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ABSTRACT
Maintaining data consistency is known to be hard. Recent ap-
proaches have relied on integrity constraints to deal with the prob-
lem – correct and complete constraints naturally work towards data
consistency. State-of-the-art data cleaning frameworks have used
the formalism known as denial constraint (DC) to handle a wide
range of real-world constraints. Each DC expresses a relationship
between predicates that indicate which combinations of attribute
values are inconsistent. The design of DCs, however, must keep
pace with the complexity of data and applications.

The alternative to designing DCs by hand is automatically dis-
covering DCs from data, which is computationally expensive due
to the large search space of DCs. To tackle this challenging task, we
present a novel algorithm to efficiently discover DCs: DCFINDER.
The algorithm combines data structures called position list indexes
with techniques based on predicate selectivity to efficiently vali-
date DC candidates. Because the available data often contain er-
rors, DCFINDER is especially designed to discovering approximate
DCs, i.e., DCs that may partially hold. Our experimental evalua-
tion uses real and synthetic datasets and shows that DCFINDER
outperforms all the existing approximate DC discovery algorithms.
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1. DENIAL CONSTRAINT DISCOVERY
Integrity constraints are fundamental rules for ensuring that data

updates do not cause inconsistencies in databases. Typical appli-
cations of constraints include database design [30, 36], data inte-
gration [35], query optimization [23], and data cleaning [9, 33], to
name but a few. There are different formalisms to define them.
Each one has its own level of expressiveness. For example, func-
tional dependencies express relationships between two attribute sets.
Conditional functional dependencies also do so, but for subsets of
tuples with specific constant patterns [13]. The values of unique
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column combinations uniquely identify all tuples of a relational
instance [17]. Order dependencies are a generalization of func-
tional dependencies, and can define ordering relationships between
attributes [10]. Readers can find pointers to the literature on various
types of data dependencies in the comprehensive studies [1, 19].

This paper concerns the automatic discovery of denial constraints
(DCs), a generalization of all formalism above-mentioned. Each
DC defines a set of predicates for which its predicates cannot hold
true simultaneously. The idea is to use relational predicate relation-
ships to determine inconsistent combinations of attribute values.

Let us walk through two DCs for the tuples of the employees
relation in Table 1. First, any two employees that have the same
{Name,Phone} values have the same {Position} value. This
statement is in fact a functional dependency, which is translated
into a DC as follows: If a tuple pair tx, ty of employees satisfies
the predicates tx.Name = ty.Name and tx.Phone = ty.Phone,
it cannot satisfy the predicate tx.Position 6= ty.Position. Sec-
ond, the relationship between the attributes Position, Salary and
Hired shows that for any two employees with the same position,
the longer-standing employee always earns the highest salary. If a
tuple pair tx, ty of employees has the same position, then the pred-
icate tx.Position = ty.Position is true. If that is the case and
tx.Hired < ty.Hired is true, then tx.Salary < ty.Salary is false.
Among the constraint formalisms we discussed, DCs are the only
one capable of capturing this last constraint.

Table 1: An instance of the relation employees.

Name Phone Position Salary Hired

t0 W. Jones 202-222 Developer $2.000 2012
t1 B. Jones 202-222 Developer $3.000 2010
t2 J. Miller 202-333 Developer $4.000 2010
t3 D. Miller 202-333 DBA $8.000 2010
t4 W. Jones 202-555 DBA $7.000 2010
t5 W. Jones 202-222 Developer $1.000 2012

The DCs in the previous examples are fully satisfied by the data
in Table 1. DCs with this feature are called exact DCs. In ideal
settings, data is error-free and the constraints are fully satisfied. In
reality, data all too often present inconsistencies. The root cause of
inconsistencies vary greatly, for instance, from schema evolution
to erroneous data imputation not caught by the (un)defined con-
straints. The workaround for potential data errors is to relax the
constraints so that they admit a certain degree of inconsistency, but
still hold for most of the data [6]. DCs with this relaxation feature
are called relaxed or, here, approximate DCs.

Suppose we want to find approximate DCs in employees that are
violated by at most two tuple pairs. There are two (non-reflexive)



tuple pairs that satisfy the predicates tx.Name = ty.Name and
tx.Phone = ty.Phone simultaneously, t0, t5 and t5, t0. These
predicates define an approximate DC, which reads: there cannot
exist any two employees with the same values of {Name,Phone}.
This constraint seems a reasonable key candidate for the employ-
ees instance and reveals the potential inconsistency between tuples
t0 and t5 as duplicates. The example shows how meaningful DCs
may be “hidden” amid inconsistent data.

Defining integrity constraints by hand requires judging the struc-
ture and content of a database. The task requires expertise and time,
and furthermore, it is error-prone considering how complex and dy-
namic datasets can be. But profiling datasets to discover constraints
has emerged as a feasible approach [1]. Profiling datasets to dis-
cover DCs is particularly appealing. First, DCs subsume various
types of integrity constraints [8]. For example, DCs can express
relationships between attribute sets, such as functional dependen-
cies, or define ordering relationships between attributes, i.e., or-
der dependencies. A single DC discovery algorithm substitutes the
various algorithms required to discover the constraints of different
types found in real datasets. Second, DCs advance constraint ex-
pressiveness by capturing rules that cannot be expressed by other
attribute dependencies. Third, recent studies have used DCs as the
de facto integrity constraint language [11, 14, 33]. For example,
HOLOCLEAN [33] is a data cleaning tool whose inputs are DC sets,
dirty datasets, and optionally master data information. Discovered
DCs naturally serve as the input of such a tool.

The computational complexity of discovering attribute depen-
dencies regards the number of tuples and attributes of a relation [1].
The complexity of discovering DCs, in turn, has additional chal-
lenges because each DC is expressed as a set of predicates rather
than a set of attributes. The DC search space consists of any subset
of the predicates drawn for a relation. Each attribute adds many DC
candidates to the search space, because each additional attribute
can generate predicates of various types: Equalities, inequalities,
and comparisons across attributes. Therefore, discovering DCs re-
quires efficient techniques to traverse the search space and validate
DC candidates. Discovering approximate DCs is even more chal-
lenging than discovering exact DCs: It requires keeping track of
the number of tuple pairs that violate each candidate. This require-
ment prohibits the use of pruning techniques based on the fact that
a single violation is enough to invalidate a candidate.

We present denial constraint finder (DCFINDER), a novel al-
gorithm to efficiently discover both approximate and exact DCs.
DCFINDER iterates over the data records to build auxiliary data
structures that guide the discovery. Based on predicate selectivity,
the algorithm uses the auxiliary structures to build representations
of tuple pairs and their satisfied predicates. With this representa-
tion, DCFINDER can directly generate and validate DC candidates.

The ability to measure the interestingness of discovered DCs is
important as it helps users decide which DCs are relevant for their
application. Because interestingness is a broad concept [15], we
use different measures on the discovered DCs. We have designed
DCFINDER to output this additional information, giving users dif-
ferent perspectives on the interestingness of DCs.

In summary, our contributions are the following:

• The novel DCFINDER algorithm for the discovery of approx-
imate and exact DCs.

• Experimental comparison of DCFINDER to all known state-
of-the-art DC discovery algorithms, showing that DCFINDER
is the most efficient algorithm for the discovery of approxi-
mate DCs and at times better than the state of the art even for
the discovery of exact DCs.

• The use of interestingness measures for DC-selection; for in-
stance, for data cleaning or query optimization.

The rest of the paper is organized as follows: In Section 2, we
discuss related work, followed by key definitions and notations in
Section 3. In Section 4 we present an overview of DCFINDER.
We split the description of our algorithm into preprocessing (Sec-
tion 5); evidence set building (Section 6); and DC search, followed
by DC interestingness (Section 7). In Section 8 we present our
experimental evaluation, followed by our conclusions and sugges-
tions for future work in Section 9.

2. RELATED WORK
It is fundamental for users (or software) to know how datasets

are structured. Data profiling helps to acquire such knowledge
by uncovering important assets from data, such as attribute value
statistics, correlation between attributes and businesses rules [1].
The field has been gaining momentum in the database research
community, because many data management tasks benefit from
its results. A recurring theme is the discovery of integrity con-
straints [5, 8, 17, 24, 28, 32, 34].

FASTDC was the first algorithm for DC discovery [8]. It com-
pares every tuple pair of the input dataset to compute which pred-
icates each tuple pair satisfies. The result of this computation is
called evidence set. FASTDC uses the evidence set to guide a
depth-first search. The goal is to quickly find covers for the evi-
dence set. The authors of [8] have shown that the problem of DC
discovery can be transformed into the problem of discovering cov-
ers. BFASTDC algorithm presents substantial improvements over
FASTDC [23]. The algorithm builds associations between attribute
values so that it is not necessary to check every tuple pair on every
predicate to build the evidence set. However, BFASTDC requires
many logical operations to calculate which predicates are satisfied
by tuple pairs, which hinders performance.

