuples. The predicate space P is the set of all predicates
defined for a relation, and there are 2|P| DC candidates because a DC may be
any subset of P. Thus, checking DC candidates against every tuple combination
of a relation instance becomes impractical [6].

Chu et al. [6] introduced important properties for DCs and presented a dis-
covery algorithm called FASTDC. The algorithm uses the predicate space to
compute sets of predicates that tuple pairs satisfy, namely, the evidence set.
FASTDC then reduces the problem of discovering DCs to the problem of finding
minimal covers for the evidence set. Unfortunately, a dominant computational
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cost of FASTDC is computing the evidence set. The algorithm needs to test
every pair of tuples of the relation instance on every predicate in P; therefore,
its performance is highly dependent on the number of records.

In this paper, we present a new algorithm that improves DC discovery by
changing how the evidence set is built. Our algorithm, BFASTDC, is a bitwise
version of FASTDC that exploits bit-level operations to avoid unnecessary tuple
comparisons. BFASTDC builds associations between attribute values and lists
of tuple identifiers so that different combinations of these associations indicate
which tuple pairs satisfy predicates. To frame evidence sets, BFASTDC operates
over auxiliary bit structures that store predicate satisfaction data. This allows
our algorithm to use simple logical operations (e.g., conjunctions and disjunc-
tions) to imply the satisfaction of remaining predicates. In addition, BFASTDC
can use two modifications described in [6] to discover approximate and con-
stant DCs. These DCs variants let the discovery process to work with data con-
taining errors (e.g., integrated data from multiple sources). In our experiments,
BFASTDC produced considerable improvements on DCs discovery performance.
Organization. Section 2 discusses the related work. Section 3 reviews the defi-
nition of DCs and the DC discovery problem. Section 4 describes the BFASTDC
algorithm. Section 5 presents our experimental study. Finally, Section 6 con-
cludes this paper.

2 Related Work

Most works on IC discovery have focused on attribute dependencies. Liu et al.
[9] presented a comprehensive review of the topic. Papenbrock et al. [10] have
looked into implementation details, experimental evaluation, and comparison of
various FD discovery algorithms.

Dependency discovery algorithms usually employ strategies to reduce the
number of candidate dependencies they must check. For example, Tane [11] is an
FD discovery algorithm that uses a level-wise approach to traverse the attribute-
set lattice of a relation. Supersets of attributes from level k+1 of the lattice are
pruned as Tane validates FDs from level k. FastFD [12] compares tuple pairs
to build difference sets: the set of attributes in which two tuple differ. It uses
depth-first search to find covers of difference sets and then derives valid FDs.

As data may be inconsistent, discovery algorithms need to, somehow, avoid
returning unreliable ICs. Fan et al. [13] describe CTane and FastCFD to discov-
ering conditional FDs, that is, FDs enforced by constants patterns. Conditional
dependencies are particularly useful when working with integrated data because
some dependencies may hold only on portions of the data [14]. Approximate dis-
covery is another approach to avoid overfitting ICs [9, 15, 6]. For this matter, ICs
are allowed to be approximately satisfied by a dataset. Liu et al. [9] also presented
a discussion on satisfaction metrics for approximate discovery algorithms.

As opposed to dependency discovery, for which many algorithms were de-
vised [9, 10], there are only two algorithms for discovering DCs: Hydra [16] and
FASTDC [6]. Hydra can only detect exact variable DCs (DCs that is neither
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approximate nor contains constant predicates). The principle of the algorithm
is to avoid comparing redundant tuple pairs, i.e, tuple pairs satisfying the same
predicate set. It generates preliminary DCs from a sample of tuple pairs and
identifies the tuple pairs violating those DCs. Hydra then derives exact DCs
from the evidence set built upon the combination of the sample and tuple pairs
violating the preliminary DCs. Because Hydra eliminates the need for checking
every pair of tuple, it is not able to count how many times a predicate set is
satisfied by a dataset. This counting feature is precisely what enables FASTDC
to discover approximate DCs. The inspiration for FASTDC comes from FastFD-
FastCFD, and is twofold: pairwise comparison of tuples for extracting evidence
from datasets; depth-first search for finding covers for the evidence and deriving
valid ICs. As described in [6], simple modifications in FASTDC enable the algo-
rithm to also discover DCs with constant predicates. BFASTDC is designed to
avoid the exhaustive tuple pairs comparison of FASTDC, but keeping the ability
to discover exact, approximate and constant DCs.

