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ABSTRACT
The rapid growth of “big-data” intensified the problem
of data movement when processing data analytics: Large
amounts of data need to move through the memory up to
the CPU before any computation takes place. To tackle
this costly problem, Processing-in-Memory (PIM) inverts
the traditional data processing by pushing computation to
memory with an impact on performance and energy effi-
ciency. In this paper, we present an experimental study
on processing database SIMD operators in PIM compared
to current x86 processor (i.e., using AVX512 instructions).
We discuss the execution time gap between those architec-
tures. However, this is the first experimental study, in the
database community, to discuss the trade-offs of execution
time and energy consumption between PIM and x86 in the
main query execution systems: materialized, vectorized, and
pipelined. We also discuss the results of a hybrid query
scheduling when interleaving the execution of the SIMD op-
erators between PIM and x86 processing hardware. In our
results, the hybrid query plan reduced the execution time
by 45%. It also drastically reduced energy consumption by
more than 2× compared to hardware-specific query plans.
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1. INTRODUCTION
Applications based on data analysis need to move large

amounts of data between memory and processing units to
look for patterns. Computers have relied on this traditional
computing-centric execution since the introduction of the
Von Neumann model. In this model, however, data move-
ment severely affects performance and energy consumption.
Recent studies show that data movement accounts for al-
most 63% of the total energy consumption and imposes high
latencies [6, 36].
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Traditional query execution systems have been operating
only on computing-centric models [11]. The materialization
query execution system generates lots of intermediate data
that move along the memory hierarchy to process the opera-
tors of a query plan. The vectorized query execution system
tries to exploit the caching mechanism and the CPU process-
ing with a high interpretation overhead. The pipelined query
execution system uses the Just-In-Time (JIT) compilation
to fuse operators of the same pipeline into a monolithic code
fragment. Although the authors of [28] call JIT as data-
centric compilation, the query execution is still computing-
centric by moving data to the CPU with many adaptations
to make better use of the memory caches. In this paper, we
study the data-centric execution model to tackle the data
movement problem in query execution systems with logical
units integrated closer to the data (inside memory devices),
which is called Processing-in-Memory (PIM) [25,34,45].
Database engineers have been evaluating PIM approaches

with processing components installed in magnetic disks [1,
12,26], RAM [38], and more recently in flash disks [10,13,46].
However, commercial products have not been adopting those
approaches for three main reasons: 1) Limitations of the
hardware technology; 2) The continuous growth in CPU per-
formance complied to the Moore’s Law and Dennard scaling;
3) The lack of a general programming interface that leads
to low abstraction level when handling hardware errors.
Now, modern PIM hardware integrate traditional DRAM

dies and logic cells in the same chip area with the Through-
Silicon Via (TSV), forming a 3D-stacked memory with a
high degree of parallelism. Therefore, modern PIM can
leverage current memory protocols to handle hardware er-
rors. Current GPUs embed the emerging 3D-stacked mem-
ories, such as the Hybrid Memory Cube (HMC) [23] and the
High Bandwidth Memory (HBM) [30]. However, there has
not been any in-depth study of query processing on PIM
with Single Instruction Multiple Data (SIMD) support.
In this experimental paper, we detail the implementation

of five major query operators into a simulator of PIM hard-
ware: selection, projection, aggregation, sorting, and join
(hash join, sort-merge join, and nested loop join). In par-
ticular, we present a new SIMD sorting algorithm that re-
quires fewer memory instructions compared to the state of
the art [21]. For each operator, we gauge the latency and en-
ergy spend to process TPC-H and Zipf distribution datasets.
We evaluate the high levels of parallelism and data access
when using AVX512 extensions from x86 processors, com-
pared to modern PIM architectures with SIMD support on
registers of 256-bytes wide. To the best of our knowledge,



we are the first experimental study to discuss the trade-offs
of latency and energy efficiency between PIM and x86 in
the main query execution systems: materialized, vectorized,
and pipelined. Our major contributions are:

• We detail the implementation of query operators with
support to SIMD instructions to execute in a PIM
hardware. In particular, we present a new SIMD sort-
ing algorithm.

• We present a comprehensive performance analysis of
the query operators in modern PIM hardware regard-
ing time and energy. We also distinguish the trade-offs
to process each SIMD operator on top of the materi-
alized, vectorized, and pipelined query execution sys-
tems.

• We discuss the potential of a hybrid scheduling of the
query operators that interleaves their execution be-
tween PIM and x86 processing. We present a heuris-
tic to build this hybrid scheduling and discuss the ex-
perimental results. Our scheduler reduced execution
time by 35% and 45% when compared to PIM and x86
hardware-specific query plans, respectively. It also re-
duced energy consumption by more than 2× compared
to the x86 processor.

Outline: In Section 2, we introduce current PIM archi-
tectures and motivate their adoption through a detailed ex-
ecution of the selection operator. In Section 3, we present
our experimental design and explain the reasons to choose a
particular group of query operators. In Section 4, we detail
our implementations of five SIMD query operators. In Sec-
tion 5, we analyze the performance and energy consumption
of the distinct query execution systems in each architecture.
In Section 6, we discuss a hybrid query execution for future
Database Management Systems (DBMS). In Section 7, we
present related work, and Section 8 concludes.

2. PROCESSING-IN-MEMORY
ARCHITECTURE

In this section, we describe how the PIM hardware works
and how query operators can benefit from its parallelism
and memory bandwidth.
A typical 3D-stacked memory consists of up to 8 layers of

DRAM dies interconnected by the TSV to the logic die at
the base. The 3D memory devices logically split the DRAM
dies into 32 independent vaults. Each vault contains up
to 8 independent DRAM banks, where each DRAM bank
provides as much as 256-bytes of data per row access. This
3D design achieves 512 parallel requests and can deliver a
maximum bandwidth of 320 GB/s, which is about 4x higher
than a traditional DDR-3 design. Our work uses this 3D-
stacked memory as the main memory for both architectures
x86 and PIM, making a strong case for our comparisons.
The logic layer of 3D-stacked memories supports the im-

plementation of traditional logic, similar to those present
inside processors. In the case of the HMC proposal, it imple-
ments update operations performing arithmetic, logical, and
bit-wise atomic instructions over scalars of up to 16 bytes
size. A different logic layer design, called HIVE, proposes
larger registers to provide SIMD parallelism inside the 3D
memory [3]. Although HIVE foresees the feasibility of SIMD

instructions operating over SIMD registers from 256 B up
to 8 KB, we will use the modest size of 256 B per opera-
tion. Thus, our PIM-256B architecture works with registers
of 256 bytes wide that shall store multiple operands. For
simplicity, we call each operand position inside a SIMD reg-
ister as a lane (e.g., when using 32-bit operands, a single
256 B register may contain up to 64 valid lanes). Similar
to the HMC proposal, HIVE also relies on the CPU to trig-
ger instructions to be executed inside the memory. We use
HIVE in our experiments due to its simplicity and low en-
ergy consumption (not requiring a full processor inside the
memory), its high performance, and its acceptance as it was
used to implement derived architectures [44,48].
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Figure 1: A query datapath movement in a traditional von
Neumann architecture plus a modern 3D-stacked memory
with PIM and SIMD support [3].