The reason why the approaches based on evidence sets are suit-
able for DC discovery is that they scale well with the number of
attributes. Lattice traversal algorithms arrange all possible depen-
dency candidates in a lattice of attribute combinations, and then
use the data instance to validate the candidates [18, 26]. Extensive
experimental evaluation have shown how these algorithms quickly
run into memory or performance issues for datasets with a relative
big number of attributes [28]. The search space is even larger for
DC discovery, so building lattices of predicate combinations might
be prohibitive. Instead of building huge lattices, DCFINDER fol-
lows the evidence set approach of FASTDC (and BFASTDC). Evi-
dence sets are comparable to the difference-sets used in the discov-
ery of functional dependencies [28]. These structures help to define
the search space based on instance observations rather than exhaus-
tive candidate enumeration. As observed in [28], the algorithms
based on difference-sets can keep reasonable memory footprints
while generating and validating candidates. With this in mind, ef-
ficiently building evidence sets plays a major role in DC discovery.
DCFINDER uses attribute value indexing to avoid the expensive tu-
ple pair comparison of FASTDC. To drive efficiency even further,
it uses predicate selectivity to avoid the unnecessary large number
of logical operations required by BFASTDC.

Having perfect data to derive DCs is unrealistic and it is reason-
able to relax their satisfiability criterion. Our study considers the
possibility that a few tuple pairs may not satisfy a valid DC due
to imperfect data. Still, the discovery algorithm should be able to
find that valid (but approximate) DC. It turns out that discovering
approximate DCs is even more challenging than discovering exact
DCs. For every approximate DC discovered, the algorithm must



guarantee that the number of violations for that DC is no greater
than a given threshold. To do so, it needs to known how many tu-
ple pairs may still violate a candidate DC. It is possible to obtain
this information from the evidence sets, as long as the algorithm
keeps information on evidence multiplicity. FASTDC, BFASTDC
and DCFINDER can integrate a few modifications in their operation
to provide such information and discover approximate DCs.

HYDRA, yet another DC discovery algorithm, samples tuple pairs
to build an intermediary set of DCs [5]. From such a set, the algo-
rithm corrects the tuple pair samples and determines the complete
evidence set. In an approach comparable to [8], the algorithm ex-
tracts the final DCs from the evidence set. However, HYDRA can
use its evidence sets to compute only exact DCs. It is based on the
assumption that a DC is valid if there does not exist one single tu-
ple pair violating that DC. Such an assumption does not hold for
approximate DCs. HYDRA leaps over the evidence search space to
save computations on duplicate pieces of evidence. The technique
may reduce computation time, but loses the evidence multiplicity.
We observed that the number of evidences produced by HYDRA is
only a fraction of the evidences required to discover approximate
DCs (more details in Section 8). Adapting HYDRA to discover ap-
proximate DCs requires major changes in the algorithm, which is
beyond the scope of this paper. In our experiments, however, we
use the algorithm as a baseline to evaluate how DCFINDER com-
pares to an specialized exact DC discovery solution.

A direct application for DCs is data cleaning: violations of DCs
usually point to inconsistent data. The authors in [9] present a
database repairing algorithm based on correcting DC violations.
HoloClean brings together DC formalism and statistical analysis
to generate a probabilistic model for data repairing [33]. Fan et al.
use DCs to express data currency relationships [14]. Fagin et al.
use DCs to find inconsistencies in the results of information extrac-
tion routines [11]. Because DCs subsume various types of ICs, they
inherit applications; for instance, just as functional dependencies,
DCs can be used in query optimization [23] or data exchange [25].

3. BACKGROUND
Before stating our problem definition, let us first revisit the syn-

tax and semantics of DCs. They can be expressed as sets of rela-
tional predicates. Let r denote a relational instance with schema
R(A1, ...,An), t a tuple of r, and O = {=, 6=, <,≤, >,≥} a set
of built-in operators of the database. A predicate p is a comparison
atom with the form tx.Ai o ty.Aj : Ai,Aj ∈ R; tx, ty ∈ r; and
o ∈ O. Predicates can compare two tuples for the same attribute,
so it is possible that the two attributes in a predicate are the same
(i = j). DCs can include predicates that compare attribute val-
ues to constants; they also can be defined using predicates on many
tuples at a time. We narrow this study to variable DCs (i.e., DCs
without constants) defined over two distinct tuples (i.e., tx 6= ty).
We denote p.Ai and p.Aj the attributes of a predicate p, and p.o its
operator. We write p1 ∼ p2 to say that the attributes p1.Ai = p2.Ai

and p1.Aj = p2.Aj , and p1 6∼ p2 to say otherwise.
The predicate space P of a relation schema R is the set of all

predicates that can form DCs for R.

DEFINITION 1 (DENIAL CONSTRAINT). A denial constraint ϕ
over relational instance r is a statement of the form

ϕ : ∀tx, ty ∈ r,¬(p1 ∧ . . . ∧ pm)

where ϕ is satisfied by r if and only if for any tuple pair tx, ty ∈ r at
least one of the predicates p1, . . . , pm is false. A DC ϕ1 is minimal
if there does not exist a ϕ2 such that both ϕ1 and ϕ2 are satisfied
by r, and the predicates of ϕ2 are a subset of ϕ1.

In other words, a DC ϕ1 does not hold if there exists any tuple
pair of r that satisfies all the predicates of ϕ1, and ϕ1 is not minimal
if it is simply a generalization of another DC ϕ2.

We write tx, ty |= ϕ to say that the tuple pair tx, ty satisfies ϕ,
and tx, ty 6|= ϕ to say otherwise. For simplicity, we omit the tuple
quantifiers tx, ty of ϕ hereafter. The following DCs express the
exact constraints discussed in Section 1:

ϕ1 : ¬(tx.Name = ty.Name ∧ tx.Phone = ty.Phone∧
tx.Position 6= ty.Position)

ϕ2 : ¬(tx.Position = ty.Position ∧ tx.Hired < ty.Hired∧
tx.Salary < ty.Salary)

We are also interested in relaxing the DC satisfiability constraint
so that if a DC has just a small number of violations, it still can
be considered valid. The proportion between the number of violat-
ing tuple pairs and the total number of tuple pairs can be used to
quantify the degree of approximation g1 of a DC ϕ in r [20]:

g1(ϕ, r) =
|{(tx, ty) ∈ r | (tx, ty) 6|= ϕ}|

|r| · (|r| − 1)

DEFINITION 2 (APPROXIMATE DENIAL CONSTRAINT). Given
an error threshold ε, 0 ≤ ε < 1, a denial constraint ϕ is ε-
approximate in r if and only if its degree of approximation g1(ϕ, r)
is below ε.

The following DC expresses the approximate constraint discussed
in Section 1:

ϕ3 : ¬(tx.Name = ty.Name ∧ tx.Phone = ty.Phone)

Let etx,ty be the set of predicates that tuple pair tx, ty satisfies,
that is, etx,ty = {p | p ∈ P, tx, ty |= p}. We refer to these subsets
as tuple pairs evidence e (or simply evidence e when the context
is clear) [8]. Given a relation instance r and a predicate space P,
the evidence set Er is the set of evidence w.r.t. r and P, that is,
Er = {etx,ty | ∀tx, ty ∈ r}. The authors in [8] have shown that it
is possible to obtain the set of minimal DCs from the evidence set
Er. The evidence set is also used to efficiently calculate the degree
of approximation of each candidate DC.

Given a relation instance r, and an error threshold ε, the approx-
imate DC discovery problem is to find all ε-approximate minimal
DCs that hold on r. The discovery of exact DCs is a special case of
this problem, where the error threshold is set to zero.

4. OVERVIEW OF DCFINDER
Figure 1 depicts the building blocks of our DC discovery algo-

rithm. From the dataset schema, DCFINDER defines a predicate
space; and from the dataset records, the algorithm assembles data
structures called position list indexes (PLIs). Some types of predi-
cates are most likely to have low selectivity (i.e., when a predicate
is satisfied by many tuple pairs). DCFINDER takes this into ac-
count to divide the predicate space into likely/unlikely predicate
sets. The idea is to presume that an evidence satisfies the least
selective predicates. DCFINDER then allocates arrays of evidence
where every element holds the set of “most likely satisfied” predi-
cates. The algorithm uses PLIs to compute references to tuple pairs
that do satisfy the “unlikely satisfied” predicates. Performing sim-
ple logical operations for each of these references brings the arrays
of evidence to their consistent state. Finally, the algorithm uses a
simple hash table to map the elements of these arrays into the final
evidence set.

The evidence set is a compact representation of tuple pairs and
their satisfied predicate sets. It allows efficient validation of DC
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Figure 1: Building blocks of DCFINDER.

candidates. To discover all minimal DCs, DCFINDER uses a depth-
first search (DFS) strategy based on evidence set coverage of DC
candidates. The last, optional, step is to rank DCs based on inter-
estingness measures to help users filter the discovered results.

5. DATASET TRANSFORMATION
DCFINDER transforms a relational dataset into a predicate space

and PLI index structures, as described next.