3 Background

Consider a relational database schema R and a set of operators W : {=, 6=, <
,≤, >,≥}. A DC [5, 6] has the form ϕ : ∀tx, ty, ... ∈ r, ¬(P1 ∧ ... ∧ Pm), where
tx, ty, ... are tuples of an instance of relation r of R, and R ∈ R. A predicate Pi
is a comparison atom with either the form v1wov2 or v1woc: v1, v2 are variables
tid.Aj , Aj ∈ R, id ∈ {x, y, ...}, c is a constant from Aj ’s domain , and wo ∈ W.

Example 1 We refer to the ICs (1), (2) and (3) from Section 1 to express the
following DCs: ϕ1 : ¬(tx.Name = ty.Name ∧ tx.Manager 6= ty.Manager), ϕ2 :
¬(tx.Salary < tx.Bonus), ϕ3 : ¬(tx.Manager = ty.Manager ∧ tx.Salary >
ty.Salary ∧ tx.Bonus < ty.Bonus).

An instance of relation r satisfies a DC ϕ if at least one predicate of ϕ is false,
for every pair of tuples of r. In other words, the predicates of ϕ cannot be all
true at the same time. Following the conventions of [6], we consider there is only
one relation in R, and we limit the universal quantifier for DCs to at most two
tuples, i.e, (tx, ty).

Table 2 shows the inverse, wo, and implication, I(wo), of the operators wo ∈
W. The inverse of a predicate P : v1wov2 has the form P : v1wov2, which is the
logical complement of P . The set of predicates implied by P is I(P ) = {P ′ | P ′ :
v1w

′
ov2,∀w′o ∈ I(wo)}. Every P ′ ∈ I(P ) is true if P is true.

Table 2: Inverse and implied operators.
wo = 6= < ≤ > ≥
wo 6= = ≥ > ≤ <

I(wo) =,≤,≥ 6= <,≤, 6= ≤ >,≥, 6= ≥
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We follow the problem definition of [6] to discover minimal DCs. A DC ϕ1 on
r is minimal if there does not exist a ϕ2 such that both ϕ1 and ϕ2 are satisfied
by r, and the predicates of ϕ2 are a subset of ϕ1. Chu et al. [6] also describe
additional properties for DCs and an inference system that helps eliminating
non-minimal DCs. An in-depth discussion on the theoretical aspects of DCs and
other ICs can be found in [5, 17].

3.1 DC discovery

The first step to discover DCs is to set the predicate space P from which DCs
are derived. Experts can define predicates for attributes based on the database
structure. One could also use specialized tools, e.g, [18], for mining join relation-
ships. Predicates on categorical attributes use operators {=, 6=}, and predicates
on numerical attributes {=, 6=, <,>,≤,≥}. Figure 1 illustrates a predicate space
for the relation employees from Section 1.

P1 : tx.Name = ty.Name P2 : tx.Name 6= ty.Name P3 : tx.Name = tx.Manager
P4 : tx.Name 6= tx.Manager P5 : tx.Manager = ty.Manager P6 : tx.Manager 6= ty.Manager
P7 : tx.Salary = ty.Salary P8 : tx.Salary 6= ty.Salary P9 : tx.Salary < ty.Salary
P10 : tx.Salary ≤ ty.Salary P11 : tx.Salary > ty.Salary P12 : tx.Salary ≥ ty.Salary
P13 : tx.Bonus = ty.Bonus P14 : tx.Bonus 6= ty.Bonus P15 : tx.Bonus < ty.Bonus
P16 : tx.Bonus ≤ ty.Bonus P17 : tx.Bonus > ty.Bonus P18 : tx.Bonus ≥ ty.Bonus

Fig. 1: Example of predicate space for employees.

