
The Uniform Tuning Problem on
SQL-On-Hadoop Query Processing

Edson Ramiro Lucas Filho
Federal University of Parana, Brazil

Supervised by: Eduardo Cunha de Almeida
Expected Graduation: Oct 2018.

erlfilho@inf.ufpr.br

ABSTRACT
SQL-On-Hadoop systems translate a given query into sev-
eral MapReduce jobs. Each job executes a di↵erent set of
query operators over di↵erent input data sets, which leads to
distinct resource consumption patterns. Once each job has a
di↵erent resource consumption pattern they should receive
tailor made tuning setup. However, SQL-On-Hadoop sys-
tems propagate the same tuning to every job in the query
plan because they are not able to apply a specific tuning
setup per job. Propagating the same tuning through the
query plan is a problem because it drives the query to sub-
optimal performance and drives tuning advisors to re-profile
similar jobs several times. In our research we characterize
this problem and propose a solution. Preliminary results
show that our approach can reduce the number of profiles
required by tuning advisors in 67% for TPC-H.

Keywords
Query Tuning; SQL-On-Hadoop; Directed Acyclic Graph

1. PROBLEM
The MapReduce programming model scales the process-

ing of large amounts of data on distributed machines by de-
composing the computation in a divide-and-conquer man-
ner. However, to write MapReduce programs developers
need to be acquainted with the details of the MapReduce
frameworks (e.g., Spark [12], Hadoop [1]). The complexity
of writing such programs is simplified by declarative lan-
guages provided by query processing engines built on top of
MapReduce frameworks like Pig [8], Hive [10] and Spark-
SQL [2] (a.k.a., SQL-On-Hadoop systems [3]).

SQL-On-Hadoop systems are designed for batch and ana-
lytics processing that demand long term running jobs. When
developers need to decrease the execution time of such jobs
they can configure the tuning setup to achieve better perfor-
mance. Once the tuning setup is configured, they are applied
in the query source code, where this tuning setup has been
generated by tuning advisors or hand made by developers.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGMOD’17 Student Research Competition May 14-19 2017, Chicago, IL,
USA
c� 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4199-8/17/05.

DOI: http://dx.doi.org/10.1145/3055167.3055172

Table 1: The MapReduce tuning advisors.

Tuning System Hadoop Improvement

Gunther 1.x.x 25%-33%
MR-COF 0.20.2 35%
MRTuner 1.1.1 1x
Panacea 1.x.x 1.6x-2.9x
MROnline YARN 30%
JellyFish YARN 24%-65%
GeneExpr 1.2.1 46%-71%

During the query processing the SQL-On-Hadoop systems
translate a given query into a query plan. The query plan
consists of a set of MapReduce jobs organized into a Di-
rected Acyclic Graph (DAG). Each job of the query plan
has a di↵erent set of query operators and a di↵erent set
of input data, which leads to distinct resource consump-
tion patterns. Thus, once a query plan consists of several
jobs with distinct resource consumption patterns the tuning
setup should be tailor made for each job in order to achieve
optimal performance. However, the SQL-On-Hadoop sys-
tems propagate the same tuning to every job because they
are not able to di↵erentiate jobs within the query plan in or-
der to apply a specific tuning setup per job. Our hypothesis
is that jobs that execute the same query operators over simi-
lar input data set have similar resource consumption pattern
and, then, should receive the same tuning.

We named the problem of propagating the same tuning
through the query plan as the Uniform Tuning Problem
(UTP). In our research we identify and characterize its con-
sequences. Our findings were obtained with Hive and Hadoop
and indicates that in the presence of the UTP the tuning ad-
visors may generate multiple tuning options not applicable
for one query and lead to misconfigurations.

2. RELATED WORK
Table 1 presents recent tuning advisors like Panacea [7],

Gunther [5], MR-COF [6], MRTuner [9], MROnline [4], and
JellyFish [11] and their improvement rate, as well as the
supported Hadoop version. Speedups may vary from 24%
up to 2.9x of the overall execution time depending on the
workload. However, these tuning advisors are designed for
MapReduce frameworks and lack on dealing with the UTP.