5.1 From schema into predicate space
Any subset of the predicate space P is a DC candidate, and the

DC search space is of size 2|P|. We follow related work and apply
some restrictions to our predicate space [5, 8]. As showed in [8],
restricting the predicate space helps prune meaningless results and
reduces computational costs. We distinguish the attribute types
whether they are character strings, longs, or doubles, and we use
the set of built-in operators O = {=, 6=, <,≤, >,≥}. For nu-
meric attributes, we define predicates with all operators o ∈ O; for
non-numeric attributes, we define only predicates with operators
o ∈ {=, 6=}. Predicates across two different attributes are regarded
only as long as their attributes have the same type and share at least
30% of common values [8]. Figure 2 illustrates the predicate space
defined for the relation employees of Section 1.

p1 : tx.Name = ty.Name p10 : tx.Salary ≤ ty.Salary
p2 : tx.Name 6= ty.Name p11 : tx.Salary > ty.Salary
p3 : tx.Phone = ty.Phone p12 : tx.Salary ≥ ty.Salary
p4 : tx.Phone 6= ty.Phone p13 : tx.Hired = ty.Hired
p5 : tx.Position = ty.Position p14 : tx.Hired 6= ty.Hired
p6 : tx.Position 6= ty.Position p15 : tx.Hired < ty.Hired
p7 : tx.Salary = ty.Salary p16 : tx.Hired ≤ ty.Hired
p8 : tx.Salary 6= ty.Salary p17 : tx.Hired > ty.Hired
p9 : tx.Salary < ty.Salary p18 : tx.Hired ≥ ty.Hired

Figure 2: Predicate space for the employees relation.

5.2 From tuples into PLIs
PLIs represent the unique values of a dataset [28]. Consider the

attribute Ai ∈ R. A cluster is an entry c = 〈k, l〉, where key k is
a value from the projection operation π(Ai) and value l is a list of
tuple identifiers of the relation instance having the same value k,
i.e., ∀x ∈ l then tx[Ai] = k. The list l maintains its elements in
ascending order. A PLI Π(Ai) is the set of all cluster entries of Ai

in r. The numeric PLIs are sorted by the entry keys in descending
order. Figure 3 shows the PLIs of the employees relation.

PLIs are commonly used in attribute dependency discovery [29],
and are also known as stripped partitions [18]. In these works,

Name
k l

W. Jones {0, 4, 5}
B. Jones {1}
J. Miller {2}
D. Miller {3}

Position
k l

Developer {0, 1, 2, 5}
DBA {3, 4}

Salary
k l

8, 000 {3}
7, 000 {4}
4, 000 {2}
3, 000 {1}
2, 000 {0}
1, 000 {5}

Phone
k l

202-222 {0, 1, 5}
202-333 {2, 3}
202-555 {4}

Hired
k l

2012 {0, 5}
2010 {1, 2, 3, 4}

1

Figure 3: Transformation of the records of employees into PLIs.

intersecting the values of PLIs helps to validate dependency candi-
dates. In our context, PLIs are used as an intermediate data struc-
ture that helps generating evidence sets. With PLIs, we can effi-
ciently answer the question: which tuple pairs satisfy a given pred-
icate p? DCFINDER simply iterates over cluster combinations to
generate these tuple pairs; the details are given in Section 6.

Building PLIs takes linear time as it requires only projection op-
erations to collect the distinct attribute values and their associated
tuple identifiers. PLIs are used to look clusters up. Non-numeric
clusters are stored in hash tables so looking them up takes constant
time. Numeric clusters are stored as sorted arrays so that it is pos-
sible to look keys up using binary search. The binary search is
required for looking up inequalities. For instance, given a key k,
we can ask what is the next cluster whose key is greater than k.

6. EVIDENCE SET GENERATION
One may think that storing evidence sets requires significant re-

sources, because they represent all tuple pairs. However, different
tuple pairs may draw redundant evidence, i.e., they may satisfy the
very same set of predicates. As a matter of fact, the number of dis-
tinct pieces of evidence was just a fraction of the total number of
tuple pairs of the datasets in our experiments. As a result, keeping
only the distinct evidence saves a huge amount of space. But the
computational costs of materializing tuple pair evidences may still
be high. To significantly reduce also these costs, DCFINDER uses
attribute indexing and predicate selectivity with a novel approach.

Let us first assume that the pieces of evidence of r are stored into
a virtual array B. Each tuple pair is assigned an identifier tpid to
index B as in Equation 1.

tpid(tx, ty, r) = |r|x+ y (1)

We useB[tpid] to refer to the tuple pair evidence at position tpid
ofB, and T to denote tpid sets. For now, assume that a single array
B can store all the evidence of the relation instance.

Our goal is to put B into a consistent state. Every element
B[tpid] must hold only the predicates satisfied by tpid. The naive
approach would fill each evidence of B by evaluating every tu-
ple pair for every predicate. This approach performs poorly due to
the high number of tuple pair accesses and predicate evaluations.
DCFINDER avoids directly comparing every tuple pair by benefit-
ing from two main insights: First, some predicates may have low
selectivity, and if so, are satisfied by many tuple pairs. Second, we
can efficiently build attribute value associations between tuple pairs
and their satisfied predicates using PLIs. DCFINDER is designed
based on these two insights to minimize the number of operations



within the evidence array B. This drastically reduces the perfor-
mance penalties from the quadratic tuple pair space, thus helping
the efficiency of DCFINDER.

DCFINDER builds evidence sets, in the three stages: Evidence
initialization, reconstruction, and counting.

6.1 Evidence initialization
DCFINDER initializes an array B so that many of the elements

of B are close to their consistent state. Consider an evidence e to
be stored in B[tpid]. The probability of a predicate p to occur in e
is simply the probability of tpid to satisfy p, i.e., the selectivity of
predicate p. Tuple pairs are more likely to satisfy the least selective
predicates. Under this assumption, DCFINDER fills in a general
evidence eahead with some of the least selective predicates, and then
instantiates every element of B as a copy of eahead. The chances
are high that many elements of B are already consistent for some
eahead predicates. For instance, all the tuple pairs of the employees
relation satisfy the predicate tx.Salary 6= ty.Salary.

Figure 4 shows the implication of each operator o ∈ O. A pred-
icate p1 : Ai o Aj implies every predicate p2 : Ai o′ Aj , where
o′ ∈ o⇒. If predicate p1 is true, then every implication of p2 is
true. Therefore, DCFINDER also includes p implications p⇒ into
eahead, for every p it has included into eahead. Figure 4 also shows
the logical complement o of each operator. The complement of a
predicate p : tx.Ai o ty.Aj is the predicate p : tx.Ai o ty.Aj ,
where o is the logical complement (or negation) of operator o. If
predicate p is true, then p is false.

Operator (o) = 6= < ≤ > ≥
Implication (o⇒) =,≤,≥ 6= <,≤, 6= ≤ >,≥, 6= ≥

Negation (o) 6= = ≥ > ≤ <

Figure 4: Implications and complement of operators.

The selectivities of both <,≤ and >, ≥ predicates are equiv-
alent. For each tuple pair tx, ty that satisfies the predicates p1 :
tx.Ai < ty.Aj (and its implied predicates p1⇒), there is the tuple
pair ty, tx that satisfies the predicates p2 : tx.Ai > ty.Aj (and its
implied predicates p2⇒). The selectivity of a predicate p is given
simply by subtracting the selectivity of p from the total number of
tuple pairs. Out of the 30 tuple pairs in the employees instance,
only 6 tuple pairs satisfy the predicate tx.Name = ty.Name, but
30−6 = 24 tuple pairs satisfy the predicate tx.Name 6= ty.Name.

Let us assume uniform distribution of attribute values and high
attribute cardinality (i.e., number of distinct values). The pred-
icates with operators ( 6=, <,≤, >,≥) have low selectivity com-
pared to equality predicates (=). Framing eahead to hold inequal-
ity predicates ( 6=) minimizes the number of inconsistent evidence,
and therefore, the number of evidence reconstruction required. We
can choose whether eahead should hold <,≤ or >,≥ predicates
without increasing the number of reconstructions. The evidence
eahead, however, should not include both <,≤ and >,≥ predicates
because that would only increase the number of inconsistent evi-
dence. If eahead holds <,≤ predicates, then array B must be re-
constructed for the correspondent >,≥ predicates, or vice versa.
Reconstructing single evidence requires accessing the array of ev-
idence B and performing simple set operations. Because array B
reflects the quadratic tuple pair space, minimizing the number of
evidence reconstruction considerably reduces the overall runtime.

Evidence ahead initialization. For ease of exposition, let eahead
denote a general evidence that includes every predicate p ∈ P such
that p.o ∈ {6=, <,≤}. DCFINDER initializes an evidence array
B of size |r| · |r|, and instantiate every element of B as a copy of

eahead. We next describe how the algorithm reconstructs the array
B for predicates with operators {=, >,≥}, so that B represents a
consistent state with regard to the predicate space and dataset tuple
pairs. These procedures can be straightforwardly adjusted to use
other settings of the evidence eahead.