The satisfied predicate set Qtµ,tν of an arbitrary pair of tuples (tµ, tν) ∈ r is
a subset Q ⊂ P such that for every P ∈ Q, P (tµ, tν) is true. The set of satisfied
predicate sets is the evidence set Er = {Qtµ,tν | ∀(tµ, tν) ∈ r}. Different tuple
pairs may return the same predicate set, hence, each Q ∈ Er is associated with
an occurrence counter.

A cover for Er is a set of predicates that intersects with every satisfied predi-
cate set of Er, and it is minimal if none of its subsets equally intersects with Er.
The authors of FASTDC demonstrate that minimal covers of Er represent the
predicates of minimal DCs [6]. Thus, the DC discovery problem becomes finding
covers for evidence set Er.

FASTDC uses a depth-first search (DFS) strategy to find minimal covers for
Er. Predicates of P are recursively arranged to form the branches of the search
tree. To optimize the search, predicates that cover more elements of the evidence
set are added to the path first. As minimal covers are discovered, unnecessary
branches of the DFS are pruned with the inference system. Any path of the tree
is a candidate cover that identifies a set of elements Epath ⊂ Er not yet covered.
When a candidate cover includes a predicate P , elements that contain P are
removed from its corresponding Epath. The search stops for a branch when there
are no more predicates in Epath. If there are remaining elements in Epath, then
the related candidate cover is not minimal. The candidate cover is minimal if
satisfies minimality property and Epath is empty.
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The authors of FASTDC also present two modifications for their algorithm:
A-FASTDC and C-FASTDC.

A-FASTDC is an algorithm for discovering approximate DCs, that is, DCs
whose number of violations is bounded. The algorithm uses the same evidence
set Er as FASTDC, but modify the minimal cover search to work with ap-
proximation levels ε. In short, the search prioritizes predicates that appear in
the most frequent predicate sets of Er. The search stops for branches of the
search tree when their predicates cover frequent predicate sets. This means that
the frequency of the predicate sets that were not used in the search are below
a threshold ε |r| (|r| − 1). This approximate approach is only possible because
the evidence set Er counts the number of times a predicate set appears in the
dataset.

C-FASTDC discovers DCs with constant predicates. It builds a constant
predicate space from attribute domains and then follows an Apriori approach
to identify τ -frequent constant predicate sets. A constant predicate set C is τ -
frequent if |sup(C,r)||r| ≥ τ , where sup(C, r) is the set of tuples of r that satisfy
all predicates of C [6]. As τ -frequent predicate sets C are identified, FASTDC
discovers the variable predicates holding on sup(C, r) and outputs DCs that are
combinations of C and the variable predicates.
Challenge. FASTDC builds the evidence set by evaluating every predicates of
the predicate space P on every pair of tuples of r. This computation requires
|P| × |r|2 predicate evaluations, of which at least half return false if we consider
groups of predicates {P, P , ...}. We next describe how BFASTDC minimizes this
computational cost.

4 The BFASTDC Algorithm

BFASTDC operates at the bit level and takes advantage of the inversion and
implication properties presented in Table 2. The computational cost of our ap-
proach grows as a function of the number of predicates that evaluate to true,
and is potentially smaller than FASTDC. We next describe how to set simple
data structures to represent predicate satisfaction.

