
SPST-Index : A Self Pruning Splay Tree Index for Database
Cracking

Pedro Holanda1, Eduardo Cunha de Almeida1

1Programa de Pós-Graduação em Informática (PPGINF)
Universidade Federal do Paraná (UFPR)

Curitiba – PR – Brazil

{pttholanda,eduardo}@inf.ufpr.br

• Masters admission date: 02/2015
• Proposal defense date: 08/2016
• Expected finish date: 02/2017
• Concluded steps:

– Implementation of the Select Scenario;
– Implementation of the Self Pruning Splay Tree;
– Results of the Select Scenario.

• Future steps:
– Implementation of the Update Scenario;
– Results of the Update Scenario;
– Writing the masters dissertation.

Abstract. A cracked database is a physically self-organized database based on
the predicates of queries being executed. The goal is to create self-adaptive
indices as a side-product of query processing. Our goal is to critically review
the current cracking algorithms and index structures with respect to OLAP and
mixed workloads. In this dissertation, we present a new data structure to keep
small parts of the cracker attribute at the top of the tree to act as cache. Instead
of using the current AVL Tree as a cracker index, we implement a self-pruning
Splay Tree (SPST), with the objective to cluster the main accessed nodes at the
root and to prune the external nodes to improve updates. The main challenge
is related to caching data and reduce cost to build and maintain the indices
as the current data structure is not convenient to prune unused data. Finally,
we present preliminary results of our SPST implementation against the current
database cracking index AVL Tree for read operations. In our preliminary re-
sults, the SPST shows better response times in 12% compared with the AVL Tree
for Random Workloads and for Skewed Workloads SPST shows 20% better re-
sponse time.
Keywords: Database Cracking, Cracker Index, Splay Tree

Resumo. Database Cracking é uma técnica que organiza fisicamente um banco
de dados baseado nos predicados das consultas que são executadas, criando
índices dinâmicos como resultado do processamento de consultas. Nosso ob-
jetivo é revisitar os algoritmos e estrutura de dados utilizadas para índices de
Database Cracking considerando cargas de trabalho OLAP e mistas. Nossa
proposta apresenta a substituição da Árvore AVL pela SPST (Estrutura baseada



em Árvores Splay). O principal objetivo da SPST é de agrupar os nós mais
acessados próximos a raiz da árvore para otimizar as operações de busca e
podar os nós externos para diminuir o tempo das atualizações. O desafio é
relacionado ao custo de construir e manter índices onde não se é possível ex-
cluir os dados pouco acessados. Por fim, apresentamos os resultados da nossa
implementação da SPST comparando-a com a Árvore AVL. Como resultados
preliminares, temos que a SPST demonstra ganhos em tempo de resposta para
OLAP de 12% em padrões de acesso aleatórios e 20% em padrões de acesso
enviesados.

1. Introduction

Indices are data access methods that typically store each value of the indexed field
along with a list of pointers to all disk blocks that contain records to that field value.
The values in the index are ordered to make binary search possible. It is smaller
than the data file, so searching the index using binary search is reasonably efficient
[Elmasri and Navathe 2007].

However, creating indices is not a simple task. Knowing which index to create,
how to create them, and which queries will use them is a task that requires knowledge of
many parameters that change according to the workload (i.e, read and update operations).
In the past few decades, some tools have been developed to make this task easier. The
Self-Tuning tools are able to capture relevant workload patterns and then suggest physical
design improvements to the database administrator (DBA).

Database Cracking [Idreos et al. 2007b] has been proposed for column-oriented
relational databases to create self-organizing databases. In this way the workload does
not have to be known a priori. Database Cracking works by physically self-organizing
database columns into pieces, called cracked pieces, and generating an index to keep
track of those pieces.

For example, assuming the following predicate A < 10. The idea of database
cracking is clustering all tuples within A < 10 in the beginning of the column and pushing
the remaining tuples to the end. As so, incoming queries with predicates A > V 1, where
V 1 ≥ 10, will only look up the second part of the column. A cracker index maps the
column positions cracked so far, allowing the query processor to take advantage of it.
The more queries are processed, the more the database is partitioned into smaller and
manageable pieces making data access significantly faster [Idreos et al. 2007b].