6.2 Evidence reconstruction
DCFINDER uses PLIs to find the inconsistent tpid's of B, and

then iterates over those elements to perform evidence reconstruc-
tions. We can find inconsistent tpid's from combinations of ordered
pairs (l1, l2). The procedures to define and combine pairs of tuple
identifiers (l1, l2) are based on the types of each predicate.

Consider the case for predicates of the form p : tx.Ai = ty.Ai.
Recall that PLIs are sets of clusters c = 〈k, l〉, and each cluster c
keeps track of all tuples identifiers l with the same value k. From
each cluster c = 〈k, l〉 ∈ Π(Ai), DCFINDER builds ordered pairs
(l1, l2), where l1 = l and l2 = l. The tuple pairs with tx ∈ l1,
ty ∈ l2, and tx 6= ty are precisely those tuple pairs that satisfy the
equality predicate p. Each of these tuple pairs is assigned a tpid
(Equation 1), which is stored in an ordered set T. Consider the
cluster 〈DBA, {3, 4}〉 of Π(Position) for instance. It gives us the
ordered pair ({3, 4}, {3, 4}), and therefore, tuple pairs t3, t4 and
t4, t3. These are exactly some of the tuple pairs that satisfy the
predicate p5 : tx.Position = ty.Position. From Equation 1, and
tuple pairs t3, t4 and t4, t3, we get tpid's 22 and 27. These tpid's
point to evidence in the array B that are incorrectly holding the
predicate p6 : tx.Position 6= ty.Position, so we must reconstruct
these pieces of evidence to hold p5 instead. Following the above
procedures for every cluster of Π(Position) gives us every piece of
evidence we must reconstruct for predicate p5.

Finding tuple pairs that satisfy other types of predicates follows
a similar principle, but with a slight change on how ordered pairs
(l1, l2) are arranged. The procedure for predicates on different at-
tributes, p : tx.Ai = ty.Aj where i 6= j, is as follows: For
each cluster c = 〈k, l〉 ∈ Π(Ai), DCFINDER probes Π(Aj) for
a cluster c′ = 〈k′, l′〉 ∈ Π(Aj) such that k = k′. If there is a
match, DCFINDER builds an ordered pair (l1, l2), where l1 = l
and l2 = l′. Building the tuple pair representation from (l1, l2) fol-
lows the same principle described before. Finally, the procedure for
greater-than predicates with the form tx.Ai > ty.Aj is as follows.
For each cluster c = 〈k, l〉 ∈ Π(Ai), DCFINDER looks up every
cluster c′ = 〈k′, l′〉 ∈ Π(Aj) such that k > k′. For each match,
a new ordered pair (l1, l2) is built. DCFINDER transforms these
tuple pair representations into the tpid's, just as described before.
The algorithm keeps a map T of associations between a predicate
p and the ordered set of tuple pair identifiers that satisfy p.

Algorithm 1 shows the steps to find all the tuple pair identifiers
that point to inconsistent evidence in array B, given a predicate
space and relation instance. DCFINDER calculates tuple pair identi-
fiers only for {=, >} predicates. By minding the implication prop-
erty, the algorithm reconstructs B for {≥} predicates as well.

Algorithm 2 shows how DCFINDER materializes and reconstructs
tuple pairs evidence. Evidence array B is initialized with copies of
eahead. For each pair 〈p,T〉 in the mapping T , DCFINDER per-
forms a sequence of reconstructions. Given a tpid set T, the algo-
rithm updates B[tpid] for each tpid ∈ T. The operations slightly
differ from each other depending on the type of the predicate.

For now, let p be a non-numeric equality (=) predicate, and
B[tpid] an evidence we need to reconstruct for p. At this stage,
B[tpid] holds the inequality complement (6=) p of p. But we want
B[tpid] to hold p, not p. Let fix denote a predicate set that includes



Algorithm 1: Find the identifiers of inconsistent tuple pairs
Data: Relation instance r, and predicate space P
Result: A mapping T from predicates to tuple pair identifiers

1 for Ai ∈ R do
2 build PLI Π(Ai)
3 if Ai is numeric then
4 sort Π(Ai) in descending order of keys k

5 T ← ∅
6 foreach p ∈ P where p.o ∈ {=, >} do
7 Use PLIs to compute T of p
8 T {p} ← T

9 return T

Algorithm 2: Materialization and reconstruction of evidence
Data: Mapping T , relation instance r, and predicate space P
Result: Evidence array B

1 eahead ← every p ∈ P where p.o ∈ {6=, <,≤}
2 initialize array B, each element is a copy of eahead
3 foreach p ∈ P where p.o ∈ {=, >} do
4 fix← build predicate mask of p
5 foreach tpid ∈ T {p} do
6 B[tpid]← B[tpid]⊕ fix

7 return B

both p and p, that is, fix ← {p, p}. The symmetric difference1 be-
tween B[tpid] and fix, denoted as B[tpid]← B[tpid] ⊕ fix, gives
us a consistent B[tpid] with regard to p. If p is a numeric equal-
ity (=) predicate, fix must also include the correspondent <,≥
predicates of p. Once the symmetric difference has been applied,
B[tpid] satisfies p and its correspondents ≤,≥. That fulfills the
implication requirement for p.

Finally, let p be a greater than (>) predicate, and an evidence
B[tpid] be inconsistent for p. B[tpid] holds the correspondent
{6=, <,≤} predicates of p, but should hold {6=, >,≥} predicates,
instead. To reconstructB[tpid], we need to set fix to hold {<,≤, >
,≥} and calculate the symmetric difference B[tpid]← B[tpid] ⊕
fix. This operation removes the correspondent {<,≤} predicates
of p, but includes the correspondent {>,≥} ones. Figure 5 illus-
trates part of the reconstruction for the evidence of employees with
regard to the inequalities predicates on attribute Hired. The cluster
〈2012, {0, 5}〉 pairs with cluster 〈2010, {1, 2, 3, 4}〉 to form tpids
1, 2, 3, 4, 31, 32, 33, 34. These elements initially hold p15 and p16,
but are reconstructed to correctly hold p17 and p18.

6.3 How to scale up to large datasets
Storing arrays of evidence B incurs a quadratic space overhead

in the number of tuples because each array B represents evidence
of all tuple pairs. Also of quadratic space are the sets of tuple pair
identifier T used to reconstruct B because they grow as a function
of the number of tuple pairs. Storing all the data of B and T at
once may be infeasible as it can sooner or later exhaust any memory
limit. It turns out that slightly modifying how these structures are
built enables DCFINDER to scale up for larger datasets. DCFINDER
uses a multi-level partitioning scheme based on the range of tuple
pair identifiers. The idea is to create a partial evidence set for each

1The symmetric difference is implemented as a simple exclusive or
operation (XOR).
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Figure 5: Part of the reconstruction for the evidence of em-
ployees and predicates p17 : tx.Hired > ty.Hired and p18 :
tx.Hired ≥ ty.Hired.

range, and then merge these sets into the final and correct evidence
set. The scheme allows DCFINDER to: (i) handle larger relation
instances, and (ii) use multiple parallel threads.

Figure 6 illustrates the partitioning scheme. Instead of material-
izing whole sets of tuple pair identifiers T, DCFINDER processes
only fractions of T at a time. Virtual sets of tuple pair identi-
fiers T are partitioned into chunks T = {T0, T1, . . . , Ts, . . .},
s ∈ N. Partitioning is based on the disjoint ranges of tpid val-
ues. Assuming a maximum chunk length ω, chunk T0 can store any
tpid ∈ [0,ω), tpid ∈ N. Chunk Ts can store any tpid ∈ [low,high),
where low = s · ω, and high = (s + 1) · ω. In a similar fashion,
DCFINDER processes all the evidence of B using small evidence
fragments. Each fragment stores at most λ evidence elements. This
two-tier partitioning scheme benefits from data locality, as we show
in our experimental evaluation.

λ

s · ω (s+ 1) · ω (s+ 2) · ω
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Figure 6: Evidence set building: Partitioning of tuple pair iden-
tifiers into chunks, and splitting of tuple pair evidence into evi-
dence fragments.

Let us consider the s-th run. We build tuple pair identifier sets
Ts for every predicate required to materialize the evidence set. We
want each chunk Ts to hold every tpid associated to T such that
low ≤ tpid < high. Recall that tuple pair identifiers tpids are
drawn from ordered pairs 〈l, l′〉. DCFINDER shrinks pairs 〈l, l′〉 so
they yield tpids within the range of chunk Ts. From Equation 1, we
see that any tuple pair tx, ty such that tx ∈ l, and tx > high/ |r|
yields a tpid that is greater or equal to high, and therefore tx, ty
falls outside the range of Ts. Depending on the size of chunks
and relation instances, other tx, ty settings may also yield tpids
outside the range of Ts. DCFINDER removes such tuple settings
from ordered pairs 〈l, l′〉. Any tpid from 〈l, l′〉 is guaranteed to



fall within the range of Ts after 〈l, l′〉 has been shrunk. DCFINDER
proceeds to reconstruct evidence after all chunks Ts are created.