Figure 1 describes the PIM architecture with SIMD sup-
port from HIVE (to the right side) and the traditional x86
architecture inspired by the von Neumann model (to the
left): formed by the processor core and a detached cache
hierarchy. At the top of Figure 1, the processor dispatches
PIM instructions (dashed line) directly to the PIM device
bypassing the caches, while maintaining the coherence with
the Last-Level Cache (LLC) directory. The instructions to
access memory (load/store) might require accessing up to
256 bytes each. The 32 independent vaults allow 32 PIM
SIMD-like load instructions of 256-bytes at a time. How-
ever, this high level of parallelism depends on the mem-
ory access pattern from the application. During a memory
load from the logic layer, the data request goes to a specific
DRAM bank inside a designated vault (using the load ad-
dress to indicate the correct device). Once data is available,
the Vault Controller transfers it to the PIM SIMD register
bank in which every register implements a ready bit (in-
terlock mechanism), and thus the operations only continue
whenever case that bit is set. At the end of the execution of
each instruction, the PIM device only returns the instruc-
tion status to the CPU. This data-centric design is the main
advantage compared to current DBMS that filter data in
hardware before passing to the CPU, like Netezza and Ex-
asol. They have to deal with packing qualifying tuples into
condensed pages to avoid unnecessary bufferpool pollution,
which is expensive and error-prone. Therefore, the signifi-
cant benefits to be explored in the DBMS-PIM co-design are



the drastic reduction in energy consumption and the inter-
nal high memory bandwidth due to the high levels of data
access parallelism and on-chip processing.
Other capabilities of PIM include memory protocols to

support all the idiosyncrasies of PIM instructions, such as
cache coherence, Memory Management Unit (MMU), Error-
Correcting Code Memory (ECC) and Direct Memory Access
(DMA). The execution flow works at instruction-granularity
as the traditional CPU processing (e.g., AVX/SSE x86-
extensions), i.e., programmers insert intrinsics PIM instruc-
tions into the code, like Intel Intrinsics, and the compiler
flags them as special memory PIM instructions.

2.1 Understanding the PIM Selection
To understand the impact of PIM with SIMD on query

processing and to simplify our analysis, we initially focus
on the execution of the selection operator, instead of more
complex operations (like join). In the traditional selection
operator, the memory requests start from the CPU to the
main memory reaching all levels of cache, moving data up
and down through the memory hierarchy.
As the traditional von Neumann architecture detaches the

processor from the main memory, the data movement is an
inherited side effect that memory caches try to alleviate.
The caching mechanism is particularly efficient for applica-
tions with good data reuse. However, this is not the case of
the selection operator because it streams datasets polluting
the hierarchy of memory caches with dead-on-arrival cache
lines. Even the selection with an index (select-index) has the
same streaming behavior. The processes are blocked within
a corresponding indexed-data portion.
The selection operator appears as a good fit for PIM with

the potential to exploit the high internal bandwidth of 3D
stacked memories. Figure 2a depicts the execution of the
selection using PIM with SIMD support. A dataset can
be either an entire table, a column, or even a chunk of
an indexed-data portion. The selection operator performs
sequential memory access to process fragment-at-a-time of
256 B (S0 to Sn in Figure 2a). Figure 2b presents the C
language code of the selection operator and the respective
translation to PIM Assembly-like code. As a simplistic use
case, we generate the output of the selection as a bitmap,
although it is also possible with few adaptations to design a
PIM algorithm to emit a selection vector as output.
During the execution of the selection operator in HIVE,

the CPU sends the PIM instructions for on-chip processing.
Inside the logic layer, HIVE interprets and executes each in-
struction. During bursts of memory loads, up to 32 parallel
reads can be performed by HIVE, using all the throughput
of the memory vaults (up to 320 GB/s) [23, 30]. Although
it is possible to issue multiple loads in parallel, the exe-
cution follows strict in-order fashion. We observe that all
the registers can receive data from any memory vault dur-
ing memory loads as the implementation of HIVE is cou-
pled with the interconnection of the vaults. For the first
instruction, HIVE loads 256 bytes of data (data[i]) from
one specific memory vault into the SIMD register bank.
Then, the PIM+SIMD_CMP instruction compares the
PIM+SIMD loaded register and the SIMD register of fil-
ter (VF ): a pre-load PIM+SIMD register that has replicas
of the filtering value. In the end, the PIM_ST instruction
writes the resulting bitmap into a given memory vault.
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(a) Selecting data using PIM + SIMD support.

algebra.selectalgebra.select (data[], filter) LOOP:
    ...
   PIM_LD                   V0             data[i]
   PIM+SIMD_CMP   V0             V0, VF
   PIM_ST                   V0              bitmap[i]
    ...
J LOOP

for (int i = 0; i < size; i++)
    bitmap[i] = (data[i] < filter) 

C Language PIM-Selection Assembly Like

(b) The selection operator in C and PIM Assembly-like.

Figure 2: The selection operator in PIM.

2.2 The potential parallelism of PIM-256B vs.
x86 AVX512-64B

In this section, we briefly highlight the potential paral-
lelism of PIM compared to the x86 processor for processing
selections (Section 3 presents the details of the experiments).
The x86 version of the selection operator uses AVX512

extensions with SIMD registers of 64 bytes (AVX512-64B),
and the PIM version uses SIMD registers of 256 bytes (PIM-
256B). Notice that AVX512-64B uses the largest SIMD reg-
isters available for the traditional x86 processor. We also
applied the loop unrolling technique to push the architec-
tures to the maximum degree of parallelism available, i.e.,
the AVX5121 processing up to unroll depth of 8× and PIM
up to 32× to take advantage of the 32 independent vaults.
This experiment measures the latency of the operator

varying the size of the input dataset to fit into the L1/L2
caches. Figure 3 shows an appealing case for the x86 pro-
cessing: A small dataset processing with a low ratio of cache
misses to show the potential of PIM even in unfavorable
cases. In datasets bigger than cache sizes, the cache misses
degrades the performance of the x86 processing.
The three foremost benefits in here for PIM processing

are: 1) Only a single load inside PIM-256B shall retrieve up
to 256 B whereas the AVX512-64 requires 8 operations to ac-
cess the same amount of data; 2) Considering 4 B operands
(e.g., integer variable) the PIM-256B shall operate over 64
elements (lanes), while AVX512-64 operates over only 16
by the same time; 3) It is possible to considerably reduce

1Generally, 8× is the deepest unroll implemented by compil-
ers due to the reduced number of general purpose registers.



the number of data transfers between CPU and main mem-
ory operating directly inside the memory for streaming data
patterns. Based on those benefits, the PIM execution is 3×
faster than AVX512 for both datasets when using all the
memory vaults. In Section 5, we provide an in-depth analy-
sis of the results for many query operators.
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Figure 3: The execution time of the selection operator for
AVX512-64B and PIM-256B. The dashed line separates the
X-axis in two data sets: one fits in cache L1 and the other in
cache L2. Also, we ranged the loop unroll depth from 1× up
to 32×, which implies in varying the degree of parallelism.