The current data structure used as a Cracker Index is an AVL Tree, which is a
self-balancing binary search tree where the height of the adjacent children subtrees of any
node differ by at most one. As the index is created by incoming queries, it will converge to
a full index, bringing new issues, such as higher administration costs for high-throughput
updates (i.e, going through the height of a tree). They happen because the index starts to
be filled with unused data that is data only retrieved a few times (i.e, "Cold Data"). Our
goal with the cracker index is to store the most accessed nodes (i.e, "Hot Data"), near the
root of the tree. For this objective Splay Trees are a better fit than AVL Trees.

A Splay Tree is a self-adjusting binary search tree which uses a splaying technique
every time a node is Searched, Updated, Inserted or Deleted. Splaying consists of a



sequence of rotations that moves a node to the root of the tree. Our goal with splay
tree in database cracking is to make the index comply with the cracking philosophy, by
always adapting itself to the incoming workload. This is achieved by clustering hot data
at the root of the tree to boost data access. On the other hand, the least accessed nodes are
stored at the leaves, giving the opportunity to prune cold data out of the index and boost
further update operations.

This dissertation proposal aims to contribute with the following:

• A data structure inspired by Splay Trees to keep hot data at the top of the tree to
improve read operations.

• A strategy to prune cold data kept in the external nodes of the tree to improve
write operations.

This paper is organized, as follows: Section 2 discusses related work. Section
3 presents our proposal. Section 4 depicts our preliminary results. Finally, section 5
discusses future work.

2. Related Work
In the following section we present a general view of Cracker Index Data Structures and
Cracking Algorithms.

2.1. Cracker Indices

The current data structure used as a Cracker Index is an AVL Tree [Idreos et al. 2007b],
which is a self-balancing binary search tree where the height of the adjacent children
subtrees of any node differ by at most one [Bell and Gupta 1993]. If in a given moment
they differ by more than one, the tree is rebalanced by tree rotations. Lookup, Insertion
and Deletion take O(log n) time in average and worst cases, where n is the number of
nodes in the AVL tree.

2.2. Database Cracking Select

Cracking is done by two algorithms: crack-in-two and crack-in-three, which split the col-
umn into two and three partitions respectively. The first one is suited for one-sided range
queries (e.g, V1 < A) or two-sided range queries (e.g, V1 < A < V2) where each side
touches different cracked pieces. The second one is only for two-sided queries that touch
the same cracked piece. It starts with similar performance of full column scan and over-
time gets close to the performance of a full index. Our Database Cracking implementation
sticks to these algorithms [Idreos et al. 2007b]. Although, different cracking approaches
exist, as follows:

• Hybrid Cracking: Create unsorted initial pieces which are physically reorga-
nized and then adaptively merged for faster convergence to a full index. Cre-
ated to address the issue of poor convergence of standard cracking into full index
[Idreos et al. 2011].

• Sideways Cracking: Adaptively creates, aligns, and cracks every accessed
selection-projection attribute pair for efficient tuple reconstruction. Created
to address the issue of inefficient tuple reconstruction in standard cracking
[Idreos et al. 2009].



• Stochastic Cracking: Creates more balanced partitions using auxiliary random
pivot elements for more robust query performance. Created to address the issue
of performance unpredictability in database cracking [Halim et al. 2012].

Figure 1. Database Cracking when executing two queries with different ranges
[Idreos et al. 2007b]

Figure 1 depicts query Q1 triggering the creation of the cracker column Ackr, (i.e.,
initially a copy of column A) where the tuples are clustered in three pieces resulted by a
crack-in-three iteration, reflecting the ranges defined by the predicates. The result of Q1

is then retrieved as a view on Piece 2. Later, query Q2 requires a refinement of Pieces 1
and 3, splitting each in two new pieces resulted by a crack-in-two iteration.

2.3. Database Cracking Update

There are two basic structures to consider for updates in Database Cracking, the cracker
column and the cracker index [Idreos et al. 2007a]. A Cracker Index I maintains infor-
mation about the cracked pieces of a Cracker Column C. So, if a new tuple is inserted,
deleted or updated in any position of C, we must update the same information into I. In
Database Cracking, updates require an additional data structure, called pending insertion
column, to avoid contention problems.