4.1 Data structures

Attribute-values maps. Attribute values are organized as entries 〈k, l〉, where
key k is an element of the set of values in attribute Aj , and l is a list of tuple
identifiers such that ∀id ∈ l then tid[Aj ] = k. Procedure Search(Aj , k) finds
the list l for k in Aj . Predecessors(Aj , k) is defined for numerical attributes.
It returns the set L2 in Aj consisting of lists associated with the sequence of the
next k2 smaller than k. Notice that Search(Aj , k) and Predecessors(Aj , k)
may return ∅ if they find no tuple identifiers associated with k. Figure 2.a depicts
the assignment of tuples identifiers for employees. In the example, a key “Jim”
from attribute Name is inputted to Search(Manager,Jim); and a key 1100
from attribute Bonus is inputted to Predecessors(Salary,1100).
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Name
k l

John 0
Brad 1
Jim 2
Paul 3

Manager
k l

Frank 1
Mark 2
Jim 0,3

Salary
k l

1000 0,1
1200 3
3000 2

Bonus
k l

300 0
400 1,3
1100 2

(2, 0) (2, 3) =

(0, 3) (3, 0) =

(0, 1) (1, 0) =

(0, 2) (1, 2) <

a. Assign tuple identifiers.

b. Generate tuple pairs.

1

Fig. 2: Organizing attribute values: (a) assign tuple identifiers; (b) generate per-
mutations (dashed line arrows)/Cartesian Products (solid line arrows).

Bit vectors. A bit vector B is associated with a predicate P to represent the
relationship between P and the tuple pairs that satisfy P . Notice that a relation
instance of size |r| generates tuple pairs: (t0, t0), (t0, t1), ..., (t|r|, t|r|). Function 1
returns a unique identifier λ for a given pair of tuples (tµ, tν) of r. Bit vector
B holds 1 at position λ only if λ corresponds to a pair of tuples that satisfy P ,
otherwise B holds 0.

λ(tµ, tν , r) = (|r|µ) + ν (1)

Example 2 Consider the predicate P5 : tx.Manager = ty.Manager and the
relation employees from Section 1. In the sample, Predicate P5 is satisfied by the
following tuple pairs: (t0, t3) and (t3, t0). From Function 1, considering the size of
the instance |empolyees| = 4, with λ(t0, t3, employees) and λ(t3, t0, employees)
we get tuple pairs identifiers λ = 3 and λ = 12. These λ are the indexes for
which the bit vector associated with P5, B5, holds true.

4.2 Building bit vectors

Before describing the strategies to efficiently obtain λ, we add some remarks
regarding the possible forms of predicates.

Predicates involve one or two attributes, conventionally {A1} and {A1, A2};
and can be defined for two, (tx, ty), or one tuple, (tx, tx). We denote Pα and Pβ
to distinguish between two-tuple and single-tuple predicates, respectively. Let
Pwo be a predicate with the operator wo, wo ∈ W : {=, 6=, <,≤, >,≥}. Hence,
Pw1
α : tx.A1 = ty.A1 exemplify a two-tuple equality predicate on attribute {A1},
Pw2

β : tx.A1 6= tx.A2 exemplify a single-tuple inequality predicate on attributes
{A1, A2}, and so on. To ease notation for (in)equality predicates, when o = 1

and o = 2, we assume P̂α ≡ Pw1
α , P̃α ≡ Pw2

α and P̂β ≡ Pw1

β , P̃β ≡ Pw2

β .
Logical operations are enough to set some of the bit vectors, but they require

auxiliary bitmasks to prevent bit vectors B from holding incorrect values. Let
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exponentiation denote bit repetition, e.g., 103 = 1000. A bitmask maskst =
(z1, ..., z|r|), where zn = 10|r|, helps operations on single-tuple predicates as
they are not related to pair of tuples (tµ, tν) if tµ 6= tν . Similarly, a bitmask
masktt = (z1, ..., z|r|), where zn = 01|r|, helps operations on two-tuple predicates
as they are not related to pair of tuples (tµ, tν) if tµ = tν .