Although x86 ISAs provide load instructions that bypass
the cache memories, it is important to notice that off-chip
communication is still present, consuming time and energy.
Processors usually can only perform 10 parallel requests
per processing cores (due to MSHR - miss status handler
register - limitations), resulting in total parallelism of 10×
64 bytes (640B), which is smaller than the parallelism of
PIM, i.e., 32× 256-bytes (8KB). In this paper, we are using
only a single thread to execute the operators on both sys-
tems AVX512-64B and PIM-256B. Note that the x86 pro-
cessor would require at least 13-cores/threads (13× 640B
= 8.1KB) to achieve the same bandwidth present in PIM,
requiring a much higher power budget.

3. EXPERIMENT DESIGN
In this section, we detail the design of our experiments.

We describe how we choose the query operators for analysis.
Then, we discuss the data distribution used in the rest of
the paper. Finally, we describe the simulation environment.

3.1 Choosing the Group of Operators
In this section, we investigate the most time and memory

consuming query operators to justify a relevant group of op-
erators in our study. First, we investigate the response time
breakdown of the TPC-H queries with 100 GB using the
column-wise database MonetDB v11.33.11 2. For this sec-
tion, we perform the experiments on a real machine using an
Intel quad-core i7-5500U processor running at 2.40 GHz with
16 GB of RAM (DDR-3L 1333/1600) and 4 MB LLC run-
ning OpenSuse Leap 42.3 on Linux kernel 4.4.76-1-default.
We added the TRACE statement modifier of MonetDB on
each query to collect statistics and performance traces.
Figure 4 presents the query execution breakdown plotting

the most time and memory consuming operators: projec-
tion, selection, join, aggregation, grouping, and the remnant
ones grouped into the category “others”. The last bar sum-
marizes the entire benchmark (“All TPCH”). We set as the
relevant group of operators the projection, selection, join,

2MonetDB available at: https://www.monetdb.org/

and aggregation, as they represent almost 90% of the 100 GB
TPC-H benchmark for execution time and memory usage.

3.2 Workload’s Data Distribution
Our goal in the design of the data distributions is to eval-

uate the impact of different memory accesses. We study this
impact in two cases: 1) The case when the input datasets fit
into the cache hierarchy; 2) When they do not. In theory,
the first case is the best one for the x86 processing because
the operators can take advantage of the caching mechanism
for data reuse. We assume three particular queries. TPC-
H Query 01 is a low-cardinality group query without joins
(fitting inside the cache memory). Most of its execution
time is spent projecting columns and computing the aggre-
gation. TPC-H Query 03 is a high-cardinality group query
with joins (does not fit inside the cache memory). Most of
its execution time is spent filtering and projecting columns.
We run the query operators varying the size of the input
columns to fit in the L1, L2, LLC caches, and in DRAM
with at least 1 GB. In the third query, we evaluated the
query aggregation with the Zipf distribution in the caches
(L1, L2, and LLC) and the DRAM of 1 GB:

SELECT sum(col_zipf) FROM table GROUP BY col_zipf

The Zipf distribution presents a bias based on the fre-
quency of the values, which we use to simulate random mem-
ory access to the groups in the hash table of the aggregation
operator. As a result, some groups are more accessed than
others generating data reuse in the memory caches.

3.3 SiNUCA: A Validated Simulator
We implemented the PIM architecture on top of the SiN-

UCA3 cycle-accurate simulator [4]. Notice that current PIM
hardware do not yet implement all the extensions depicted
in Figure 1. Therefore, we rely on architectural simula-
tors to implement the required hardware extensions for our
study, which is the standard approach adopted by proces-
sor industries and hardware research [49]. Using SiNUCA,
it is possible to execute the database operators in the sim-
ulated environment obtaining performance results for x86
and PIM executions. SiNUCA was validated against two
real machines [4] and it implements a realistic out-of-order
processor, advanced multi-banked and non-blocking caches
together with the PIM hardware. Furthermore, SiNUCA
was adopted by studies that extend PIM hardware in com-
puter architecture [44,48], and database [27,47] contexts.
The baseline architecture was inspired by the Intel Sandy-

Bridge microarchitecture that we extended with the AVX-
512 instruction set capabilities referred to as AVX512-
64B. Although this microarchitecture does not represent the
state-of-the-art, the memory bottleneck is still an unsolved
problem for newer architectures that rely on the computing-
centric execution. In all the cases, the traditional main
memory is a high-bandwidth 3D-stacked memory [23, 30].
Moreover, by adding 3D-stacked memory to this architec-
ture, we are virtually providing up to 32 channels to the x86
processor, which is more than 5× higher than the 2019’s
Cascade-Lake processor will offer. Table 1 presents the pa-
rameters of the target architectures with the same setup
used by related work [3, 48]. The PIM architecture has 32

3https://bitbucket.org/mazalves/sinuca/src
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Figure 4: The 100 GB TPC-H benchmark breakdown in the top time and memory consuming operators with MonetDB [19].

vaults with 8 DRAM banks each, and the total memory ca-
pacity is 8 GB. Also, this architecture has 36 SIMD registers
of 256 bytes that operates with operands from 4 to 256 bytes.
Our evaluation metrics take into consideration the opera-

tor execution time and energy consumption. In the micro-
benchmark analysis, each operator is evaluated in isolation,
with no interactions among them, except in the pipelined
execution that requires such interaction. For the operator
latency, we record the execution time. For energy consump-
tion, we measure the memory read, write, and data transfer
operations. We compute the memory energy estimation of
the DRAM values considering the architecture of the cur-
rent 3D-stacked memories [23,30]. In the macro-benchmark
analysis, we evaluate the whole query execution.

Table 1: Parameters of the target architectures taken into
account to design the experiments [48].