DCFINDER follows Algorithm 2, but reconstructs small evidence
fragments instead of the potentially huge evidence arrayB. The al-
gorithm initializes a fragment using eahead. Then it iteratively con-
sumes tpids from chunks to perform the reconstructions. It stops
consuming tpids if a tpid is no longer within the fragment range.
The current fragment is consistent after all chunks within the same
range have been processed. DCFINDER then iterates over the evi-
dence of the current fragment to retain two information: (i) distinct
evidence, and (ii) evidence multiplicity. Evidence of reflexive tuple
pairs, i.e., {tx, tx}, are skipped. The evidence set produced at that
point is partial, because it regards only tuple pairs within a given
range. DCFINDER requires an additional step to merge all partial
evidence sets. As discussed before, the number of distinct evidence
is very small compared to the number of total tuple pairs. Thus,
merging partial evidence sets does not incur significant overhead.

The primary computational pattern for evidence reconstruction
is the sequential read of chunks followed by symmetric difference
computations. If the chunk is too small, the number of runs in-
creases. On the other hand, if the chunk is too large, memory may
end up exhausted. The symmetric difference operation is imple-
mented as an XOR operation, which is usually optimized in modern
CPU architectures. Because DCFINDER needs to perform many of
these operations, improving data locality helps reducing cache miss
penalty. We performed micro-benchmarks to verify the influence
of chunk size ω and fragment size λ parameters in runtime. Our
experiments (Section 8) show that using relatively small evidence
fragments decreases cache misses, and thus improve runtime. We
observed that settings where the fragment size is just a fraction of
the chunk size yields better runtime than the settings where the size
of chunks and fragments are the same.

Keeping a simple counter for each distinct evidence suffices, so
we are able to accommodate the cover search (Section 7) to dis-
cover approximate DCs. The final evidence set E is a simple hash
map with evidence as keys, and evidence frequency as values. We
use counter to denote a function E → N such that counter(e) re-
turns the frequency of evidence e.

DCFINDER can build partial evidence sets independently of each
other, because chunks {T0, T1, . . . , Ts, . . .} are disjoint. It picks
up available threads from a thread pool to serve as workers. The
only data shared across workers is the data from PLIs, and from the
final evidence set. Multiple workers can safely read PLIs because
they never change once built. Each worker operates on its own
chunks and fragments to generate its partial evidence set. The con-
current access to the final evidence set is synchronized via latches.
This last operation does not impose significant overhead: most
time is spent finding the inconsistent tpids and fixing pieces of evi-
dence. As we show in Section 8, the evidence set building phase of
DCFINDER scales (almost) linearly in the number of CPU cores.

7. DC SEARCH
This section describes how DCFINDER uses the evidence set to

discover minimal approximate (and exact) DCs. It also describes
three measures to score the interestingness of the discovered DCs.

7.1 Minimal covers
A DC can be any subset of the predicate space P, so entirely

traversing the search space with 2|P| candidates is infeasible. Dis-
covering attribute dependencies is likely an intractable problem
[4,16]. For example, the authors of [4] have recently shown that de-
tecting functional dependencies is a W [2]-complete problem. The

result directly impacts the computational hardness of DC discov-
ery, because DCs subsume functional dependencies. Despite their
computational complexity, data profiling algorithms have managed
to perform quite well on various real-world datasets [21, 29, 34].

The problem of discovering all minimal DCs can be transformed
into the problem of finding all minimal covers of the evidence set [8].
The latter problem is cognate with other problems, such as enumer-
ating hitting sets or hypergraph traversals [22]. These problems
have been studied under a variety of domains for their wide range
of applications [2, 22]. We make use of the approach of [8], be-
cause it easily accommodates the search of approximate (partial)
covers, and therefore, approximate DCs. The approach works well
in practice, as discussed in Section 8.

An evidence e ∈ Er cannot hold predicates {p1, . . . , pm} and
{p1, . . . , pm} simultaneously. If e holds {p1, . . . , pm}, any DC
ϕ containing at least one predicate of {p1, . . . , pm} could not be
violated by the tuple pairs that yield evidence e. For ϕ to be exact,
that intuition must apply for every evidence e ∈ Er. That is why
we find covers of the full evidence set Er. A cover Q1 is a set
of predicates that intersects with every evidence of Er, i.e., ∀e ∈
Er, Q1∩e 6= ∅. The coverQ1 is minimal if there does not exist aQ2

that is a strict subset ofQ1 and intersects with the same elements of
Q1, i.e., @Q2 ⊂ Q1 such that ∀e ∈ Er, Q2 ∩ e 6= ∅. The following
theorem holds for discovering DCs (see [8] for proof).

THEOREM 1. A DC ϕ : ¬ (p1 ∧ . . . ∧ pm) holds in relational
instance r if the set Q : {p1, . . . , pm} is a cover of the evidence set
Er. The DC ϕ is minimal if Q is minimal.

In addition, we must be able to discover approximate DCs. Re-
call that the degree of approximation ε of a DC ϕ is based on
the number of tuple pairs that do not satisfy ϕ. The multiplicity
of an evidence set is given by ‖E‖ =

∑
e∈E counter(e), that is,

how many tuple pairs yielded all evidence of E. The multiplicity
‖E‖ is equal to |r| · (|r| − 1) if E = Er. Consider again the set
Q : {p1, . . . , pm}, but assume that E is only a subset of the full
evidence set E ⊆ Er such that ∀e ∈ E, Q ∩ e = ∅. The set Q ap-
proximately covers the full evidence set Er if ‖E‖ ≤ ε·|r|·(|r|−1).
If so, the predicate set Q is an ε-approximate cover of Er, and it is
minimal if there does not exist a strict subset of Q that is also an
ε-approximate cover of Er.

Algorithm 3 presents the minimal cover search. It is a heuristic-
based depth-first search for which nodes are recursively formed
based on evidence set coverage. Each node maintains a path of
the search tree Q ⊆ P, the set of evidence not covered by the cur-
rent path Epath ⊆ E, the set of predicates that can be included in
further branches Ppath ⊆ P, and all minimal covers MC found in
prior branches. Every path is a cover candidate. At first Q = ∅,
Epath = Er, Ppath = P, and MC = ∅ . To unfold a new branch,
the algorithm adds a predicate padd to the new path and updates the
information for the child node. The child evidence set Enew is the
result of removing all evidence that contain padd from the parent
evidence set Epath. The child predicate set Pnew is every predicate
p ∈ Ppath such that p 6∼ padd.

Two base cases stop the recursion. First, the algorithm finds an
approximate cover if the path Q removes large pieces of evidence
of Er such that ‖Epath‖ ≤ ε · |r| · (|r| − 1). Consequently, the cor-
responding DC of Q could be violated by no more than ‖Epath‖
tuple pairs. If Epath = ∅, Q is an exact cover. To ensure minimal-
ity, the algorithm tests whether there exists an immediate subset of
Q that also (approximately) covers Er . If it does not find such a
subset, the predicate set Q is added to the result MC as a minimal
cover. Second, if the search reaches a node for which there are still



Algorithm 3: Find Minimal Covers [8]
Data: Evidence set Er, Predicate space P, Error threshold ε
Result: Set of minimal covers MC

1 MC← ∅
2 findCover (∅,Er,P,MC)

3 Function findCover(Q,Epath,Ppath,MC)
4 if ‖Epath‖ ≤ ε · |r| · (|r| − 1) then
5 if no subset of size |Q| − 1 of Q ε-covers Er then
6 MC← MC ∪Q
7 return
8 else if Ppath = ∅ then
9 return

10 else
11 sort Ppath based on tuple pair coverage of Epath

12 for padd ∈ Ppath do
13 Q← Q ∪ padd
14 if Q is implied by MC then
15 Q← Q \ padd
16 continue
17 Enew ← {e | e ∈ Epath and padd 6∈ Epath}
18 Pnew ← {p | p ∈ Ppath and p 6∼ padd}
19 findCover (Q,Enew,Pnew,MC)

enough evidence to cover, but there are no predicates to form new
branches, then there is no valid cover in that branch.

The tuple pair coverage of a predicate p is the multiplicity of the
evidence set in which all evidence contain p, that is, ‖E‖ such that
e ∈ E and p ∈ e. The heuristic to unfold new paths is to include
predicates in dynamic ordering of tuple pair coverage. The search
adds predicates satisfied by most tuple pairs first, i.e., those pred-
icates that reduce the evidence set size the most. Removing pred-
icates from Enew changes the tuple pair coverage distribution for
the remaining candidate predicates Pnew, so the algorithm needs to
compute a new predicate ordering for each new branch. The sooner
the evidence set becomes small enough, the sooner the algorithm
finds minimal covers. The algorithm uses these covers MC to re-
duce the number of searches. Before updating the information for
a new path (Enew and Pnew), the algorithm checks if that path is
already in the cover. If so, there is no need to unfold that branch.