Next, we describe four strategies that arrange the set of bit vectors B as-
sociated with the predicate space P. Every B ∈ B is filled with zeros at the
start.
1. Predicates involving one categorical attribute. Consider a predicate of
the form P̂α : {tx.A1 = ty.A1}, and its associated bit vector B̂α. Given an entry
〈k, l〉 of A1 where |l| > 1, permutations of two elements taken from l represent
tuple pairs (tµ, tν) that satisfy P̂α. From Function 1, these permutations generate
tuple pair identifiers λ at which bit vector B̂α is set to one, i.e, B̂α,λ ← 1. Figure
2.b illustrates some tuple pairs arranged for employees. For entry 〈Jim, {0, 3}〉
from attribute Manager, tuple pairs (0, 3) and (3, 0) do satisfy a two-tuple
equality predicate involving the attribute. This process repeats for every entry
of A1.

Now consider a predicate P̃α : {tx.A 6= ty.A}, and its associated bit vector
B̃α. Observe that B̃α is the logical complement of B̂α. Thus, B̃α derives from a
disjunction (∨) followed by an exclusive-or operation (⊕) : B̃α ← (B̃α∨masktt)⊕
B̂α.
2. Predicates involving two categorical attributes. Suppose that we want
to find associations from attribute values ofName to attribute values ofManager
in employees. Entries 〈Jim, {2}〉 of Name and 〈Jim, {0, 3}〉 of Manager gen-
erate an equality association, which is represented by the Cartesian product
{(2, 0), (2, 3)}. Thus, consider an entry 〈k1, l1〉 taken from A1 and a list of tuple
identifiers l2 such that l2 ← Search(A2, k1). Cartesian products l1×l2 represent
tuple pair identifiers (tµ, tν) that either satisfy a predicate P̂α : {tx.A1 = ty.A2}
or P̂β : {tx.A1 = tx.A2}. Given λ corresponding to (tµ, tν) ∈ l1 × l2: if tµ 6= tν
then B̂α,λ ← 1; otherwise, B̂β,λ ← 1. Such process runs for every entry of A1.

Computing B̃α ← (B̃α ∨masktt) ⊕ B̂α solves P̃α. As for P̃β , it is sufficient
to compute B̃β ← (B̃β ∨maskst)⊕ B̂β .
3. Predicates involving one numerical attribute. Numerical attributes
additionally require predicates with the operators {<,≤, >,≥}. Given an entry
〈k1, l1〉 in A1, the set L2 such that L2 ← Predecessors(A1, k1) and lists of
tuple identifiers l2 ∈ L2, the Cartesian product of every l1 × l2 represent tuple
pairs (tµ, tν) that satisfy a predicate with the less than operator, Pw3

α . The tuple
pair identifiers λ for which Bw3

α holds one come from the products generated for
every entry from A1.

Bit vectors B̂α and B̃α are set using permutations (strategy one). The predi-
cates with the remaining operators are solved from B̂α and Bw3

α . Predicate with
less than or equals operator is given by: Bw4

α ← (Bw3
α ∧ B̂α), with greater than:

Bw5
α ← Bw4

α , and greater than or equals: Bw6
α ← (Bw5

α ∧ B̂α).
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4. Predicates involving two numerical attributes. Bit vectors for single
and two-tuple predicates {B̂α, B̃α, B̂β , B̃β} are set using Cartesian products from
attributes A1 and A2 (strategy two). In the same spirit, a slight modification
on strategy three is sufficient to set order predicates involving two attributes.
Cartesian products l1 × l2 are generated such that 〈k1, l1〉 is taken from A1 and
each l2 ∈ L2 is taken from Predecessors(A2, k1). These products generate
tuple pair identifiers λ that either satisfy Bw3

α or Bw3

β . The logical operations de-
scribed earlier are applied on {B̂α, B̃α, Bw3

α , B̂β , B̃β , B
w3

β } to solve the remaining
predicates.

4.3 Fitting bit vectors into memory

The length of a bit vector grows as a function of the relation instance size. A
single bit vector would occupy 400Mb for a relation with 20k tuples. To avoid
this problem and handle large relation instances, BFASTDC splits B into smaller
chunks: B =

∑
s∈S bs. The number of chunks is given by |S| = d|r|2 /ωe, where

ω defines a maximum chunk size. The chunk size ω is related to the amount of
available memory and bounds the range that chunk bs operates.