OoO Execution Cores 16 cores @ 2.0 GHz, 32 nm; 6-wide issue;
16 B fetch; Buffers: 18-entry fetch, 28-entry decode; 168-entry ROB;
MOB entries: 64-read, 36-write; 1-load, 1-store units (1-1 cycle);
3-alu, 1-mul. and 1-div. int. units (1-3-32 cycle);
1-alu, 1-mul. and 1-div. fp. units (3-5-10 cycle);
1 branch per fetch; Branch pred.: Two-level GAs. 4,096 entry BTB;
L1 Data + Inst. Cache 32 KB, 8-way, 2-cycle; Stride prefetch;
64 B line; MSHR size: 10-request, 10-write, 10-eviction; LRU policy;
L2 Cache Private 256 KB, 8-way, 4-cycle; Stream prefetch;
64 B line; MSHR size: 20-request, 20-write, 10-eviction; LRU policy;
L3 Cache Shared 40 MB (16-banks), 2.5 MB per bank; LRU policy;
16-way, 6-cycle; 64 B line; Bi-directional ring; Inclusive;
MOESI protocol; MSHR size: 64-request, 64-write, 64-eviction;
PIM device 32 vaults, 8 DRAM banks/vault; DRAM@166 MHz;
8 GB total size; 256 B Row buffer; Closed-page policy;
8 B burst width at 2:1 core-to-bus freq. ratio; 4-links@8 GHz;
DRAM: CAS, RP, RCD, RAS, CWD cycles@166 MHz (9-9-9-24-7);
SIMD units Unified func. units (integer + floating-point) @1 GHz;
Latency (cpu-cycles): 2-alu, 6-mul. and 40-div. int. units;
Latency (cpu-cycles): 10-alu, 10-mul. and 40-div. fp. units;
Op. sizes (bytes): 4, 8, 16, 32, 64, 128, 256;
Register bank: 36x 256 B (Originally 16x 8192 B in HIVE proposal);

4. IMPLEMENTATION DETAILS OF THE
SIMD QUERY OPERATORS

In this section, we describe the implementation details of
the query operators with SIMD. We also describe the rele-
vant SIMD vectorization features applied in the operators.
In a nutshell, the implementations of the selection and

projection operators require SIMD load and store memory

instructions. However, each operator requires a different
strategy to better use SIMD instructions. The hash join and
aggregation require the gather and scatter SIMD memory
instructions to load and store multiple entries of hash tables.
Finally, the sorting operation and sort-merge join require the
min/max and shuffle SIMD instructions.

Selection. The selection operator filters data and gen-
erates a bitmap with bits set to 1 for qualified data. We
discuss our two selection implementations with an example
of a chain of selections. Figure 5a depicts the selective load
SIMD instruction using a bitmap as a bitmask to filter the
next selection column from a contiguous memory location.
In a chain of selections, the output bitmap of an operator
is the input to the next one. Another common implementa-
tion of this operator generates a selection vector as output.
The output is a SIMD register with the values arranged ac-
cording to the input selection vector (e.g., the index register
in Figure 6a). In a chain of selections, the gather instruc-
tion reads the next column from a non-contiguous memory
location based on the selection vector from the previous se-
lection.
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Figure 5: SIMD memory instructions based on bitmask.

Projection. We present two implementations of the pro-
jection operator: 1) Projection with an index register for
high selectivity queries, like the selection vector of Mon-
etDB [19], and 2) Projection without an index register for
low selectivity queries reducing the memory footprint. Our
first implementation uses the selective store to project the
target column without an index register. Figure 5b shows



an example of this execution. The projection writes data
from a subset of register lanes to a contiguous memory lo-
cation. In the example, the output bitmap generated by the
selection is the input of the projection, where the bits set to
’1’ indicate the values to project. In our second implemen-
tation using an index register as input, the projection uses
the scatter memory instruction to write the non-contiguous
values of the target column (see Figure 6b).

memory

0 1 5 10 9 8 15 14 SIMD index register

A B * * * F * * I J L * * * O Q

A B F I J L O Q SIMD register

.  .  . .  .  .
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(b) Scatter Instruction.

Figure 6: SIMD instructions based on index register.

Hash Table and Hash Join. Our implementation of
the hash join is based on a vectorized SIMD-friendly lin-
ear building and probing algorithm [40]. We use the gather
and scatter memory instructions to implement hash tables
for the join and aggregation operations. The gather instruc-
tion loads multiple entries of the hash table (non-contiguous
memory locations). The scatter is the symmetric instruction
that writes data to multiple memory locations based on an
index register. For the x86 implementation, those instruc-
tions iterate (loop iteration) over the index register, iden-
tify the register lanes pointing to the same cache line, then
read/write one or two cache lines per iteration until there
are no more indexes to process. For the PIM implementa-
tion, the instructions iterate over an index register, group
the register lanes pointing to the same DRAM banks and
generate up to 32 load/store instructions of 256-bytes per
iteration until there are no more indexes to process.

Aggregation. The aggregation operator updates the ag-
gregated values into the hash table using gather and scatter
memory instructions. It gathers multiple entries from a hash
table and applies the conflict-free [17] to update the aggre-
gation values. Then it scatters them back to the hash table.

Sorting. Now, we discuss the implementation of the Sort-
Merge algorithm that outperforms other sorting algorithms
when exploiting the SIMD instructions [21]. The implemen-
tation of the Sort-Merge algorithm in SIMD is more intricate
than the previous query operators. Both sort and merge
phases of the algorithm rely on SIMD min/max and shuffle
instructions available on current SIMD processors [22].
The min/max instructions process two SIMD registers

V0 and V1 of length k (where k is the number of regis-
ter lanes). These instructions compare the corresponding
lanes of the registers and emit as output a new SIMD regis-
ter that contains the lowest/highest values between V0 and
V1, respectively. Figure 7a exemplifies those instructions
that receive as input the SIMD registers V0={12,21,4,13}
and V1={9,8,6,7}. The min instruction emits as output the

SIMD register L={9,8,4,7} with the lowest values of each
lane (dashed gray lines) between V0 and V1, and the max in-
struction emits as output the SIMD register H={12,21,6,13}
with the highest values.
The bitonic merge is a networked merge algorithm that

compares every element of two SIMD registers. The exe-
cution requires one register sorted in ascending order and
the other in descending order. Figure 7b shows a bitonic
merge network with two 4-wide SIMD registers (k=4). The
network has logk2 levels applied in parallel. Therefore, the
execution of the whole sort-merge requires 2 log2k2 min/max
and 1 + 2 log2k2 shuffle instructions.

12 21 4 13

9 8 6 7

V
0

V
1 12 21 6 13

9 8 4 7

H

L

(a) SIMD Min/Max in-
structions.

V
0

V
1

4

12

13

21

9

8

7

6

4

9

8

12

7

13

6

21

4

7

6

8

9

13

12

21

4

6

7

8

9

12

13

21

low

high

Min/Max Min/Max Min/Max

sort 
order

(b) Bitonic Merge.

Figure 7: Min/Max and bitonic merge examples.