Once Algorithm 3 is finished, each minimal cover in MC is trans-
lated into a minimal DC by inverting its predicates (Theorem 1).
The output may contain implied DCs, so we need to test whether
each DC is implied by the remaining discovered DCs. This impli-
cation testing is known to be a coNP-complete problem [3]. The
authors of [8] introduced an inference system for DCs and describe
an algorithm to test DC implication with it. We use this algorithm
to remove implied DCs from the output of all DC algorithms. Al-
though not complete, the implication testing algorithm is correct
and helps to remove many implied DCs from the output, which
helps with user verification. More details on the static analyses of
DCs and other constraints can be found in [3, 12].

7.2 DC interestingness
DCFINDER discovers all minimal DCs in a dataset. But in all

likelihood, not all of them are equally useful. DCFINDER option-
ally estimates three interestingness measures: succinctness, cov-
erage, and degree of approximation. We use these measures to:
(i) pruning DC candidates that fall beneath interestingness thresh-
olds, and (ii) ranking DCs to help users selecting relevant ones.

Succinctness has been used to rank DCs in [8]. It is inversely
proportional to the number of distinct symbols (attributes and op-
erators) in the predicates of a DC: the fewer symbols a DC has,
the more succinct it is. The measure is based on the minimum de-
scription length principle: data representations with fewer symbols
are more succinct. DCFINDER can use succinctness to prune DCs
during cover search. To do so, it simply counts how many sym-
bols a candidate DC expresses before checking it. If the quantity
is greater than a given threshold, there is no need to check further
paths from that candidate DC – the succinctness can only decrease.

Coverage is described in [8] as the statistical significance of a
DC based on the proportion of tuple pairs that satisfy a given set
of predicates. It is given by a weighted sum of tuple pairs scores.
Given a DC ϕ with |ϕ| predicates, each tuple pair scores the DC ϕ
based on how many predicates that tuple pair satisfies. The larger
the amount of tuple pairs satisfying a number of predicates close
to |ϕ| − 1, the higher the coverage of ϕ. There is no guarantee
that coverage always decreases for a given path, so we used this
measure only during post-processing to rank DCs according to their
coverage scores. Estimating the coverage of a DC requires iterating
over the evidence set and evidence frequency counters. Because
many DCs have predicates in common to each other, this estimation
can be performed in a depth-first tree traversal to save computation
for DCs sharing a common prefix.

We can additionally use the degree of approximation, defined in
Section 3, to measure the interestingness of approximate DCs. It
follows from Definition 2 that the number of tuple pairs allowed to
violate an approximate DC is always bounded by the error thresh-
old. But the number of actual violations varies between the discov-
ered DCs. The degree of approximation simply shows how many
tuple pairs are inconsistent with regard to an approximate DC. After
a minimal (approximate) cover is found, the degree of approxima-
tion is simply the multiplicity of the remainder evidence set.

8. EXPERIMENTAL EVALUATION
We present an experimental evaluation of DCFINDER. We used

all DC algorithms known to date as baselines: FASTDC [8] and
BFASTDC [31] for the discovery of approximate and exact DCs;
and HYDRA [5] for the discovery of exact DCs.

8.1 Experimental setup
We used the code provided by the authors of [5] for HYDRA

and FASTDC. The code of BFASTDC was provided by the authors
of [31]. We implemented DCFINDER from scratch. All implemen-
tations were written in Java and run in main memory after dataset
loading. We integrated all implementations with the data profiling
framework Metanome [27] to guarantee a unified testing environ-
ment. To keep consistent comparisons, we set all algorithms to re-
place NULL values with default values (i.e., empty strings for non-
numeric attributes, or −∞ for numeric attributes). This approach
has been used also in the implementations of [5].

The strategies that FASTDC, BFASTDC and DCFINDER use to
build evidence sets are designed to run over multiple threads. There-
fore, unless stated otherwise, the reports for these algorithms are
from multi-thread executions. The authors of [5] do not present a
parallel version of HYDRA, so we use the implementation of the
algorithm just as it is described in the paper. In addition, we im-
plemented a new version of HYDRA, namely HYDRA+, so the al-
gorithm can benefit from parallel execution in its systematic tuple
pair sampling phase. This parallel step is implemented in similar
fashion to the grid scheme used in FASTDC.

The experiments were run on an Intel Core i7-7700HQ machine
(2.8 GHz, 4 physical cores/8 logical cores, 32 KB for L1, 256 KB



for L2, and 6 MB for shared L3); 16 GB RAM; 256GB SSD;
Ubuntu 16.04; and Java 1.8 with the JVM heap space limited to
8 GB. The runtime reports are the average measurement of three
independent runs.

Table 2 shows the main characteristics of the datasets used in
our experiments. The majority of these datasets have been used
in related work. The Hospital and Tax datasets have been used to
evaluate DC discovery algorithms in [5, 8]. The Adult, Flight, and
NCVoter datasets have been used to evaluate FD discovery algo-
rithms in [21]. The Inspection dataset has been used to evaluate
data cleaning systems in [33]. We additionally used the Airport
dataset, which contains a list of airport codes and locations. Our
repeatability page provides the implementation of our algorithm
and pointers to all datasets2.

Table 2: Datasets used to evaluate the DC discovery algorithms.

Name Type #tuples #attributes #predicates

Adult real-world 32, 561 15 54
Airport real-world 55, 113 18 48
Flight real-world 500, 000 20 88
Hospital real-world 114, 919 15 44
Inspection real-world 170, 000 19 74
NCVoter real-world 938, 085 22 60
Tax synthetic 100, 000 15 58

8.2 Discover of approximate DCs
We ran DCFINDER, FASTDC, and BFASTDC for all datasets

shown in Table 2. We used degrees of approximation ε = 0.01 and
ε = 0.05; these values have been previously used to evaluate the
discovery of approximate dependencies [21]. We set the chunk and
fragment lengths of DCFINDER to 5×106 and 5×103, respectively.
We evaluate varying chunk and fragment lengths in Section 8.6, and
varying degrees of approximation in Section 8.7.

The results in Figure 7 show that DCFINDER is the fastest algo-
rithm among the competitors. For Tax and Hospital, DCFINDER
is at least 2× as fast as BFASTDC, and at least 13× times faster
than FASTDC. The performance gains of our algorithm is higher
for larger datasets. Using a degree of approximation ε = 0.01, for
instance, DCFINDER took approximately 228 minutes to process
Flight, BFASTDC took nearly 715 minutes, but FASTDC could
not finish within the time limit of 12 hours. DCFINDER was the
only algorithm able to process NCVoter within the time limit. The
three algorithms use the same minimal cover search strategy; thus,
the difference in their performance is a reflection of how efficiently
they build evidence sets. Here, a good efficiency indicator is tuple
pair throughput; i.e., how many tuple pairs an algorithm processes
in a fixed amount of time. DCFINDER achieved better throughput
than the competitors, especially for large datasets. This shows that,
in terms of performance, DCFINDER improves the state of the art
for the discovery of approximate DCs.

The algorithms discovered the largest sets of DCs in Inspection
and Adult, respectively. Interestingly, the evidence sets for these
two datasets were also the largest among all. With bigger evidence
sets, the algorithms iterate over more evidence in each path of the
cover search, which hinders runtime. For Adult and Inspection, a
major part of the runtime was spent searching for minimal covers.
The cover search for Flight, for example, was much faster than
the cover search for Inspection. The Flight dataset has a bigger
2http://hpi.de/naumann/projects/repeatability/
data-profiling/metanome-dc-algorithms.html
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Figure 7: Runtime of approximate DC discovery. The crossed
bars indicate that an algorithm did not terminate within the
time limit (TL) of 12 hours. The Y-axes are in log-scale.

predicate space, but draws an evidence set that is only a fraction
(nearly a thirtieth) of the evidence set drawn from Inspection.

8.3 Discover of exact DCs
The next experiment focuses on the discovery of exact DCs;

therefore, our comparisons additionally include the specialized al-
gorithms, HYDRA and HYDRA+.

From Figure 8 we see that DCFINDER is faster than FASTDC
and BFASTDC in every scenario. The algorithm even outperforms
HYDRA and HYDRA+ in four out of seven datasets. For instance,
DCFINDER was approximately 4.5× faster than HYDRA in Airport.
But the sampling approach helped HYDRA to process some datasets
faster than DCFINDER: For instance, HYDRA processed NCVoter
approximately 3.5× faster than DCFINDER did.

DCFINDER materializes every tuple pair evidence to output ev-
idence multiplicity, whereas HYDRA processes a fraction of tuple
pairs to find only the distinct evidence. In a more detailed investi-
gation, we found that HYDRA processed less than 0.1% of the total
tuple pairs of each dataset. That is why HYDRA cannot produce the
evidence multiplicity of the full dataset, which is required for dis-
covering approximate covers, or calculating DC coverage. HYDRA
spent a significant amount of time correcting tuple pair samples
to complete the evidence set – similar observations were made in
the experimental evaluation of HYDRA. The correction was par-
ticularly efficient for datasets that draw a small evidence set, e.g.,
Hospital. However, it performed poorly for datasets with large evi-
dence sets. HYDRA+ improved the sampling phase of HYDRA, but
had minor influence on the overall runtime.

