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Checking	  Rules	  (1/2)	  
CW ` @Id type att;

CR � CW ` @Id type att; ok

(1)

CW ` type att;
CR � CW ` type att; ok

(2)

CR � CW ` type att; ok

✓
att not declared

in CW

◆
(3)

CW ` @Ignore type1 att;
CR � CW ` type2 att; ok

(4)

CW ` type att;
CR � CW ` @IgnoreLoad type att; ok

(5)

CW ` type att;
CR � CW ` @IgnoreSave type att; ok

(6)

CW ` type att;
CR � CW ` @Ignore type att; ok

(7)

Fig. 4: Selected rules for (1, 2) keeping an attribute, lazily (3, 4)
adding, (5) overwriting, and (6, 7) explicitly removing an attribute.

2) Renaming Attributes: Figure 5 lists rules concerning the
annotation @AlsoLoad. They detect ambiguous mappings in
renamings (c.f., Section II-B3).

3) Ignoring Attributes: Rule 13 in Figure 5 concerns the
annotations for ignoring attributes in writing or reading. Ig-
noring annotations can be combined freely without risk.

C. Nontranstitivity of Type Checking Rules

Our type checking rules are not transitive in the following
sense: Given a sequence of versions X , Y , and Z of an object
mapper class declaration, if Y type checks as valid w.r.t. X ,
and Z type checks as valid w.r.t. Y , it does not necessarily
follow that Z type checks as valid w.r.t. X . It turns out that
non-transitivity is helpful in detecting actual problems, as the
next example shows.

Example 5. We assume a sequence of versions X , Y , and
Z of an object mapper class declaration, with the following
judgments for attribute level:

X ` String level;

Y ` @Ignore String level;

Z ` Integer level;

Then according to rules (7) and (4), it holds that

X ` String level;

Y �X ` @Ignore String level; ok

Y ` @Ignore String level;

Z � Y ` Integer level; ok

yet Z does not type check as valid w.r.t. X . Thus, the release
of Z does not type check, due to issues with retyping. ⇤

In the example above, attribute level is re-introduced with a
different type. If the type had not been changed, then our type
checking rules would not have detected an issue. To be able to
capture this case as well, we extend our approach to checking
chains of object mapper class declarations (rather than pairs)
in Section IV-B.

IV. RELAXATIONS AND EXTENSIONS

We next discuss pragmatic relaxations and extensions.

A. Allowable Type Promotions

Our examples so far have only considered basic types for
class member attributes, such as String and Integer. We can
easily generalize to complex types.

Example 6. We consider the following judgments from two
different versions of the Player class declaration:

Playerc ` @Embedded A description;

Playerd ` @Embedded B description;

The Objectify annotation @Embedded stores structured data
within a single entity in a way so that it remains queryable.
We assume that A and B are different Java class names. ⇤

By our type checking approach, Playerd does not check as
valid w.r.t Playerc, since the types for attribute description
differ. Yet there are cases where this rule is overly restrictive.

Rule (14) below relaxes rule (2). We use the notation tBt

0 to
express that type t is compatible with t

0. This means that any
instance of t must be “loadable” as an instance of t

0 without
data loss. The trivial case is that t = t

0, yet we can also
allow for Short B Integer, since all instances of Short can be
converted to Integers.

CW ` type att;
CR � CW ` type0 att; ok

(type B type0) (14)

We look at type compatibility in more detail.
1) Conversion of Primitive Types: For the remainder of this

section, we focus on primitive types1 (i.e., Void, Boolean,
Byte, Short, Integer, Long, Float, Double, Character, String
and Object), and we discuss the risks when primitive type
attributes are loaded from a datastore.

a) Successful Conversion: A number of primitive types
can be converted safely into other primitive types, for instance,
ShortBInteger, FloatBDouble, and IntegerBString. Typically,
a primitive type t can be converted to a type t

0 if the memory
allocated to store objects of type t

0 is larger (or equal) than
the one allocated to objects of type t.

b) Incorrect Conversion: When a type t cannot be con-
verted to a type t

0, an exception may be raised. For instance, in
general it is not possible to convert a literal into a number, so
the conversion of a String into a Short will raise an exception.