Our SIMD sort instruction consists of two operations: the
in-register SIMD Sort and in-block-register Merge. The for-
mer sorts a SIMD register with k lanes using an odd-even
sorting network. First, it sorts the register lanes by applying
successive min/max instructions. Then, each lane is sorted
(shown as the gray and white lanes in Figure 8a). Finally,
it applies a series of shuffle instructions to transpose the k
sorted lanes (vertical order) to form k sorted registers (hor-
izontal order).
Figure 8b brings a general overview of our in-register

SIMD Sort with eight registers. The process has two steps:
1) It compares all registers to distinguish the overall lowest
and highest values of each lane, resulting in two registers
(V0 and V7), which requires k logk2 min/max instructions; 2)
The next step compares the remaining registers (i.e., k − 2
registers) as a full binary tree data structure, where the re-
sult of each level is the lowest and highest registers. Then
the number of registers to compare is reduced by a factor
of 2 at every level until remains two registers to process at
the last level. As a result, the number of instructions is∑2(log

k
2−1)−1

i=1 2i, where i is the number of levels. This pro-
cess can be generalized and extended to an arbitrary number
of k registers since k is a multiple of two. The general for-
mula to calculate the total number of min/max instructions
to perform our in-register SIMD Sort is:

k logk2 +

2(log
k
2−1)−1∑
i=1

2i | i ∈ Z (1)

On the other hand, the related work [9] requires:

2(k − 1 + (k(logk2 )(log
k
2 − 1))/4) (2)

Table 2 compares the number of min/max instructions for
both approaches in the target architectures. Notice that our
SIMD sort algorithm requires less min/max instructions in
both architectures.



Table 2: Number ofmin/max instructions of the in-register
SIMD sort computed by Equations 1 and 2.

Number of min/max inst.
Architecture Register Length In-register Related

SIMD Sort Work [9]
AVX512-64B 16 lanes of 4B 120 126
PIM-256B 64 lanes of 4B 880 1918

After the in-register SIMD Sort, our in-block-register
Merge combines sorted registers to produce an overall sorted
block of k registers. In Figure 8c, the resulting sorted reg-
isters (four registers, k = 4) of Figure 8a are the input to
the in-block-register Merge. The execution uses an odd-even
network to shuffle the registers and applies the bitonic merge
to compare two individual sorted ones, producing, after all,
a sorted block of k registers, i.e., V0 ≤ V1 ≤ .. ≤ Vn−1 ≤ Vn.
The execution of the merge phase uses the multiway merge
from related work [9, 21] to boost parallelism.
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Figure 8: SIMD Sort example and number of instructions,
and the in-block-register Merge to combine sorted registers.

Sort-Merge Join. Now we are ready to discuss the
implementation of the Sort-Merge Join algorithm with the
SIMD Sort-Merge Operation. The data structure of the join
column is of the form “key and object-id” in all of our join
implementations. In the particular case of the Sort-Merge-
Join, we sort the column by the key using our SIMD sort
algorithm, with the addition of one SIMD permutation in-
struction after the comparison operation to reflect the sort
in the object-id, as implemented by related work [20]. With
the two relations sorted, we apply the multiway merge to
conclude the operation [21,29].

5. RESULTS & ANALYSIS
In this section, we present the results of our SIMD query

operators in PIM and AVX512. Our goal is to understand
the trade-offs between these two highly parallel architectures
considering the effect of data movement around memory. We
evaluated response time and energy consumption metrics,
but we normalized these metrics to resume the data sets in
one graphic for each operator. The execution environment is
the same described in Section 3.1. We implemented the op-
erators in C++ language and recorded their memory access
pattern as input to the Assembly-like memory traces of the
simulator. Our query execution design assumes the column-
wise storage. Initially, we assume the materialization query
execution system (e.g., MonetDB, VoltDB, and Hyrise), but
we also discuss the impact of PIM on the pipelined (e.g.,
PostgreSQL, DB2) and vectorized (e.g., Vectorwise, Pelo-
ton) systems in Sections 5.5 and 5.6.

5.1 Selection Operator
Now, we report the results of the selection operator when

exploiting the data access parallelism of the PIM-SIMD
units. The selection operator applies the predicates of the
TPC-H Query 03. We adjusted the size of the columns in
our memory traces to fit data into the LLC and the DRAM.
We observe that the selection with PIM outperforms the

AVX512 execution with at least 4 active vaults. It reaches
the best execution when all the 32 vaults are activated in
parallel (see Figure 9). Therefore, regardless of the size of
datasets, the selection operator processes at least 3× faster
with PIM than AVX512. With more on-chip processing,
PIM uses around 45% less energy than AVX512. This high
reduction in energy consumption varies little with a different
number of vaults or the size of the datasets.
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Figure 9: Normalized execution time and energy consump-
tion of the selection operator varying the size of the datasets,
and level of parallel processing.

5.2 Projection Operator
As discussed in Section 3.1, the projection operator is re-

sponsible for the materialization of intermediate data mov-
ing large amounts of data around the memory hierarchy. We
observe the same results in Figure 10. The execution time
of the projection on datasets of the same size as LLC-8MB
or less is 7× on average faster in PIM than AVX512. For
datasets that do not fit in the caches, e.g., the DRAM-1GB
dataset, the execution time is one order (10×) of magnitude
faster with PIM. Also, in all datasets, PIM reduces energy
consumption in 3× compared to the AVX512. For instance,
in the dataset DRAM-1GB, the execution of the AVX512
unrolled 8× spent 1, 913 Joules of energy (see Figure 10).
On the other hand, the processing in PIM with all vaults,
i.e., PIM-256B 32×, generated 0, 645 Joule of energy (an
energy reduction of 3× compared to AVX512).



We conclude that pushing the selection and projection
operators to PIM has a significant advantage over the x86
processor. In-memory parallel processing of PIM devices
overcomes the processing power of the x86 due to the latency
to move data around the caches.
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Figure 10: Projection operator in the datasets LLC-8MB
and DRAM-1GB with the execution time and energy con-
sumption normalized to AVX512 1×.

5.3 Join Operator
In the literature, the join operator has many algorithms,

but most of them are variances of the nested loop, hash, and
sort-merge join. Here, we analyze these SIMD implementa-
tions in PIM and AVX512.

5.3.1 Nested Loop Join
The Nested Loop Join (NLJ) algorithm traverses the join

columns with two loops: the outer and the inner. In our
implementations, the latter is unrolled up to 32× for PIM
and 8× for the AVX512 execution. The goal is to exploit the
highest levels of parallel processing and memory access to
the devices. Figure 11 shows the results for datasets smaller
or equal to the L2 cache (L2-256KB). The AVX512 execu-
tion unrolled 4× performs better than the PIM execution.
The AVX512-style processing re-accesses data in caches for
every inner loop iteration, while the inner column fits into
the caches resulting in high data reuse (except by the first
interaction that causes compulsory memory misses). In con-
trast, the PIM execution causes compulsory load / store for
every inner loop iteration to access the memory banks at all
times.
The PIM execution becomes appealing for datasets big-

ger than the L2 cache (e.g., LLC-8MB), which inhibit data
reuse. The best AVX512 execution unrolled 8× spends 3.367
milliseconds to process the LLC-8MB dataset, whereas the
PIM unrolled 32× requires 2.428 milliseconds: A reduction
of 30% of the execution time. Moreover, the PIM processing
saves around 50% of energy consumption in both datasets.
In practice, DBMSs choose the NLJ algorithm only to pro-

cess small datasets, and for this reason, we suppressed the
results for datasets bigger than the LLC cache. Moreover,
we analyze the NLJ because it resembles the data access
pattern of matrix multiplication that encompasses other ap-
plications, such as linear transformation, image processing,
and machine learning algorithms. Our analysis on the NJL
adds useful insights to that range of applications.