The tuning advisors generate multiple tuning options, be-
cause they provide one tuning setup per job, but they also
leave to the developers the task of choosing the right tuning
setup to be applied in the query. Once SQL-On-Hadoop sys-
tems can accept only one tuning setup per query this leads



Figure 1: The process of calculating the code signature for each job of the query plan upfront execution.

to the UTP. The multiple tuning options lead developers to
misconfigure the query because the chosen tuning is tailor
made for a specific job within the query plan, but it will be
applied for jobs with di↵erent resource consumption.

In order to generate the tuning setup some tuning advisors
profile the jobs, others simulate their execution, and others
analyze their logs. Despite where tuning advisors profile,
simulate or analyze the logs of the jobs they should not use
the entire query workload as one workflow to avoid the UTP
during the generation of the query setup. Profiling a whole
query generates a generic view of the workload and may
lead the tuning advisors to draw sub-optimal tuning setup
and may lead to waste of resources. Thus, we observe that
tuning advisors should be able to profile, simulate or analyze
the logs of individual jobs, but with a method to apply the
tuning setup to each job of the query plan. Preferably, to
apply the tuning setup upfront execution because of the ad-
hoc queries inherent to the analytics workloads.

3. APPROACH
Figure 1 illustrates our approach, the Code Signature In-

dex, that applies a specific tuning setup to each job of the
query plan. Users submit queries to the SQL-On-Hadoop,
which translates the queries into query plans. After the
query translation and before the SQL-On-Hadoop system
queue jobs in the MapReduce framework we calculate a code
signature for each job. The code signature is a hash value
built with the order of magnitude of the input data size and
the list of query operators of the job. The Algorithm 1 de-
scribes the process to calculate the code signature. Other
information can be easily added to the hash such as selec-
tivity of the operators.

Our approach implements a hash table where the code
signatures are keys and the tuning setups values. Thus,
by using the code signature we can map upfront execution
each job to a specific tuning. Also, the same code signature
repeats among the jobs from the same query plan and among
jobs from di↵erent query plans.

Our approach links the appropriate tuning setup to the
code signature by using third part tuning advisors to gen-
erate the tuning setup. When a code signature is added to
the hash table, there will be no tuning setup. Thus, at this
point, our approach calls a tuning advisor to generate the
corresponding tuning setup. From this point, all subsequent
jobs with the same code signature will receive the same tun-
ing setup. In order to update the hash table we may execute

Algorithm 1: How to calculate the code signature.

Data: a job of a query plan
Result: code signature of the given job

1 scientificNotation = convertToScientific(job.inputSize);
2 exponent = scientificNotation.getExponent;
3 for op : job.queryOperators do

4 if list.has(op) then

5 list.add(op, list.get(op)+1);
6 else

7 list.add(op, 1);
8 end

9 end

10 return code signature = exponent:list;

in background di↵erent tuning advisors and then choose the
best tuning among the options.

4. RESULTS
In this study we observed that MapReduce tuning advi-

sors lack on optimize SQL-On-Hadoop systems because the
presence of the Uniform Tuning Problem. Our Code Signa-
ture Index approach copes the UTP mapping each job up-
front its execution to specific tuning setup. Also, it decreases
the number of profile operations required by the tuning ad-
visors, which are very costly.

In order to identify the number of profile operations de-
creased by our approach we executed the 22 TPC-H queries
against our modified version of Hive (v0.13.1) over Hadoop
(v2.7.3) on scale factors of 10, 30 and 100. Our experimen-
tal setup is a 3 node cluster. Each node has a Intel Core
i3, 4GB of RAM and 1TB of disk. The queries on scale
factors of 10 and 30 produced 163 jobs and on factor of 100
produced 164 jobs. For the 3 factors we found 55 unique
code signature, which means that we do not need to profile
67% of the jobs for TPC-H because they execute the same
query operators over the similar input data sets. We are
studying the relation of the selectivity and other factors on
the code signature. We are also working to support other
query processing engines like SparkSQL.