1We somewhat abusively use the terms primitive types to refer to classes
of the java.lang package that wrap Java primitive types. Void, Character
and Object are not considered, as Objectify does not support them in entities.
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Checking	  Rules	  (2/2)	  

CW ` type att1;
CR � CW ` @AlsoLoad("att2") type att1; ok

(att2 not declared in CW ) (8)

CW ` type att2;
CR � CW ` @AlsoLoad("att2") type att1; ok

(att1 not declared in CW ) (9)

CW ` @annot type att1 CW ` type att2;
CR � CW ` @AlsoLoad("att2") type att1; ok

(@annot is @Ignore or @IgnoreSave) (10)

CW ` type att1 CW ` @annot type att2;
CR � CW ` @AlsoLoad("att2") type att1; ok

(@annot is @Ignore or @IgnoreSave) (11)

CR � CW ` @AlsoLoad("att2") type att1; ok

(att1 and att2 not declared in CW ) (12)

CW ` @annot1 type att1;
CR � CW ` @annot2 type att1; ok

✓
@annot1 and @annot2 are any of

@Ignore,@IgnoreSave,@IgnoreLoad

◆
(13)

Fig. 5: Selected rules for the @AlsoLoad annotation (8 - 12) and for ignoring attributes (13).

c) Conversion Returning a Corrupted Value: Surpris-
ingly, there are cases where Objectify allows a conversion,
even when types cannot be casted in Java. For instance, the
conversion of a positive Integer to a Short may return a
negative number. This situation is particularly dangerous from
a development and testing point-of-view as, since it does not
raise an exception, developers might not expect to be able to
convert an Integer to a Short. So when a corrupted value is
retrieved, they might not suspect a conversion problem, and
the problem does not appear systematically (it only appears
for certain values), which complicates testing.

B. Checking Chains of Class Declarations

We consider the unintentional reintroduction of attributes
a schema evolution pitfall (c.f. Section II-B4). These cases
are difficult to anticipate for developers, as the attribute that
existed in previous versions may have been removed from
the source code several releases back. Yet as discussed in
Section III-C, we may not always capture this problem by
type checking pairs of class declaration versions.

In order to reliably detect these problems at development
time, we check the whole sequence of class declarations
released into production to detect when attributes by the same
name have been removed and are now being reintroduced. The
necessary information is usually accessible from within the
IDE, since the source code repository is commonly integrated
with the IDE.

V. THE CONTROVOL FRAMEWORK

As a proof-of-concept, we have implemented our type
checking rules as the ControVol Eclipse plugin. We briefly
highlight the core features of ControVol, and refer to [16]
and [17] for details on the workflow as experienced by
developers. Our ControVol prototype currently supports Java
development against Google Cloud Datastore [1], using the
Objectify object mapper library. It is straightforward to extend

Fig. 6: ControVol suggests quick fixes to resolve warnings.

ControVol to other IDEs, NoSQL data stores, and object
mapper libraries.

ControVol captures changes to object mapper class dec-
larations during the IDE-integrated build process. ControVol
then compares object mapper class declarations to the release
history, as managed by the code repository. The plugin is
able to detect common schema evolution pitfalls involving
adding, renaming, and removing attributes. ControVol then
issues warnings accordingly.

ControVol can even suggest IDE-supported quick fixes
to help resolve problems. For instance, in the case of the
renaming problem triggered by the refactoring in Figure 2,
the ControVol dialog in Figure 6 proposes several fixes:

• Adding the Objectify annotation @AlsoLoad lazily re-
names level to rank. This ensures that no values are lost.