Figure 2. Updating a Cracked Column [Idreos et al. 2007a]

"The left-hand part of the figure depicts a cracker column, the relevant informa-
tion kept in its cracker index, and the pending insertions column. For simplicity,
a single pending insert with value 17 is considered. Assume now a query that
requests 5 < A < 50, thus the pending insert qualifies and should be part of the
result. In the right-hand part of the figure, we see the effect of merging value 17
into the cracker column. The tuple has been placed in the second cracked piece,
since, according to the cracker index, this piece holds all tuples with value v,
where 12 < v ≥ 41. Notice, that the cracker index has changed, too. Informa-
tion about Pieces 3, 4 and 5 has been updated, increasing the respective starting
positions by 1." as described by [Idreos et al. 2007a].

3. SPST-Index : A Self Pruning Splay Tree Index for Database Cracking
Our first contribution regards recognizing hot data to improve data access. Our goal is to
drop the index advice for cold data in the database speeding up updates. This is achieved
by replacing the AVL Tree for a Data Structure inspired by Splay Tree called SPST-
Index: A Self Pruning Splay Tree Index for Database Cracking as a Cracker Index. Our
hypothesis is that Splay Trees are a better fit Data Structure for Database Cracking than
AVL. They differ in several aspects, the main one is that the SPST clusters the most
accessed nodes near to the root, allowing faster access and straightforward pruning, since
we can preserve the interval nodes that are more relevant to our workload.

3.1. Splaying Strategy

A Splay Tree [Sleator and Tarjan 1985] is a self-adjusting binary search tree that uses a
splaying technique every time a node is Searched, Updated, Inserted or Deleted. Splaying
consists of a sequence of rotations that moves a node to the root of the tree. The SPST
clusters the most accessed nodes near the root of the tree. Therefore, the most frequent
accessed nodes will be accessed faster. Since we are dealing with range queries, it be-
comes necessary to find a way to splay the range, instead of splaying only one node like
the original splay tree. Our algorithm is straightforward, we first splay the leftmost node
of the range, then the rightmost node and the closest node to the middle. As an example,
let us consider the following SPST as a cracker index:



8

5

3

2

1

4

6

7

11

9

10

12

(a) Original Tree

3

1

2

5

4 8

6

7

11

9

10

12

(b) Tree After Splaying 1,5,3

Figure 3. SPST with query 1 < A < 5

If a range query of 1 < A < 5 is executed, we do three splay operations, Splay
(1), Splay (5), Splay (

⌈
(1+5)

2

⌉
). Figure 3(b) depicts the resulting tree. We can see the

nodes 1, 3 and 5, in red, are clustered near the root and remain there as long as they are
frequently accessed.

3.2. Pruning Strategy

One of our main goals is to speed up updates by dropping the index reference to cold
data. We assume that the nodes stored at the leaves, are the ones that are pointing to cold
data. As we prune the leaves, the update time is expected to shrink with minimal lose at
the select time, also when we prune the leaves the SPST shrinks to

⌊
n
2

⌋
, where n is the

number of nodes in the SPST. The SPST follows a naive approach, always pruning before
further updates. Let us suppose we have the SPST in Figure 4(a) as the cracker index:

20

10

5 15

30

25 35

(a) SPST before Pruning

20

10 30

(b) SPST after Prun-
ing

Figure 4. SPST being Pruned With size n=7 entries

In this scenario the most frequent range is between 10 and 30. Let us suppose
inserting the value 21 in the Cracker Column. To do this, we need to update the nodes 35,
30 and 25 respective pointers to the cracker column and merge at their respective cracker
column pieces. Instead, we prune our tree leaves first, having the tree in Figure 4(b) as a
result. Also, value 21 is not inserted into the index structure because it is already indexed
by the range 20 and 30. The downside of pruning the tree, is that the following queries
can become slightly more expensive compared to the situation where we do not have any
pruning at all. Our hypothesis is that we mitigate this cost with the gains in the update
time.



4. Preliminary Results
We performed initial experiments of the SPST performance implementing a column-store
prototype, the discussed Data Structures and Cracking Algorithms in Java 8. We run our
implementation in a Mac OS X El Capitan (10.11.5) with 8GB of RAM and a i7-4750HQ
CPU @ 2.00GHz as CPU. All data structures including the cracker column are in memory.