HYDRA iterates over each evidence to dynamically update the
set of candidate DCs, so they no longer violate such evidence. The
depth-first search of FASTDC, BFASTDC and DCFINDER starts
from DC candidates, and then updates the evidence set. Such a
strategy is also penalized by large evidence sets; however, it uses
the minimal covers to prune the search space as soon as they are
discovered. For Adult and Inspection, the depth-first search was
faster than the equivalent strategy of HYDRA. For the remaining
datasets, all algorithms took less than two minutes to complete the
search. This indicates that, in many cases, being able to build the
evidence set in an efficient manner is crucial for the performance
of the evaluated DC discovery algorithms.
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Figure 8: Runtime of exact DC discovery. The crossed bars
indicate that an algorithm did not terminate within the time
limit (TL) of 12 hours. The Y-axis is in log-scale.

8.4 Scalability
To evaluate the scalability in the number of tuples, we started

at the beginning of a dataset and incrementally added more tuples
to each execution. Figure 9 depicts the scaling behavior for Tax
and Flight datasets. All algorithms are sensitive to the number of
tuples. DCFINDER, however, seems to suffer less than FASTDC
and BFASTDC. The algorithm has an advantage over FASTDC
because it avoids the tuple pair comparison overhead. The ev-
idence set building strategy of DCFINDER is faster than the one
of BFASTDC for two reasons. First, it does not need to calculate
tpids for the inverse and implied predicates, as BFASTDC does.
Second, it reduces the number of accesses to the evidence elements
due to the ahead evidence allocation. For small numbers of tuples,
DCFINDER may be faster than HYDRA (e.g., as in Tax dataset).
As the number of tuples increases, Hydra starts benefiting from tu-
ple pair sampling (e.g., when we consider more than two hundred
thousand tuples for Flight dataset). There is an important trade-off
from this improvement though: HYDRA could not be tested if we
had set the degree of approximation to a value other than ε = 0.0.
DCFINDER, on the other hand, materializes all pieces of evidence
to calculate the evidence counters. That is necessary not only for
discovering approximate DCs, but measuring the interestingness of
the results based on coverage and degree of approximation.
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Figure 9: Runtime scalability in the number of rows.

To check scalability in the number of attributes, we began with
the five initial attributes in the dataset schema. Then we incre-
mentally added more attributes, using schema order, until every at-
tribute of the dataset had been added. Figure 10 depicts the scaling
behavior we obtained for Tax and Flight datasets. We used only the
first 20,000 tuples of each dataset to avoid expensive computations
in the number of tuples. The runtime of all algorithms increases
exponentially in the number of attributes: as the predicate space
grows, so does the number of DC candidates and the evidence set.
Since DCFINDER, FASTDC and BFASTDC share the same cover
search, the difference in their scalability is from how efficiently
they build evidence sets for bigger predicate spaces. Out of these
three algorithms, DCFINDER shows a slightly smoother scalability.
On the other hand, FASTDC seems to have the worst performance
degradation. The results in Figure 10 show that the performance of

HYDRA is abruptly penalized when more attributes are added to its
executions.
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Figure 10: Runtime scalability in the number of attributes.

We evaluate predicate scalability using the first 20,000 tuples of
Adult. The experiment chose different combinations of attributes at
random. The goal is to check, for different combinations of pred-
icates, how long DC discovery takes and how many DCs are dis-
covered. We executed the experiment twenty times and report the
average values in Figure 11. As expected, the predicate scaling of
all algorithms behaves in a similar way to their attribute scaling.
Just as there is exponential growth in runtime, there is exponential
growth in the number of DCs.
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Figure 11: Runtime scalability in the number of predicates.

8.5 Memory consumption
The next experiment measures how much memory is required

by the different DC discovery algorithms. For the largest datasets,
Flight and NCVoter, we executed each algorithm using a maximum
heap size of 64MB. Then, we repeatedly doubled this value until
the respective algorithm was able to actually process that dataset
(up to the time limit for slower algorithms). All algorithms had
similar memory footprints. To process Flight, BFASTDC required
2048MB, whereas the other algorithms required 1024MB. All al-
gorithms required 4GB to process NCVoter.

The main reason for this high demand is that our implemen-
tations load the full dataset into main memory to provide a fair
comparison of the in-memory processing of the algorithms. This
full loading incurs the overhead of encoding many attribute val-
ues as string objects. The main data structures used by DCFINDER
are PLIs, chunks of tuple pair identifiers, and evidence fragments.
PLIs are integer-based compact representations of datasets, and
their sizes grow as a function of the number of distinct attribute
values. Chunks and fragments have constant size defined by the
parameters ω and λ, respectively. While these structures can be
set to be as high as the available memory allows, we performed
micro-benchmarking and found DCFINDER to perform better with
relatively small values of ω and λ (as discussed in the next section).

8.6 DCFinder in-depth experiments
Figure 12 illustrates the runtime breakdown on each phase of

DCFINDER. A large part of the runtime is shared between finding
tpids and correcting evidence, which is expected as these phases



are the core of producing accountable evidence sets. Initializing
and accumulating evidence also takes a considerable amount of the
runtime: This is a reflection of the quadratic complexity that the
problem has in the number of tuples. For Adult and Inspection,
DCFINDER spent a major part of the runtime in cover search, as
explained in Section 8.2. The overhead from the remaining phases
is relatively small compared to the overall runtime.
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Figure 12: Runtime breakdown of DCFINDER (ε = 0.01):
relative time the algorithm spent on loading datasets, build-
ing PLIs, initializing evidence, calculating tpids, correcting
evidence, accumulating (hashing) evidence, and searching for
minimal covers.

The next experiment focuses on the evidence set building phase
of DCFINDER (Section 6) to highlight the scalability of DCFINDER
in the number of threads. Such scaling is possible because the al-
gorithm splits the tuple pair space into chunks, which can be pro-
cessed independently of each other. The measurements are over
the first 100, 000 tuples of each dataset, or over the total number
of tuples for Adult and Airport. Figure 13 shows the scalability of
DCFINDER in the number of threads. The algorithm scales (almost)
linearly up to the number of physical cores (4); from there, it scales
narrowly up to the number of logical cores (8). That behavior is ex-
pected as the cache resources are shared among the hyper-threads.
Increasing the number of threads for more than the available logi-
cal cores does not improve runtime. Doing so is likely to increase
the complexity of coordinating competing accesses to data, which
may even hinder performance.
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Figure 13: Relative runtime speedup in the number of threads
(evidence set building only).

How DCFINDER splits the tuple pair space influences its effi-
ciency. Figure 14 compares the behavior of the algorithm for vary-
ing sizes of chunks and fragments. We use Tax dataset to show
this behavior, but the same trend was observed across all the evalu-
ated datasets. The metrics of interest are runtime and cache misses
(both L1 and LLC): the arrows in Figure 14 indicate the lowest
measurements. The smaller the chunks, the more often DCFINDER
iterates over PLIs to generate tpids, and the lower the tuple pair
throughput (i.e., how many tuple pairs the algorithm processes in
a fixed amount of time). The left plot in Figure 14 shows that
DCFINDER runs faster as we increase chunk lengths, up until it
nearly stabilizes its performance. From there, the fragment lengths
at the edge (i.e., 102 and 105 ) negatively influenced runtime. This
shows that DCFINDER is robust to the two parameters, for sizable
ranges. For all datasets, DCFINDER was stable with chunk lengths

around 106 ≤ ω ≤ 107 and fragments lengths at the few thou-
sands region. After runtime inflection, the algorithm obtained no
performance improvement, but increased its memory requirement.
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Figure 14: Influence of chunk and fragment length on
DCFINDER runtime and cache misses. The axes are in log scale.

We observed that the cache miss ratio of the settings for which
DCFINDER had the best runtime was at the same level of the best
cache miss ratio we measured. Recall that DCFINDER operates
on two pieces of data, tpids and evidence fragments, and that it
implements the correction operation as an XOR, which is directly
supported by the CPU. The runtime inflection reflects a sweet-spot
where DCFINDER benefits from cache locality and achieves high
tuple pair throughput without exhausting main memory. We ob-
served very small variations in the runtime inflections of the evalu-
ated datasets. In our experiments, setting chunk length to 5 × 106

and fragment length 5×103 worked very well across the evaluated
datasets. BFASTDC also required us to set these two parameters,
so we also tried different values to tune its execution. We observed
that BFASTDC works best with chunks that are slightly smaller
than the chunks of DCFINDER, because BFASTDC stores tpids of
all predicates of the predicate space in memory.