• Adding annotation @Ignore makes clear that attribute
level is intentionally discarded.

• Restoring attribute level prevents that its value is lost. In
this case, attributes level and rank co-exist.

ControVol currently type checks Java class declarations
w.r.t. all Objectify life-cycle annotations for class member
attributes, as listed in Section II. In the future, we plan
to also type check life-cycle annotations for methods. Yet
since the methods may contain arbitrary Java code, these are
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Example	  

CW ` @Id type att;
CR � CW ` @Id type att; ok

(1)

CW ` type att;
CR � CW ` type att; ok

(2)

CR � CW ` type att; ok

✓
att not declared

in CW

◆
(3)

CW ` @Ignore type1 att;
CR � CW ` type2 att; ok

(4)

CW ` type att;
CR � CW ` @IgnoreLoad type att; ok

(5)

CW ` type att;
CR � CW ` @IgnoreSave type att; ok

(6)

CW ` type att;
CR � CW ` @Ignore type att; ok

(7)

Fig. 4: Selected rules for (1, 2) keeping an attribute, lazily (3, 4)
adding, (5) overwriting, and (6, 7) explicitly removing an attribute.

2) Renaming Attributes: Figure 5 lists rules concerning the
annotation @AlsoLoad. They detect ambiguous mappings in
renamings (c.f., Section II-B3).

3) Ignoring Attributes: Rule 13 in Figure 5 concerns the
annotations for ignoring attributes in writing or reading. Ig-
noring annotations can be combined freely without risk.

C. Nontranstitivity of Type Checking Rules

Our type checking rules are not transitive in the following
sense: Given a sequence of versions X , Y , and Z of an object
mapper class declaration, if Y type checks as valid w.r.t. X ,
and Z type checks as valid w.r.t. Y , it does not necessarily
follow that Z type checks as valid w.r.t. X . It turns out that
non-transitivity is helpful in detecting actual problems, as the
next example shows.

Example 5. We assume a sequence of versions X , Y , and
Z of an object mapper class declaration, with the following
judgments for attribute level:

X ` String level;

Y ` @Ignore String level;

Z ` Integer level;

Then according to rules (7) and (4), it holds that

X ` String level;

Y �X ` @Ignore String level; ok

Y ` @Ignore String level;

Z � Y ` Integer level; ok

yet Z does not type check as valid w.r.t. X . Thus, the release
of Z does not type check, due to issues with retyping. ⇤

In the example above, attribute level is re-introduced with a
different type. If the type had not been changed, then our type
checking rules would not have detected an issue. To be able to
capture this case as well, we extend our approach to checking
chains of object mapper class declarations (rather than pairs)
in Section IV-B.

IV. RELAXATIONS AND EXTENSIONS

We next discuss pragmatic relaxations and extensions.

A. Allowable Type Promotions

Our examples so far have only considered basic types for
class member attributes, such as String and Integer. We can
easily generalize to complex types.

Example 6. We consider the following judgments from two
different versions of the Player class declaration:

Playerc ` @Embedded A description;

Playerd ` @Embedded B description;

The Objectify annotation @Embedded stores structured data
within a single entity in a way so that it remains queryable.
We assume that A and B are different Java class names. ⇤

By our type checking approach, Playerd does not check as
valid w.r.t Playerc, since the types for attribute description
differ. Yet there are cases where this rule is overly restrictive.

Rule (14) below relaxes rule (2). We use the notation tBt

0 to
express that type t is compatible with t

0. This means that any
instance of t must be “loadable” as an instance of t

0 without
data loss. The trivial case is that t = t

0, yet we can also
allow for Short B Integer, since all instances of Short can be
converted to Integers.