We repeat the same experimental protocol described in [Idreos et al. 2007b] that
is related only to OLAP workloads. All experiments are based on a single column table
with 107 tuples (Unique integers in [1, 107]) and some series of 104 range queries. There
are two different range query groups, one is random selected from the 107 integers and the
other one is selected by a ZipF distribution [Breslau et al. 1999]. According to ZipF’s law
the most frequent elements will occur approximately twice as often as the second most
frequent element, three times as often as the third most frequent element, and so on.

(a) Random Workload (b) Skewed Workload

Figure 5. Accumulated Query Response Time

Figure 5(a) depicts the accumulated query response time for 10, 000 queries of
type (a < x < b), where a and b are chosen randomly from the unique integers in [1, 107].
Response times were 12% better for SPST than for AVL.

Figure 5(b) depicts the accumulated query response time for 100, 000 queries of
type (a < x < b), where for the first 10, 000 queries a and b are chosen randomly from the
unique integers in [1, 107] and the remaining queries are chosen from a ZipF distribution.
We notice that the SPST starts cheaper than the AVL Tree, but the difference becomes
more notable when it reaches the mark of 10, 000 queries. This is due to the clusterization
of the most accessed nodes near the root of the SPST. Also, at the mark of 15, 000 and
61, 000 queries, we notice small jumps in the slope. These jumps are due to nodes selected
outside the most cracked pieces, making cracking operations executed in parts of the
cracker column that were not much partitioned. Response times were 20% better for
SPST than for AVL.

5. Future Work
Our research agenda to finish the master dissertation, includes assessing the impact of our
pruning strategy with the following scenarios: (1) Low frequency high volume updates
(2) High frequency low volume updates. With these scenarios we plan to compare the



performance of the AVL Tree to our SPST using different pruning configurations. We
also intend to show a cost breakdown of the updates algorithms in each data structure to
analyze where the engine spends most of the time and how that changes over time. We
have considered only the AVL and Splay Tree as Cracker Indices, so we also plan to com-
pare our tree with other sophisticated data structures, such as ART Tree [Leis et al. 2013],
that is a main-memory optimized search tree suggested by [Schuhknecht et al. 2013].

Acknowledgments
This work was partly funded by the CNPq Universal, grant 441944/2014-0.

References
Bell, J. and Gupta, G. (1993). An evaluation of self-adjusting binary search tree tech-

niques. In Software: Practice and Experience, pages 369–382.

Breslau, L., Cao, P., Fan, L., Phillips, G., and Shenker, S. (1999). Web caching and zipf-
like distributions: Evidence and implications. In INFOCOM’99. Eighteenth Annual
Joint Conference of the IEEE Computer and Communications Societies. Proceedings,
pages 126–134.

Elmasri and Navathe (2007). Sistemas de banco de dados. Pearson.

Halim, F., Idreos, S., Karras, P., and Yap, R. H. (2012). Stochastic database cracking:
Towards robust adaptive indexing in main-memory column-stores. volume 5, pages
502–513. VLDB.

Idreos, S., Kersten, M. L., and Manegold, S. (2007a). Updating a cracked database. In
Proceedings of the 2007 ACM SIGMOD international conference on Management of
data, pages 413–424.

Idreos, S., Kersten, M. L., and Manegold, S. (2009). Self-organizing tuple reconstruction
in column-stores. pages 297–308. ACM.

Idreos, S., Kersten, M. L., Manegold, S., et al. (2007b). Database cracking. In CIDR,
pages 1–8.

Idreos, S., Manegold, S., Kuno, H., and Graefe, G. (2011). Merging what’s cracked,
cracking what’s merged: adaptive indexing in main-memory column-stores. volume 4,
pages 586–597. VLDB.

Leis, V., Kemper, A., and Neumann, T. (2013). The adaptive radix tree: Artful indexing
for main-memory databases. In Data Engineering (ICDE), 2013 IEEE 29th Interna-
tional Conference on, pages 38–49.

Schuhknecht, F. M., Jindal, A., and Dittrich, J. (2013). The uncracked pieces in database
cracking. In VLDB, editor, Proceedings of the VLDB Endowment, pages 97–108.

Sleator, D. D. and Tarjan, R. E. (1985). Self-adjusting binary search trees. pages 652–686.