Let bs be a chunk being evaluated in turn s. Assume that a list of tuple pair
identifiers Λ = {λ1, ..., λc, ..., λ|Λ|}, λc < λc+1, acknowledges Bλc to be true. The
only portion of B in memory is bs, so λc can be used to set bs,λc only if it is
in the range covered by bs. If not, list Λ is skipped and the last λc used in Λ
is marked. The list Λ can be iterated from λc+1 in the next time it is acquired
because tuple pair identifier λc will never be in the range of subsequent chunks
bs+1. Figure 3.a illustrates tuple pair identifiers on setting bit chunks. For better
visualization, it considers only a subset of P from Figure 1.

Λ = {λ (t0, t3,employees), λ (t3,t0,employees )}

Λ = {3, 12}

0 1 2 3 4 5 6 7 12 15

0 0 0 1 0 0 0 0B5
{

0 1 1 0 1 0 1 1B6
{

0 1 0 0 1 0 0 0B7
{

0 0 1 1 0 0 1 1B8
{

0 1 2 3 4 5 6 7 15

Buffer
{P6, P7}+1
{}+1
{P6, P8}+2

Evidence Set
{P6, P7}+2
{P6, P8}+3
{P5, P8}+1

ω

ρ

a. Set B. b. Transpose B. c. Store Qλ .

1

Fig. 3: Evidence set generation: (a) Fill chunks of size ω = 8; (b) Transpose
chunks to buffer of size ρ = 4; (c) Insert the buffer content into evidence set and
update the predicate sets counters.
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4.4 Assembling the evidence set

Each bit vector B ∈ B represents the set of tuple pairs that satisfy predicate P .
Conversely, each element in the evidence set, E ∈ Er, is the satisfied predicate
set of a pair of tuples. Our algorithm uses the same DFS strategy as FASTDC
to search for minimal covers, hence, we need to transpose B into Er.

Let i = 0, ..., |P|. Considering chunks of bit vectorsB1 = {b1,1, ..., b1,S}, ..., B|P| =
{b|P|,1, ..., b|P|,S}, and B = {B1, ..., B|P|}, Chunks bi,s are transposed all at once
(see Figure 3). The evidence set is built by inserting satisfied predicate sets
Qtµ,tν into set Er (see Figure 3.c). We can assume that Er = {Qλ | ∀λ ∈ r}
because λ is a unique identifier for pair of tuples tµ, tν ∈ r. If bi,s,λ = 1, then
Pj ∈ Qλ. Notice that we only need to iterate over bi,s at indices λ that are set
to true.

There are ω satisfied predicate sets Q to insert into Er at each turn s. Given,
1 < ρ < ω, we have found that using a buffer holding ρ elements Q saves memory
and decreases overall running time. If bi,s,λ = 1, and λ is out of the buffer range,
we skip iteration bi,s until the next round (similarly to chunks range scheme). At
this stage, the predicate set counters of Er are updated for further approximate
discovery. Figure 3.b illustrates a buffer operation.

4.5 Implementation details

Hash-based dictionaries group entries of categorical attributes. Building them is
linear since insertions on hash-based dictionaries are constant in time. Lookup
operations are also performed in constant-time. We used sorted arrays to group
entries of numerical attributes because they support operations {<,≤, >,≥}.
Given a numerical entry 〈k, l〉, k and l are stored separately, into position h
of two different arrays. A numerical entry is realigned by pairing both arrays
with the same index h. For sorting, we have adapted the Quicksort algorithm
to return the list of tuple identifiers for each distinct attribute value. Numerical
entries are sorted according to k, which allows us to use binary search3. Finally,
chunks and buffers are implemented as simple bitsets.

5 Experimental Study

In this section, we present our experimental study of BFASTDC. We compare
BFASTDC with FASTDC to evaluate the scalability of our algorithm in the
number of tuples and predicates. We also evaluate the performance of the al-
gorithms on discovering approximate and constants DCs. Finally, we evaluate
the effects that different sizes of chunks and buffers produce on the execution of
BFASTDC.