5.3.2 Hash Join
The hash join algorithm consists of the build and probe

phases. These phases have two different memory access pat-
terns: sequential memory access to read the join columns
and random memory access to access the hash table entries.
The build phase generates the hash table from the smallest
relation. For instance, the TPC-H Query 03 generates two
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Figure 11: Normalized execution time and energy con-
sumption of the NLJ algorithm, varying the size of the
datasets and level of parallel processing.

hash tables for two join operations in the query plan. In
the 1GB TPC-H, the hash table on “c_custkey” has 30,142
entries with a 173-KB memory footprint. The hash table
based on “o_orderkey” has 147,126 entries with a 287-KB
memory footprint. The probe phase searches the biggest
relation to add the join values to the hash table.
Figure 12a presents the normalized execution time for the

hash join. For all dataset sizes, the AVX512 execution is bet-
ter than PIM. Two main effects impact the PIM execution:
1) Random access is sparse most of the execution, which
means that only one register lane will be useful during PIM
load operations. 2) Random access shall reuse some cache
lines inside the x86 processor, although the reuse ratio may
vary depending on the workload and cache size.
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Figure 12: Normalized execution time and energy con-
sumption of the Hash Join algorithm, varying the size of
the datasets and level of parallel processing.

Figure 12a depicts the random access pattern problem.
PIM unrolled 1× and 32× have the same performance, which
means that regardless of the levels of parallelism used, the
memory access serialization dictates the performance. How-
ever, the PIM execution reduces energy consumption in all
datasets. Figure 12b shows that the energy savings by PIM
increases as the hash table becomes bigger. The reasons be-
hind those results are because AVX512 with bigger datasets



generates more data movement than PIM to access the hash
table entries from the main memory.

5.3.3 Sort-Merge Join
The execution of the Sort-Merge Join presents two differ-

ent memory access patterns from its two phases. The first
phase generates random memory access when sorting the
join columns, while the second phase generates sequential
memory access when merging the sorted columns. Figure 13
presents the execution results using as much parallelism as
possible. We use an unroll depth of 8× in both PIM and
AVX512, because the SIMD sort-merge algorithm reserves
SIMD registers to hold intermediate values, such as low-
est/highest values from min/max instructions and others
from the shuffle instructions.
The execution of the AVX512 performs better while the

datasets fit into the caches due to faster data access, as
observed in both metrics: time and energy. The execution
time remains smaller in the AVX512 execution. However,
the energy consumption is higher with datasets bigger than
the LLC due to the data movement. In those cases, the PIM
uses around 40% less energy than AVX512.
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Figure 13: Sort-Merge Join: normalized execution time
and energy consumption on the target architectures with
unroll depth of 8×, varying the size of the datasets.

5.3.4 Discussion
In brief, the AVX512 overcomes PIM in terms of the exe-

cution time in the hash and sort-merge join. The PIM exe-
cution saves more energy avoiding off-chip data movement.
Another significant join algorithm is the radix-join [33],
which could be evaluated to reduce the energy consump-
tion of the AVX512. Roughly, the radix-join has two dis-
tinct data access patterns: a random pattern while building
radix-clusters for both join relations and a sequential one
to probe the clusters with a nested-loop [33]. The random
access pattern is also present in the hash join experiments,
where our recommendation is to use PIM for energy saving.
The sequential memory access is the same pattern evaluated
in the NLJ experiments, in which PIM saves around 50% of
the energy consumption, even in a dataset fitting in the L1
cache. The main reason for energy waste is the off-chip data
movement. In our evaluation, such a factor shall not reduce
with radix-join because its memory access patterns are al-
ready present in the experiments of the other algorithms.
However, radix-join is a compelling case for future work.
All in all, we conclude that the performance of the join op-

erator is very susceptible to the cache settings, the dataset
size, and the target performance metric. The AVX512 exe-
cution benefits from the caching mechanism when the join
columns fit into the caches or during random memory ac-
cesses, which enables data reuse inside the caches.

5.4 Aggregation Operator
The aggregation operator is based on a hash table to hold

the aggregation values. It has two memory access patterns:
1) Data streaming while accessing the group columns to
compute the hash addresses and the aggregation columns
to accumulate the new values; 2) Random memory access
while looking up the hash table. In this experiment, the lim-
ited number of PIM-SIMD registers restricts the data access
parallelism to 16× to build the aggregation and groups.

5.4.1 Query 01
The aggregation operator in the TPC-H Query 01 has

two columns for grouping, and eight aggregation functions
based on five columns from the Lineitem table. With a small
number of groups, i.e., hash table entries, the hash table also
has a small memory footprint that fits into the L1 cache.
Although the operator streams the five columns to compute
the aggregation functions, Figure 14 shows that the memory
access to the hash table dictates the performance regardless
of the degree of parallelism used by the PIM device. With
an unroll depth of 2×, the gather instruction of the AVX512
accesses two cache lines that are sufficient to load the entire
hash table to SIMD registers outperforming PIM with all
unroll depth versions.
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Figure 14: Aggregation: TPC-H Query 01.

5.4.2 Query 03
The aggregation operator in the TPC-H Query 03 has

three columns of grouping and just one aggregation function
based on two columns from the Lineitem table. The number
of hash table entries is a few hundred, which still fit in the
L2 cache. This fact leads the PIM to scale according to
the degree of parallelism. The difference in performance
decreases between PIM and AVX512 compared to the results
of Query 01. However, the execution of the aggregation
remains better in AVX512 (see Figure 15).
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Figure 15: Aggregation: TPC-H Query 03.

5.4.3 Zipf Distribution
In the previous experiments with TPC-H queries 01 and

03, the hash table fit into the L1 and L2 caches. Now, we
investigate the aggregation operator with the Zipf workload
varying the size of the dataset using bigger sizes than the



cache memories. The Zipf distribution was also used by the
related work [41] to evaluate the aggregation operator.
Figure 16 shows that the execution time using AVX512

is still better than PIM and that the difference in energy
consumption is quite marginal. The AVX512 performance
results come from the high reuse of the hash table, especially
for small hash tables that fit into the caches. The random
access to the hash table restricts the data access parallelism
of the PIM device, incurring in the same effects observed
in the hash join (see Section 5.3.2), i.e., low usage of SIMD
register lanes and x86 cache memory reuse.
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Figure 16: Normalized execution time and energy con-
sumption of the aggregation operator with the Zipf distribu-
tion varying the size of the datasets and level of parallelism.