CW ` type att;
CR � CW ` type0 att; ok

(type B type0) (14)

We look at type compatibility in more detail.
1) Conversion of Primitive Types: For the remainder of this

section, we focus on primitive types1 (i.e., Void, Boolean,
Byte, Short, Integer, Long, Float, Double, Character, String
and Object), and we discuss the risks when primitive type
attributes are loaded from a datastore.

a) Successful Conversion: A number of primitive types
can be converted safely into other primitive types, for instance,
ShortBInteger, FloatBDouble, and IntegerBString. Typically,
a primitive type t can be converted to a type t

0 if the memory
allocated to store objects of type t

0 is larger (or equal) than
the one allocated to objects of type t.

b) Incorrect Conversion: When a type t cannot be con-
verted to a type t

0, an exception may be raised. For instance, in
general it is not possible to convert a literal into a number, so
the conversion of a String into a Short will raise an exception.

1We somewhat abusively use the terms primitive types to refer to classes
of the java.lang package that wrap Java primitive types. Void, Character
and Object are not considered, as Objectify does not support them in entities.

CW	   CR	  
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Example	  

CW ` @Id type att;
CR � CW ` @Id type att; ok

(1)

CW ` type att;
CR � CW ` type att; ok

(2)

CR � CW ` type att; ok

✓
att not declared

in CW

◆
(3)

CW ` @Ignore type1 att;
CR � CW ` type2 att; ok

(4)

CW ` type att;
CR � CW ` @IgnoreLoad type att; ok

(5)

CW ` type att;
CR � CW ` @IgnoreSave type att; ok

(6)

CW ` type att;
CR � CW ` @Ignore type att; ok

(7)

Fig. 4: Selected rules for (1, 2) keeping an attribute, lazily (3, 4)
adding, (5) overwriting, and (6, 7) explicitly removing an attribute.

2) Renaming Attributes: Figure 5 lists rules concerning the
annotation @AlsoLoad. They detect ambiguous mappings in
renamings (c.f., Section II-B3).

3) Ignoring Attributes: Rule 13 in Figure 5 concerns the
annotations for ignoring attributes in writing or reading. Ig-
noring annotations can be combined freely without risk.

C. Nontranstitivity of Type Checking Rules

Our type checking rules are not transitive in the following
sense: Given a sequence of versions X , Y , and Z of an object
mapper class declaration, if Y type checks as valid w.r.t. X ,
and Z type checks as valid w.r.t. Y , it does not necessarily
follow that Z type checks as valid w.r.t. X . It turns out that
non-transitivity is helpful in detecting actual problems, as the
next example shows.

Example 5. We assume a sequence of versions X , Y , and
Z of an object mapper class declaration, with the following
judgments for attribute level:

X ` String level;

Y ` @Ignore String level;

Z ` Integer level;

Then according to rules (7) and (4), it holds that

X ` String level;

Y �X ` @Ignore String level; ok

Y ` @Ignore String level;

Z � Y ` Integer level; ok

yet Z does not type check as valid w.r.t. X . Thus, the release
of Z does not type check, due to issues with retyping. ⇤

In the example above, attribute level is re-introduced with a
different type. If the type had not been changed, then our type
checking rules would not have detected an issue. To be able to
capture this case as well, we extend our approach to checking
chains of object mapper class declarations (rather than pairs)
in Section IV-B.

IV. RELAXATIONS AND EXTENSIONS

We next discuss pragmatic relaxations and extensions.

A. Allowable Type Promotions

Our examples so far have only considered basic types for
class member attributes, such as String and Integer. We can
easily generalize to complex types.

Example 6. We consider the following judgments from two
different versions of the Player class declaration:

Playerc ` @Embedded A description;

Playerd ` @Embedded B description;

The Objectify annotation @Embedded stores structured data
within a single entity in a way so that it remains queryable.
We assume that A and B are different Java class names. ⇤

By our type checking approach, Playerd does not check as
valid w.r.t Playerc, since the types for attribute description
differ. Yet there are cases where this rule is overly restrictive.