8.7 DC interestingness
The following experiment shows how different degrees of ap-

proximation impact DC discovery. The approximation parameter
has no influence on the evidence set building phase (for all algo-
rithms), so we analyze only the minimal cover search behavior.
We gradually increased the parameter for different executions of
DCFINDER to measure how many DCs the algorithm returns, and
how much time is spent in the minimal cover search. Figure 15
shows the results of these executions. The number of discovered
DCs varies greatly between datasets. The predominant behavior is
that for larger degrees of approximation the minimal cover search
runs faster. The search may find approximate DCs sooner for larger
degrees of approximation, even when there are still many evidence
to cover. The number of discovered DCs decreases, in most cases,
with larger degrees of approximation. But the number of DCs may
also increase because discovering specializations of more general
DCs may change the general paths followed by the cover search.

Figure 16 shows how DCFINDER behaves with different suc-
cinctness thresholds. We restricted the discovery to DCs with up
to a varying number of symbols (attributes and operators). As ex-
pected, there are fewer short DCs – with predicates involving a few
attributes and operators. This result is reflected in the cover search
runtime since there are far fewer short DC candidates to check.
Most of the DCs discovered for Hospital are functional dependen-
cies with a few attributes, therefore, increasing the succinctness
threshold for this dataset did not affect the result.

The evaluated datasets have no gold standard with a complete set
of “interesting” DCs, so reporting the recall of the discovered DCs
would be subjective. In an approach similar to [7], we report the
precision of the top-k DCs. For this experiment, we used the first
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Figure 15: Influence of different degrees of approximation in
the number of discovered DCs (left) and cover search time
(right). The axes are in log scale.
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Figure 16: Influence of different succinctness thresholds in the
number of discovered DCs (left) and cover search time (right).
The Y axis is in log scale.

50,000 tuples of each dataset. We rank all DCs by either coverage
or succinctness, in ascending order; or degree of approximation,
in descending order. Then, we empirically verify each of the top-k
DCs to mark it as meaningful or not. The precision of each interest-
ingness measure at k is given by the number of relevant DCs found
in the top-k divided by k. We inspected approximate DCs of Flight
and Inspection; and exact DCs of Tax, because of its synthetic na-
ture. As seen in Table 3, the interestingness measures generally
achieved good precision rates. The exception was the succinctness
measure for Inspection, because some rules were under-fitted due
to the approximate cover search.

Table 3: Precision of the interestingness measures at k = 10.

Dataset ε Coverage Succinctness Degree of
approximation

Flight 0.0001 1.0 1.0 1.0
Inspection 0.0001 0.7 0.5 0.8
Tax 0.0 0.8 0.8 -

Table 4 reports a sample of the discovered DCs. Both cover-
age and succinctness put the entry ϕ4 at the top. The DC ϕ4 has
no violations, and it expresses an order relationship between at-
tributes originairportid and originairportseqid. Such a relationship
is a good opportunity for query optimization. The entryϕ5 is an ap-
proximate DC with relatively low succinctness, and low coverage.
But because it has a small number of violations (i.e., low degree
of approximation), it was straightforward to verify its correctness.
The rule has a potential use for data cleaning, because it reveals
problems with regard to the operating names of a company and
their facility type. The DC ϕ6 is a meaningful business rule that
did not show up at the top ranked DCs of Tax, which shows that
the interestingness measures are sometimes imperfect. The DC has
predicates with many different symbols and, therefore, low suc-
cinctness. The more predicates a DC has, the less likely a tuple
pair is to add high coverage scores to that DC.

Table 4: A sample of the discovered DCs.

Dataset Denial constraint

Flight ϕ4 : ¬(tx.originairportid ≥ ty.originairportid∧
tx.originairportseqid < ty.originairportseqid)

Inspection ϕ5 : ¬(tx.dbaname = ty.akaname ∧ tx.address = ty.address
tx.facilitytype 6= ty.facilitytype)

Tax ϕ6 : ¬(tx.state = ty.state ∧ tx.singleexemp < ty.childexemp
tx.childexemp > ty.childexemp)

Overall, it is possible to quickly find relevant DCs by using the
interestingness measures we discussed in this section. Coverage
and degree of approximation are particular useful to spot records
that do not follow constraints satisfied by most of the data. The
degrees of approximation and succinctness have a high impact on
the runtime of cover search, and number of discovered DCs. Of
course, this brief analysis only scratches the surface of the problem
of ranking discovered DCs for further use. It does show the poten-
tial though, and the ability of DCFINDER to incorporate relevance
measures to speed up execution.

9. CONCLUSION AND FUTURE WORKS
Motivated by the continuous need for maintaining the consis-

tency of data, we investigated the problem of discovering consis-
tency rules expressed as DCs. We presented the DCFINDER algo-
rithm for discovering all minimal, approximate or exact, DCs of
relational datasets. In DCFINDER, building a complete, but com-
pact, evidence set is broken down into: (i) creating PLIs; (ii) par-
titioning tuple pairs based on their ranges; (iii) preparing evidence
based on predicate selectivity; and (iv) completing evidence based
on PLI relationships. DCFINDER uses evidence distribution to ef-
ficiently explore the large DC search space, and to calculate two
measures: the number of violations of approximate DCs, and the
statistical significance of DCs based on data coverage. Our per-
formance evaluation shows that DCFINDER is faster than all prior
state-of-the-art for the discovery of approximate DCs. The algo-
rithm is, at times, even faster than the algorithms specialized in
discovering exact DCs only. Our brief study on DC interestingness
indicates that it is possible to quickly spot interesting DCs out of
the many DCs discovered.

We envision two promising directions for future work. First, de-
vising a theory to calculate statistical guarantees of approximate
DCs may open opportunities for aggressive pruning in the evidence
set building phase. Second, ranking DCs is still limited to humans-
in-the-loop: DC scores are tied to the weights chosen by users.
Devising new techniques to dynamically calculate interestingness
weights may help users to better explore and judge the results.

Acknowledgments
We thank Tobias Bleifuß and Thorsten Papenbrock for their help
in starting this project and the authors of [5] for providing code for
our comparative evaluation.

10. REFERENCES
[1] Z. Abedjan, L. Golab, and F. Naumann. Profiling relational

data: A survey. VLDB Journal, 24(4):557–581, 2015.
[2] J. Bailey, T. Manoukian, and K. Ramamohanarao. A fast

algorithm for computing hypergraph transversals and its
application in mining emerging patterns. In Proceedings of
the International Conference on Data Mining (ICDM), pages
485–488, 2003.



[3] M. Baudineta, J. Chomicki, and P. Wolper.
Constraint-generating dependencies. Journal of Computer
and System Sciences, 59(1):94 – 115, 1999.

[4] T. Bläsius, T. Friedrich, and M. Schirneck. The
parameterized complexity of dependency detection in
relational databases. In International Symposium on
Parameterized and Exact Computation (IPEC), pages
6:1–6:13, 2016.

[5] T. Bleifuß, S. Kruse, and F. Naumann. Efficient denial
constraint discovery with Hydra. PVLDB, 11(3):311–323,
2017.

[6] L. Caruccio, V. Deufemia, and G. Polese. Relaxed functional
dependencies – a survey of approaches. IEEE Transactions
on Knowledge and Data Engineering (TKDE),
28(1):147–165, 2016.

[7] F. Chiang and R. J. Miller. Discovering data quality rules.
PVLDB, 1(1):1166–1177, 2008.

[8] X. Chu, I. F. Ilyas, and P. Papotti. Discovering denial
constraints. PVLDB, 6(13):1498–1509, 2013.

[9] X. Chu, I. F. Ilyas, and P. Papotti. Holistic data cleaning:
Putting violations into context. In Proceedings of the
International Conference on Data Engineering (ICDE),
pages 458–469, 2013.

[10] C. Consonni, P. Sottovia, A. Montresor, and Y. Velegrakis.
Discovering order dependencies through order compatibility.
In Proceedings of the International Conference on Extending
Database Technology (EDBT), pages 409–420, 2019.

[11] R. Fagin, B. Kimelfeld, F. Reiss, and S. Vansummeren.
Cleaning inconsistencies in information extraction via
prioritized repairs. In Proceedings of the Symposium on
Principles of Database Systems (PODS), pages 164–175,
2014.

[12] W. Fan. Data quality: From theory to practice. SIGMOD
Record, 44(3):7–18, 2015.

[13] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis.
Conditional functional dependencies for capturing data
inconsistencies. ACM Transactions on Database Systems
(TODS), 33(2):6:1–6:48, 2008.

[14] W. Fan, F. Geerts, and J. Wijsen. Determining the currency
of data. ACM Transactions on Database Systems (TODS),
37(4):25:1–25:46, 2012.

[15] L. Geng and H. J. Hamilton. Interestingness measures for
data mining: A survey. ACM Computing Surveys, 38(3),
2006.

[16] D. Gunopulos, R. Khardon, H. Mannila, S. Saluja,
H. Toivonen, and R. S. Sharma. Discovering all most specific
sentences. ACM Transactions on Database Systems (TODS),
28(2):140–174, 2003.
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