We conclude that the hash table access pattern dictates
the performance of the aggregation operator regardless of
the performance metric. The random access shows low data
reuse as at most 32 memory addresses from the 64 possible
addresses in the SIMD lanes can be accessed at once. In
this case, hashing will require two loads to compute the hash
keys if the unroll depth is set to 32×. As a remark, we did
not consider, in this study, aggregations without grouping,
i.e., no hash table, because it is a corner case in analytic
workloads that we keep open for future work.

5.5 Pipelined vs. Vectorized Query Execution
In this section, we compare the pipelined and vectorized

query execution systems. We implemented the selection vec-
tor and bitmap data structures to support the execution of
both systems. In the pipelined execution, the selection op-
erator uses those data structures to hold intermediate re-
sults in SIMD registers as long as possible, avoiding data
re-access. These results are used by the next operators to
filter columns along the pipeline. In the vectorized execu-
tion, the selection operates on vectors of 1024 elements4 and
stores the intermediate data structures into the memory to
be loaded by the next operator in the query plan. Those
store/load instructions are the main factor that differs be-
tween the implementation and performance of these query
execution systems.
We analyze the selection operator that is followed by the

build phase of a hash join. We noticed an opportunity to
fuse these two operators in the TPC-H Query 03 query plan,
the selection filter “c_mktsegment = ’BUILDING’”, and the
build of the hash table on c_custkey because there is no
pipeline breaker [37] between them. Therefore, SIMD reg-
isters hold an intermediate selection vector that is used to
filter the c_custkey column (gather instruction). Keeping
the selection vector in SIMD registers precludes the exploita-
tion of the maximum 32× data access parallelism of PIM.
In our implementation, 16 SIMD registers hold the selection

4The same quantity defined by related word [5].

column (c_mktsegment), while the selection vector uses the
remaining registers.
Figure 17 presents the execution time and energy con-

sumption of the pipelined and vectorized execution. Re-
sults show that the pipelined execution performs better than
the vectorized in both architectures due to the additional
store/load instructions on the selection vector. PIM reduces
execution time of the pipelined system when the 32 vaults
are activated. In the AVX512 hardware, we observed almost
50% of energy saving due to the high selectivity of the selec-
tion vector that filters around 80% of the join column, and
also the random access pattern to build the hash table.
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Figure 17: Pipelined vs Vectorized execution of the TPC-
H Query 03 with a selection operator followed by building.

Now, we analyze the selection operator followed by ag-
gregation in the query plan of the TPC-H Query 01. The
selection predicate filters a small subset (around 1.5%) of the
Lineitem table, and 98.5% remains to aggregate. The selec-
tion operator outputs a bitmap of bytes instead of a selection
vector due to the low selectivity of the selection predicate.
In this query plan, the pipelined execution with a bitmap
as an intermediate structure achieves the maximum degree
of parallelism of PIM overcoming the AVX512 processing.
The selection operator reads data from all vaults to apply
the selection predicate. This strategy compensates for the
random memory access of the hash table. In the vector-
ized execution, SIMD registers hold the bitmap to build the
grouping and aggregation columns using the selective load
instruction. The aggregation operator applies the conflict-
free updates technique [17] to mitigate the concurrence to
the hash table. Figure 18 shows a marginal improvement to
run a selection followed by aggregation on PIM. The vector-
ized and pipelined executions are worth when at least 4 or
16 vaults are activated, respectively.

1x 2x 4x 8x 16x 32x
0

5

10

15

20

25

30

Loop Unroll Depth

E
xe

cu
tio

n
 T

im
e

 (
m

s)

AVX512-64B_vec AVX512-64B_pipe

PIM-256B_vec PIM-256B_pipe

1x 2x 4x 8X 16X 32x
0E+0

20E-3

40E-3

60E-3

80E-3

Loop Unroll Depth

E
ne

rg
y 

C
o

n
su

m
p

tio
n

   
   

   
 (J

o
ul

e
s)

Figure 18: Pipelined vs Vectorized execution of the TPC-H
Query 01 with a selection operator followed by aggregation.

We conclude that random memory patterns hamper the
data access parallelism of PIM in both execution systems.
This shows opportunities to re-design hash-based algorithms
for PIM hardware.



5.6 The Effect of Selectivity
For a more holistic macro-benchmark examination, we

evaluate the effect of the selectivity of the TPC-H Query
03 in the pipelined query system (the best performance
of AVX512, as observed in Section 5.5). We randomly
ranged the selectivity of the c_mktsegment between 0.1%
and 100%. Varying the selectivity on the pipelined system
implies to change the size of the selection vector and the
projectivity on column c_custkey, and also the cardinality
of the join, i.e., the number of entries in the hash table.
Figure 19 shows our findings. For selectivities between

0.1% and 10% on small datasets (e.g., TPC-H 1GB), PIM
reaches a better performance in both metrics compared to
the AVX512 because the selectivity reduces the hash table
size alleviating the memory access serialization. For selectiv-
ities greater or equal to 25%, the AVX512 outperforms PIM
due to two main reasons: 1) The hash table has more entries
that imply a higher join cardinality and more memory access
serialization; 2) The dataset fits into the caches leading to
data reuse. However, for big datasets PIM is faster regard-
less of the selectivity because the input columns, selection
vector, and hash table do not fit into the caches at the same
time. In the TPC-H 100GB, the execution time of PIM
ranges from 1.6× to 3× faster than the AVX512 varying the
selectivity from 100% to 0.1%, respectively. Likewise, PIM
uses 5% to 70% less energy than AVX512.
We conclude that the main factors to decide for PIM in

the pipelined query execution system are the cache settings,
the size of the dataset and the intermediate data structures.
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(a) Varying Selectivity: normalized execution time.
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(b) Varying Selectivity: normalized energy consumption.

Figure 19: Normalized time and energy of the 1GB/100GB
pipelined system varying the selectivity from 0.1%∼ 100%.

6. HYBRID PIM-X86 SIMD PROCESSING
In this section, we discuss the potential of a Hybrid PIM-

x86 SIMD query scheduler. We assume the materialization
system and present our discussion with the execution of a
macro-benchmark of TPC-H Query 03. Figure 20 shows
the execution breakdown in the DRAM-1 GB dataset with

the best execution of each operator in the target architec-
tures. For instance, we choose the hash join that showed
the best performance among the join algorithms. Processing
the PIM-specific query plan improves the execution time by
12.5% and spends 66% less energy than the AVX512-specific
query plan. This result matches the energy efficiency fea-
tured by commercial PIM architectures.
In Table 3, we correlate the results of the operators pre-

sented in Section 5 with their best processing architectures
according to the dataset size and performance metric. We
take into account these results to implement the heuristics
that coordinates the execution of operators between PIM
and x86. The hybrid query plan reduces the execution time
by 35% and 45% compared to both hardware-specific PIM
and AVX512 plan execution, respectively. For energy con-
sumption, the hybrid query plan consumes less than half
of the AVX512 consumption but presents a marginal result
compared to the PIM plan. All in all, the hybrid query
scheduler presents promising results to foster new develop-
ments of many-core DBMSs.