Rule (14) below relaxes rule (2). We use the notation tBt

0 to
express that type t is compatible with t

0. This means that any
instance of t must be “loadable” as an instance of t

0 without
data loss. The trivial case is that t = t

0, yet we can also
allow for Short B Integer, since all instances of Short can be
converted to Integers.

CW ` type att;
CR � CW ` type0 att; ok

(type B type0) (14)

We look at type compatibility in more detail.
1) Conversion of Primitive Types: For the remainder of this

section, we focus on primitive types1 (i.e., Void, Boolean,
Byte, Short, Integer, Long, Float, Double, Character, String
and Object), and we discuss the risks when primitive type
attributes are loaded from a datastore.

a) Successful Conversion: A number of primitive types
can be converted safely into other primitive types, for instance,
ShortBInteger, FloatBDouble, and IntegerBString. Typically,
a primitive type t can be converted to a type t

0 if the memory
allocated to store objects of type t

0 is larger (or equal) than
the one allocated to objects of type t.

b) Incorrect Conversion: When a type t cannot be con-
verted to a type t

0, an exception may be raised. For instance, in
general it is not possible to convert a literal into a number, so
the conversion of a String into a Short will raise an exception.

1We somewhat abusively use the terms primitive types to refer to classes
of the java.lang package that wrap Java primitive types. Void, Character
and Object are not considered, as Objectify does not support them in entities.

CW	   CR	  
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Example	  

CW ` @Id type att;
CR � CW ` @Id type att; ok

(1)

CW ` type att;
CR � CW ` type att; ok

(2)

CR � CW ` type att; ok

✓
att not declared

in CW

◆
(3)

CW ` @Ignore type1 att;
CR � CW ` type2 att; ok

(4)

CW ` type att;
CR � CW ` @IgnoreLoad type att; ok

(5)

CW ` type att;
CR � CW ` @IgnoreSave type att; ok

(6)

CW ` type att;
CR � CW ` @Ignore type att; ok

(7)

Fig. 4: Selected rules for (1, 2) keeping an attribute, lazily (3, 4)
adding, (5) overwriting, and (6, 7) explicitly removing an attribute.

2) Renaming Attributes: Figure 5 lists rules concerning the
annotation @AlsoLoad. They detect ambiguous mappings in
renamings (c.f., Section II-B3).

3) Ignoring Attributes: Rule 13 in Figure 5 concerns the
annotations for ignoring attributes in writing or reading. Ig-
noring annotations can be combined freely without risk.

C. Nontranstitivity of Type Checking Rules

Our type checking rules are not transitive in the following
sense: Given a sequence of versions X , Y , and Z of an object
mapper class declaration, if Y type checks as valid w.r.t. X ,
and Z type checks as valid w.r.t. Y , it does not necessarily
follow that Z type checks as valid w.r.t. X . It turns out that
non-transitivity is helpful in detecting actual problems, as the
next example shows.

Example 5. We assume a sequence of versions X , Y , and
Z of an object mapper class declaration, with the following
judgments for attribute level:

X ` String level;

Y ` @Ignore String level;

Z ` Integer level;

Then according to rules (7) and (4), it holds that

X ` String level;

Y �X ` @Ignore String level; ok

Y ` @Ignore String level;

Z � Y ` Integer level; ok

yet Z does not type check as valid w.r.t. X . Thus, the release
of Z does not type check, due to issues with retyping. ⇤

In the example above, attribute level is re-introduced with a
different type. If the type had not been changed, then our type
checking rules would not have detected an issue. To be able to
capture this case as well, we extend our approach to checking
chains of object mapper class declarations (rather than pairs)
in Section IV-B.

IV. RELAXATIONS AND EXTENSIONS

We next discuss pragmatic relaxations and extensions.

A. Allowable Type Promotions

Our examples so far have only considered basic types for
class member attributes, such as String and Integer. We can
easily generalize to complex types.