3 We have adapted binary search for procedure Predecessors(Aj , k).
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5.1 Experimental setup

Implementation and hardware. We implemented FASTDC and BFASTDC
using Java programming language version 1.8. The algorithms use the same
implementations of predicate space building and minimal cover search. To per-
form the experiments, we used a machine with a 3.4GHz Core i7, 8MB of L3
cache, 8GB of memory, running Linux. The algorithms run in main memory
after dataset loading.
Datasets and predicate space. We used both synthetic and real-life datasets4:
Tax and Stock. Tax is a synthetic compilation of personal information that in-
cludes fifteen attributes to represent addresses and tax-records. Stock gathers
data from historical S&P 500 stocks in the form of a relation with seven at-
tributes. We used Tax and Stock in our experiments because these datasets
have already been used to evaluate DC discovery [6]. With regard to predicate
spaces, we defined single and two-tuple predicates on: categorical attributes us-
ing operators {=, 6=}; numerical attributes using operators {=, 6=, <,>,≤,≥}.
We defined predicates involving two different attributes provided that the values
of the two attributes were in the same order of magnitude.

5.2 Results and discussion

In the first four experiments, we fixed chunk and buffer size of BFASTDC to
4000kb and 12kb, respectively. These parameters are discussed in the fifth ex-
periment. Furthermore, we report the average runtime of five runs for each ex-
periment. Also, we consider a running time limit of 48 hours for all runs.
Exp-1: scalability in the number of tuples. We varied the number of tu-
ples from 10,000 to 1,000,000 for Tax, and from 10,000 to 122,000 for Stock.
Keeping the size of the predicate spaces constant for both datasets (|P| = 50),
we measured the running time in seconds of FASTDC and BFASTDC. Figure
4 shows their scaling behavior (Y axis are in log scale). The running time of
both algorithms increases in a quadratic trend as we add more tuples in their
input. However, the running time for BFASTDC were at least one order of mag-
nitude smaller than the running time for FASTDC. To process 400,000 tuples of
Tax (see Figure 4a), FASTDC took a little more than 2656 minutes. In contrast,
BFASTDC processed the same input in approximately 110 minutes; an improve-
ment ratio of approximately 24 times. FASTDC was not able to process more
than 400,000 tuples of Tax within the running time limit. In turn, BFASTDC
processed the entire Tax dataset (one million tuples) in approximately 16 hours.
BFASTDC was also faster than FASTDC when running over Stock (see Figure
4b). It processed the full dataset in approximately 47 minutes, while FASTDC
took more than 12 hours to reach completion.
Exp-2: scalability in the number of predicates. Setting the input of the
algorithms to the first 20,000 tuples of Tax and Stock, we varied the number of
predicates from 10 to 60. The attributes for which predicates were added to the

4 Available at: http://da.qcri.org/dc/
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Fig. 4: Scalability of BFASTDC and FASTDC in the number of tuples.

predicate spaces were chosen at random. As shown in Figure 5 (Y axis are in log
scale), the running time of the algorithms increases exponentially w.r.t. the num-
ber of predicates. In addition, the BFASTDC running time improvements over
FASTDC degrades when the search for minimal covers includes larger predicate
spaces.
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Fig. 5: Scalability BFASTDC and FASTDC in the number of predicates.