Table 3: Summary of the Query Operators.

Operator Dataset Performance Processing
Fit in cache? Metrics Architectures

Selection no/yes time/energy PIM
Projection no/yes time/energy PIM

Join

Nested L1/L2 time AVX512
Loop LLC time PIM

yes energy PIM
Hash no/yes time AVX512
Join no/yes energy PIM
Sort no/yes time AVX512
Merge yes energy AVX512

no energy PIM
Aggregation no/yes time/energy AVX512
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Figure 20: Execution breakdown when applying our find-
ings to process a hybrid query plan for Query 3.

Regarding energy results, we observe several trade-offs
whenever moving computation from the x86 to the PIM
logic: 1) We expect that the functional units (ALU’s) and
the number of data accesses will consume the equivalent
amount of energy. During data streaming, both x86 and
PIM execution shall process an equal quantity of computing
operations, spending the same amount of energy per oper-
ation no matter the hardware; 2) We can significantly save
energy reducing off-chip data transfers, as they consume up
to 71.5% of the total system energy budget [6]; 3) We also
reduce the energy consumption of the cache subsystem with
less data being stored and evicted from the cache memories.
The energy consumption of the cache subsystem accounts
for 25% to 50% of the full processor energy consumption [2];
4) We expect that energy consumption increases to send the
instructions inside the memory. On-chip processing requires



extra hardware to handle the instructions and the messaging
of their status to the CPU. However, the payload of instruc-
tions and messages to the CPU are much smaller than a
cache line, resulting in a positive energy trade-off.

7. RELATED WORK
Data Analytics For PIM Architectures. Pioneer

works have proposed PIM-based architecture for data an-
alytics based on simulation. MapReduce (MR) applications
with high spatial locality were adapted to PIM [42,43] lead-
ing memory cores to reduce the latency by 93.2%. This
work is orthogonal to our results because the reported MR
jobs have a resembling access pattern of the selection and
projection operators. Another work [32] relies on an an-
alytic model to estimate the latency of 3D-stacked mem-
ories through scan-aggregate queries. They presented im-
provements in latency and energy consumption against tra-
ditional CPU processing and big-memory servers. However,
they only consider the dataset size variation in their anal-
ysis. In our work, we evaluate and argue more intricate
factors, such as memory access patterns in caches. Mon-
drian [14, 15] implements an algorithm-hardware co-design
for near-memory processing of data analytics operators. It
is built upon a partitioning phase to turn random accesses
to sequential ones, enabling thus a memory streaming hard-
ware to exploit PIM capabilities. The presented results are
complementary to ours. They ratify that sequential access
favors PIM and show that random access is an obstacle to
use the whole bandwidth. Mondrian considers algorithms
with a PIM-tuned partitioning and probe phase. Instead,
we evaluate pure query operators leading to a conclusion
that they shall be optimized to benefit from PIM.

Flash Disks. Recently, flash disks also brought attention
to accelerate [16] and save energy [31] of scan and join oper-
ators. However, current works have two downsides: 1) They
rely on dedicated database hardware. Smart SSDs [13] use
an embedded ARM processor into the SSD with a firmware
for communication to evaluate the execution of database
operators. Intelligent SSDs [10] add a reconfigurable stream
processor to reach high processing performance with energy
savings; 2) They are application-driven without a general
interface to abstract hardware features. Active Flash [46]
offloads particular functions of scientific workloads to run
into the SSDs.

PIM As Query Accelerator. Recent works use PIM
devices as isolated accelerators to boost query operators,
such as selection [44, 48], projection [47], and join [35].
However, this one-sided approach is simplistic and neglects
the potential of CPU-PIM co-processing with caching and
energy-saving benefits.

Scheduling On Emerging Hardwares. Current intra-
query scheduling focused on co-processing between GPU and
CPU to improve execution time based on runtime learn-
ing model [7] and operator cost model [24]. A similar hy-
brid co-processing was tested in the Intel Xeon Phi co-
processor [8]. However, this hybrid co-processing tackles
compute-intensive applications and neglects the potential of
PIM to run data-intensive ones.

Kernel Scheduling on PIM-Assisted GPU. Related
work in GPU architectures proposed scheduling techniques
with PIM devices installed as GPU main memory. GPU
applications are split into independent GPU-kernels and in-
terleave the processing of each kernel between the GPU cores

and the PIM device [11,18,39]. Although GPUs are devices
with high parallel processing degree, data still need to be
transferred around the memory hierarchy before moving to
the GPU-PIM device. In this paper, we focus on in-memory
processing with data transfer only when needed.

8. CONCLUSION & FUTURE WORK
In this paper, we present results from extensive experi-

ments on database SIMD operators over three distinguish-
able query execution systems: materialized, vectorized, and
pipelined. Our experiments evaluated the SIMD operators
on the widest SIMD architecture of modern x86 proces-
sor (i.e., AVX512), against a modern Processing-in-Memory
(PIM) architecture that supports SIMD registers of 256-
bytes wide. We gauged the execution time and energy
consumption on more diverse datasets than previous stud-
ies [35, 44,47,48].
We have identified that the execution of the selection and

projection query operators are more suitable to PIM, while
the aggregation operator performs best in the x86 process-
ing. However, the choice of the processing architecture for
the join operator is notably intricate and depends on the
join memory access pattern and the size of the dataset. All
in all, the AVX512 processing presents the best result when
the dataset fits in the L1 or L2 caches (due to the data
reuse). The PIM processing presents the best result, regard-
less of the dataset size, considering the energy consumption
to move data around the memory.
One valuable contribution of our experimental study ap-

pears when analyzing the hash join algorithm. We uncov-
ered the effects of low usage of SIMD register lanes and also
the data reuse that appears in the x86 processing. These
problems inhibit the data access parallelism and processing
capabilities of PIM, degrading the performance of applica-
tions that generates massive random memory access during
the execution. Another contribution of this paper is our
SIMD sorting algorithm that requires fewer SIMD instruc-
tions than the state of the art in both PIM and AVX512 ar-
chitectures. We observed that our SIMD sorting algorithm
presented the best results when executed by the AVX512.
Also, we evaluated the vectorized and pipelined query ex-

ecution systems. The pipelined system is susceptible to
varying the selectivity and, consequently, projectivity and
join cardinality. However, the results showed that when the
dataset and intermediate data do not fit into the caches at
the same time; the PIM execution is up to 3× faster and
spends 70% less energy than the AVX512 processing.
As future work, we are currently building a hybrid query

plan scheduler between PIM and x86 processing. It showed
promising results reducing the execution time between 35%
and 45% compared to hardware-specific query plans, and
saving 2× more energy than the x86 query plan.
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