Example 6. We consider the following judgments from two
different versions of the Player class declaration:

Playerc ` @Embedded A description;

Playerd ` @Embedded B description;

The Objectify annotation @Embedded stores structured data
within a single entity in a way so that it remains queryable.
We assume that A and B are different Java class names. ⇤

By our type checking approach, Playerd does not check as
valid w.r.t Playerc, since the types for attribute description
differ. Yet there are cases where this rule is overly restrictive.

Rule (14) below relaxes rule (2). We use the notation tBt

0 to
express that type t is compatible with t

0. This means that any
instance of t must be “loadable” as an instance of t

0 without
data loss. The trivial case is that t = t

0, yet we can also
allow for Short B Integer, since all instances of Short can be
converted to Integers.

CW ` type att;
CR � CW ` type0 att; ok

(type B type0) (14)

We look at type compatibility in more detail.
1) Conversion of Primitive Types: For the remainder of this

section, we focus on primitive types1 (i.e., Void, Boolean,
Byte, Short, Integer, Long, Float, Double, Character, String
and Object), and we discuss the risks when primitive type
attributes are loaded from a datastore.

a) Successful Conversion: A number of primitive types
can be converted safely into other primitive types, for instance,
ShortBInteger, FloatBDouble, and IntegerBString. Typically,
a primitive type t can be converted to a type t

0 if the memory
allocated to store objects of type t

0 is larger (or equal) than
the one allocated to objects of type t.

b) Incorrect Conversion: When a type t cannot be con-
verted to a type t

0, an exception may be raised. For instance, in
general it is not possible to convert a literal into a number, so
the conversion of a String into a Short will raise an exception.

1We somewhat abusively use the terms primitive types to refer to classes
of the java.lang package that wrap Java primitive types. Void, Character
and Object are not considered, as Objectify does not support them in entities.
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Type	  Checking	  Extension	  

CW ` @Id type att;
CR � CW ` @Id type att; ok

(1)

CW ` type att;
CR � CW ` type att; ok

(2)

CR � CW ` type att; ok

✓
att not declared

in CW

◆
(3)

CW ` @Ignore type1 att;
CR � CW ` type2 att; ok

(4)

CW ` type att;
CR � CW ` @IgnoreLoad type att; ok

(5)

CW ` type att;
CR � CW ` @IgnoreSave type att; ok

(6)

CW ` type att;
CR � CW ` @Ignore type att; ok

(7)

Fig. 4: Selected rules for (1, 2) keeping an attribute, lazily (3, 4)
adding, (5) overwriting, and (6, 7) explicitly removing an attribute.

2) Renaming Attributes: Figure 5 lists rules concerning the
annotation @AlsoLoad. They detect ambiguous mappings in
renamings (c.f., Section II-B3).

3) Ignoring Attributes: Rule 13 in Figure 5 concerns the
annotations for ignoring attributes in writing or reading. Ig-
noring annotations can be combined freely without risk.

C. Nontranstitivity of Type Checking Rules

Our type checking rules are not transitive in the following
sense: Given a sequence of versions X , Y , and Z of an object
mapper class declaration, if Y type checks as valid w.r.t. X ,
and Z type checks as valid w.r.t. Y , it does not necessarily
follow that Z type checks as valid w.r.t. X . It turns out that
non-transitivity is helpful in detecting actual problems, as the
next example shows.

Example 5. We assume a sequence of versions X , Y , and
Z of an object mapper class declaration, with the following
judgments for attribute level:

X ` String level;

Y ` @Ignore String level;

Z ` Integer level;

Then according to rules (7) and (4), it holds that

X ` String level;

Y �X ` @Ignore String level; ok

Y ` @Ignore String level;

Z � Y ` Integer level; ok

yet Z does not type check as valid w.r.t. X . Thus, the release
of Z does not type check, due to issues with retyping. ⇤

In the example above, attribute level is re-introduced with a
different type. If the type had not been changed, then our type
checking rules would not have detected an issue. To be able to
capture this case as well, we extend our approach to checking
chains of object mapper class declarations (rather than pairs)
in Section IV-B.