Exp-3: approximate DC discovery. For this experiment, we kept the number
of tuples and the size of predicate space constant (|r| = 20, 000 and |P| = 50)
for both datasets. We gradually increased the approximation levels ε from 10−6

to 2 × 10−5. Figure 6 shows the running time for the approximate versions of
BFASTDC and FASTDC (Y axis are in log scale). Despite their small improve-
ments, the running time for both algorithms, for either Tax or Stock, remains
in their original order of magnitude provided that only approximation levels dif-
fer. Indeed, varying the approximation levels did not impact on the algorithms’
running time as much as varying the number of tuples or predicates did.
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Exp-4: constant DC discovery. We used the same number of tuples and
predicate space size as we did in experiment three. Then, we gradually increased
the frequency threshold τ from 0.1 to 0.5. Figure 7 shows the running time that
each algorithm took to discover constant DCs (Y axis are in log scale). The al-
gorithms are sensitive to threshold τ . For Tax, smaller thresholds τ resulted in
longer running times. As for Stock, FASTDC and BFASTDC returned within vir-
tually the same running time. That is because there were no constant predicates
to be considered by the variant portion of the algorithms.
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Fig. 6: Approximate DC discovery.
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Fig. 7: Constant DC discovery.

Exp-5: BFASTDC parameters. We report this experiment using only Tax
dataset because the same behavior and very similar parameters were seen for
Stock. Fixing |P| = 50, and |r| = 100, 000, we varied chunk size ω from 250kb to
64, 000kb, and buffer size ρ from 5kb to 19kb. Figure 8 shows that the running
time does not improve as we rashly increase the size of chunks or buffers. For
example, configurations where ω < 10000kb and ρ < 14kb produced better
results if compared to configurations with higher values. The best setting was
ω = 4000kb and ρ = 12kb. To better understand this result, we monitored
the cache activities in the evidence set building phase of BFASTDC. Table 3
shows some ratios between the monitoring of BFASTDC in its best setting and
BFASTDC running in two extreme settings. The setting with bigger ω and ρ
suffers from L1 cache invalidation (i.e., chunks are bigger than the cache line
leading to cache misses). But, we observe an inflection point when accessing
the LLC: bigger chunks need less concurrent access with less cache pollution.
Therefore, we observe a sweet-spot where BFASTDC can be cache-efficient.

Table 3: Cache activities
Chunk (ω) and buffer (ρ) sizes LLC misses L1 misses Running time
Baseline: ω = 4000kb, ρ = 12kb 1 1 1
Low extreme: ω = 250kb, ρ = 5kb 2.868 0.621 1.577
High extreme: ω = 64000kb, ρ = 19kb 1.445 2.104 2.322
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Fig. 8: Effect of different chunk/buffer sizes on running time.

Discussion. Our experiments confirm our earlier hypothesis: there is no need
to check every predicate for every pair of tuples. With its attribute values or-
ganization, BFASTDC tracks bit vectors only for tuple pairs that do satisfy
predicates. The bitwise representation of predicate satisfaction makes it possible
to use logical operations, which are optimized in all modern CPU architectures.
Such operations are cache-dependent because bit vectors are packed into pro-
cessor words for processing. That is why there was an inflection point in the
last experiment where the bigger the chunk and buffer sizes were, the worse the
cache usage, and, therefore, the higher the running time. Experiment one demon-
strates the effectiveness of BFASTDC in building the evidence set and the deep
impact it had on the overall DC discovery performance. The improvements were
seen in the subsequent experiments: BFASTDC was faster than FASTDC in ap-
proximate and constant DC discovery. Because of the exponential nature of the
DFS used for minimal cover search, the two algorithms did not scale well with
the number of predicates. Future studies could investigate not only algorithmic
improvements for this phase, but how approximate discovery fits in there.

6 Conclusions

We presented BFASTDC, a bitwise, instance-driven algorithm for mining min-
imal DCs from relational data. BFASTDC improves the evidence set building
phase of FASTDC based on two key principles: (i) it combines tuple identifiers
from related values and avoids testing every pair of tuples on every predicate,
and (ii) it exploits the implication relation between predicates to operate at bit
level. BFASTDC was up to 24 times faster than FASTDC in our experimental
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study. In addition, BFASTDC is able to work with noisy datasets when it is
modified to discover approximate and constant DCs. For those reasons, we be-
lieve BFASTDC can be a valuable part of DC-dependent tools. Future research
should improve minimal covers search and evaluate the quality of the discovered
DCs on real use cases.
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