5. ACKNOWLEDGMENTS
This work is funded by the Brazilian Innovation Agency

(FINEP) project (LNCC-FACC-CICN, 01.13.0056.00), CNPq
(grant 441944/2014-0).



6. REFERENCES
[1] Apache Hadoop. http://hadoop.apache.org, 2014.
[2] M. Armbrust, A. Ghodsi, M. Zaharia, R. S. Xin,

C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng,
T. Kaftan, and M. J. Franklin. Spark SQL: Relational
Data Processing in Spark. In Proceedings of the 2015
ACM SIGMOD International Conference on
Management of Data - SIGMOD ’15, pages
1383–1394, New York, New York, USA, may 2015.
ACM Press.

[3] A. Floratou, U. F. Minhas, and F. Özcan.
SQL-on-Hadoop: Full Circle Back to Shared-Nothing
Database Architectures. Proceedings of the VLDB
Endowment, 7(12):1295–1306, aug 2014.

[4] M. Li, L. Zeng, S. Meng, J. Tan, L. Zhang, A. R.
Butt, and N. Fuller. MRONLINE: MapReduce Online
Performance Tuning. Proceedings of the 23rd
International Symposium on High-performance
Parallel and Distributed Computing - HPDC ’14,
pages 165–176, 2014.

[5] G. Liao, K. Datta, T. L. Willke, V. Kalavri,
V. Vlassov, and P. Brand. Gunther: Search-Based
Auto-Tuning of MapReduce. Proceedings of the 19th
International Conference on Parallel and Distributed
Computing, Euro-Par, 8097:406–419, aug 2013.

[6] C. Liu, D. Zeng, H. Yao, C. Hu, X. Yan, Y. Fan, C.-H.
Hsu, and L. Yang. MR-COF: A Genetic MapReduce
Configuration Optimization Framework. In G. Wang,
A. Zomaya, G. Martinez Perez, and K. Li, editors,
Theoretical Computer Science, volume 6082, pages
338–347–347, Cham, 2015. Springer International
Publishing.

[7] J. Liu, N. Ravi, S. Chakradhar, and M. Kandemir.
Panacea: Towards Holistic Optimization of
MapReduce Applications. In Proceedings of the Tenth
International Symposium on Code Generation and
Optimization - CHO ’12, page 33, New York, New
York, USA, mar 2012. ACM Press.

[8] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig Latin: a Not-So-Foreign Language for
Data Processing. In Proceedings of the 2008 ACM
SIGMOD International Conference on Management of
Data - SIGMOD ’08, page 1099, New York, New
York, USA, jun 2008. ACM Press.

[9] J. Shi, J. Zou, J. Lu, Z. Cao, S. Li, and C. Wang.
MRTuner: A Toolkit to Enable Holistic Optimization
for MapReduce Jobs. In Proceedings of the VLDB
Endowment, volume 7, pages 1319–1330. VLDB
Endowment, aug 2014.

[10] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wycko↵, and R. Murthy. Hive:
a Warehousing Solution Over a Map-Reduce
Framework. Proceedings of the VLDB Endowment,
2(2):1626–1629, aug 2009.

[11] Xiaoan Ding, Yi Liu, Depei Qian, X. Ding, Y. Liu,
and D. Qian. JellyFish: Online Performance Tuning
with Adaptive Configuration and Elastic Container in
Hadoop YARN. In Proceedings of the International
Conference on Parallel and Distributed Systems -
ICPADS, volume 2016-Janua, pages 831–836. IEEE,
dec 2016.

[12] M. Zaharia, M. Chowdhury, M. J. Franklin,

S. Shenker, and I. Stoica. Spark : Cluster Computing
with Working Sets. HotCloud’10 Proceedings of the
2nd USENIX Conference on Hot Topics in Cloud
Computing, page 10, jun 2010.