IV. RELAXATIONS AND EXTENSIONS

We next discuss pragmatic relaxations and extensions.

A. Allowable Type Promotions

Our examples so far have only considered basic types for
class member attributes, such as String and Integer. We can
easily generalize to complex types.

Example 6. We consider the following judgments from two
different versions of the Player class declaration:

Playerc ` @Embedded A description;

Playerd ` @Embedded B description;

The Objectify annotation @Embedded stores structured data
within a single entity in a way so that it remains queryable.
We assume that A and B are different Java class names. ⇤

By our type checking approach, Playerd does not check as
valid w.r.t Playerc, since the types for attribute description
differ. Yet there are cases where this rule is overly restrictive.

Rule (14) below relaxes rule (2). We use the notation tBt

0 to
express that type t is compatible with t

0. This means that any
instance of t must be “loadable” as an instance of t

0 without
data loss. The trivial case is that t = t

0, yet we can also
allow for Short B Integer, since all instances of Short can be
converted to Integers.

CW ` type att;
CR � CW ` type0 att; ok

(type B type0) (14)

We look at type compatibility in more detail.
1) Conversion of Primitive Types: For the remainder of this

section, we focus on primitive types1 (i.e., Void, Boolean,
Byte, Short, Integer, Long, Float, Double, Character, String
and Object), and we discuss the risks when primitive type
attributes are loaded from a datastore.

a) Successful Conversion: A number of primitive types
can be converted safely into other primitive types, for instance,
ShortBInteger, FloatBDouble, and IntegerBString. Typically,
a primitive type t can be converted to a type t

0 if the memory
allocated to store objects of type t

0 is larger (or equal) than
the one allocated to objects of type t.

b) Incorrect Conversion: When a type t cannot be con-
verted to a type t

0, an exception may be raised. For instance, in
general it is not possible to convert a literal into a number, so
the conversion of a String into a Short will raise an exception.

1We somewhat abusively use the terms primitive types to refer to classes
of the java.lang package that wrap Java primitive types. Void, Character
and Object are not considered, as Objectify does not support them in entities.
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CR � CW ` @Id type att; ok

(1)

CW ` type att;
CR � CW ` type att; ok

(2)

CR � CW ` type att; ok

✓
att not declared

in CW

◆
(3)

CW ` @Ignore type1 att;
CR � CW ` type2 att; ok

(4)

CW ` type att;
CR � CW ` @IgnoreLoad type att; ok

(5)

CW ` type att;
CR � CW ` @IgnoreSave type att; ok

(6)

CW ` type att;
CR � CW ` @Ignore type att; ok

(7)

Fig. 4: Selected rules for (1, 2) keeping an attribute, lazily (3, 4)
adding, (5) overwriting, and (6, 7) explicitly removing an attribute.

2) Renaming Attributes: Figure 5 lists rules concerning the
annotation @AlsoLoad. They detect ambiguous mappings in
renamings (c.f., Section II-B3).

3) Ignoring Attributes: Rule 13 in Figure 5 concerns the
annotations for ignoring attributes in writing or reading. Ig-
noring annotations can be combined freely without risk.

C. Nontranstitivity of Type Checking Rules

Our type checking rules are not transitive in the following
sense: Given a sequence of versions X , Y , and Z of an object
mapper class declaration, if Y type checks as valid w.r.t. X ,
and Z type checks as valid w.r.t. Y , it does not necessarily
follow that Z type checks as valid w.r.t. X . It turns out that
non-transitivity is helpful in detecting actual problems, as the
next example shows.

Example 5. We assume a sequence of versions X , Y , and
Z of an object mapper class declaration, with the following
judgments for attribute level:

X ` String level;

Y ` @Ignore String level;

Z ` Integer level;

Then according to rules (7) and (4), it holds that

X ` String level;

Y �X ` @Ignore String level; ok

Y ` @Ignore String level;

Z � Y ` Integer level; ok

yet Z does not type check as valid w.r.t. X . Thus, the release
of Z does not type check, due to issues with retyping. ⇤

In the example above, attribute level is re-introduced with a
different type. If the type had not been changed, then our type
checking rules would not have detected an issue. To be able to
capture this case as well, we extend our approach to checking
chains of object mapper class declarations (rather than pairs)
in Section IV-B.

IV. RELAXATIONS AND EXTENSIONS

We next discuss pragmatic relaxations and extensions.

A. Allowable Type Promotions

Our examples so far have only considered basic types for
class member attributes, such as String and Integer. We can
easily generalize to complex types.

Example 6. We consider the following judgments from two
different versions of the Player class declaration:

Playerc ` @Embedded A description;

Playerd ` @Embedded B description;

The Objectify annotation @Embedded stores structured data
within a single entity in a way so that it remains queryable.
We assume that A and B are different Java class names. ⇤

By our type checking approach, Playerd does not check as
valid w.r.t Playerc, since the types for attribute description
differ. Yet there are cases where this rule is overly restrictive.

Rule (14) below relaxes rule (2). We use the notation tBt

0 to
express that type t is compatible with t

0. This means that any
instance of t must be “loadable” as an instance of t

0 without
data loss. The trivial case is that t = t

0, yet we can also
allow for Short B Integer, since all instances of Short can be
converted to Integers.

CW ` type att;
CR � CW ` type0 att; ok

(type B type0) (14)

We look at type compatibility in more detail.
1) Conversion of Primitive Types: For the remainder of this

section, we focus on primitive types1 (i.e., Void, Boolean,
Byte, Short, Integer, Long, Float, Double, Character, String
and Object), and we discuss the risks when primitive type
attributes are loaded from a datastore.

a) Successful Conversion: A number of primitive types
can be converted safely into other primitive types, for instance,
ShortBInteger, FloatBDouble, and IntegerBString. Typically,
a primitive type t can be converted to a type t

0 if the memory
allocated to store objects of type t

0 is larger (or equal) than
the one allocated to objects of type t.

b) Incorrect Conversion: When a type t cannot be con-
verted to a type t

0, an exception may be raised. For instance, in
general it is not possible to convert a literal into a number, so
the conversion of a String into a Short will raise an exception.

1We somewhat abusively use the terms primitive types to refer to classes
of the java.lang package that wrap Java primitive types. Void, Character
and Object are not considered, as Objectify does not support them in entities.
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Type	  Checking	  Extension	  –	  PrimiRve	  
Types	  

Boolean	   Byte	   Short	   Integer	   Long	   Float	   Double	   String	   Object	  

Boolean	   Boolean	  

Byte	   Long	  

Short	   Long	  

Integer	   Long	  

Long	   Long	  

Float	   Double	  

Double	   Double	  

String	   String	  

Excep;on	  at	  run;me	   OK	   Unexpected	  type	  	  
conversion	  

Precision	  loss	  
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Type	  Checking	  Extension	  –	  Complex	  
Types	  

X	  
…	  

Y	  
…	  

X	  
A	  a	  
B	  b	  
C	  c	  

Y	  
A	  a	  
B	  b	  
C	  c	  
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Chains	  of	  DeclaraRons	  
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Conclusion	  

ControVol:	  schema	  evoluRon	  checking	  
framework	  for	  NoSQL	  databases	  
– Takes	  acRon	  prior	  to	  applicaRon	  release	  
–  Integrated	  in	  the	  IDE	  (Eclipse)	  
– Warns	  developers	  against	  perilous	  evoluRons:	  
addiRon/deleRon/renaming	  of	  a]ributes,	  re-‐
typing	  

– Suggests	  quick	  fixes	  
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