A Case Study of the Aggregation Query Model in
Read-Mostly NoSQL Document Stores

Diego Pasqualin, Giovanni Souza, Eduardo Luis Buratti,
Eduardo Cunha de Almeida, Marcos Didonet Del Fabro, Daniel Weingaertner
_ C3SL Labs, UFPR, Brazil . _
{dpasqualin,gvs11,elburatti,eduardo,didonet,danielw}@inf.ufpr.br

ABSTRACT

In this paper we focus on the aggregate query model imple-
mented over NoSQL document-stores for read-mostly data
bases. We discuss that the aggregate query model can be
a good fit for read-mostly databases if the following de-
sign requirements are met: on-line time range queries, ag-
gregates with predefined filters, frequent schema evolution
and no ad-hoc. In our model, we present a composite ob-
ject schema implementation over NoSQL document-stores,
in which data associations are nested in a document under
the same search key. We present the design choices to ob-
tain a model adapted to our needs. Our schema is inspired
by the star schema of Data Warehouses to reduce accessing
data associations in many different documents and comput-
ing aggregates within the same composite. We present per-
formance results of our empirical study over a 300 million
records database that serves in production for the Ministry
of Communications of Brazil. Results show the performance
gains and penalties of our star composite schema when com-
pared to the traditional multidimensional schema.

CCS Concepts

eInformation systems — Data management systems; Database
design and models; Data model extensions;

1. INTRODUCTION

NoSQL database systems appear as a popular alternative
to produce BigData software for large volumes of data. With
NoSQL, agile software development can benefit from sev-
eral aspects, including schema-flexible databases [4] to allow
software development with short release cycles, and Object-
oriented (OO) database design [2] to ease (un)marshalling
between objects and the storage model. For instance, in
MongoDB, one well known document store, the “Binary
JSON” storage format is a marshalled JSON document. Ap-
plication producers only care about persisting and retrieving
from JSON and let the storage marshalling to MongoDB.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

IDEAS ’16, July 11 - 13, 2016, Montreal, QC, Canada

(© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4118-9/16/07. .. $15.00

DOI: http://dx.doi.org/10.1145/2938503.2938546

NoSQL systems allow designing nested objects with im-
posed “Is-Part-Of” relationships, also known as “Composite
Objects” [13]. In the storage layer, composite objects with
keys and their data associations can be marshalled in hier-
archical storage representation (i.e., nested documents) [12,
2]. Thus, we argue that the “Is-Part-Of” relationships in-
dicate aggregate data, also pointed out by [13], and can be
used to boost performance of read aggregate operations.

Systems with read-mostly databases can benefit from com-
posite objects. Some types of read-mostly systems are: Busi-
ness Information Services (BIS), Customer Relationship Man-
agement (CRM) and electronic library catalog. In the stor-
age layer, these systems traditionally run atop Data Ware-
houses [16] where the storage model can be de-normalized
and transactions are modelled as “fact tables” described by
“dimension tables” (i.e., multidimensional model). Perfor-
mance of the multidimensional model shines through when
the storage model avoids imposing too many table join op-
erations of complex queries with “facts” at the center of the
model (i.e., star schema). However, even the multidimen-
sional model may require further optimization for processing
aggregate queries over large fact tables. The workaround for
some designers is to prepare group data to represent most
of the aggregate queries, like Cubes [6]. The downside is the
growing complexity of the storage model that will require
extra maintenance of the group data.

In this paper we discuss that read-mostly systems can
leverage from composite objects to design aggregates and
keep aggregate data close to the search key. We discuss the
design of a composite object schema that combines the best
of two worlds: the star schema from multidimensional model
and the aggregation query model from OO-DBMS [12]. The
main challenge to this design is to reflect the selections of
most of the aggregate queries without creating extra group
data. Naturally, this requires to store data associations in
documents under the same search key [7]. Thus, query pro-
cessing does not require accessing data associations in dif-
ferent documents. We also draw attention to deeply nested
documents that can slow data access [12, 9]. To reduce
nested data, we present the different design choices that
motivated the evolution from a traditional design to a star-
schema-like design. Finally, we discuss empirical results and
the running conditions in which the document-oriented de-
sign performs better and worse than its relational coun-
terpart. We use this discussion to define the design of a
read-mostly database running in production for the Min-
istry of Communications in Brazil with more than 300 mil-
lion records.

The main contributions of this papers are:

e we present an empirical study of a document oriented
database design based on the aggregate query model
in OO-DBMS [12] and the star schema of Data Ware-
houses.

e we discuss the design requirements that motivate the
exploration of NoSQL document stores. We give spe-
cial attention to the design of a composite object schema
for read operations to avoid deeply nested documents
and keep aggregate data under the same document.

e we discuss pros and cons of such document oriented de-
sign compared to the multidimensional relational de-
signs when upon the same workload. For this, we
present empirical results comparing both designs for
a data base that serves in production for the Ministry
of Communications in Brazil.

This paper is organized as follows: Section 2 discusses
related work. Section 3 presents the case study and the
design requirements. Section 4 presents the design chal-
lenges of document-stores for the read-mostly database and
the proposed Document-Oriented design. Section 5 presents
empirical results and we conclude in Section 6.

2. RELATED WORK

In the abstract level, there are different data represen-
tations that can be used to design aggregate data schema,
including Entry per Aggregate Object (EAO) and Entry per
Top-Level-Field (ETF) [2]. These data representations are
the basis of the NoSQL Abstract Model (NoAM) [3]. The
NoAM is particularly handy when designing databases over
NoSQL, specially when the storage model has not yet been
decided. For instance, the software producer can switch over
the NoSQL back-end from document store to a graph store
based on EAQO. Unfortunately, storage and performance im-
pacts of such flexibility can vary substantially from one data
representation to the other. Thus, designers are likely to
choose a specific data representation when the database work-
load trend is already known.

The aggregate query model for OO-DBMS [13] presents
a possible composite object schema to be implemented in
document-stores, although the paper does not discuss any
performance issues nor empirical results. Similarly, more
recent work on NoSQL document stores describe “best prac-
tices” on how to compute aggregation data [5, 10], but none
of them discusses how to benefit from composite objects to
boost performance. They only pinpoint possible implemen-
tation methods based on batch processing in MapReduce or
Pipeline'. [10] presents an empirical investigation of NoSQL
document-stores running aggregates for a specific use case
in log analysis. However, the document-store design is taken
for granted and no discussion of pros and cons against an-
other possible design is presented.

For query processing over composite objects, [17] presents
a comprehensive cost model for forward and reverse path
traversal. We do not discuss cost models in this paper, how-
ever, it inspired the proposed schema optimization to reduce
the need for path traversal.

'MongoDB Pre-aggregated Reports available online
at: https://docs.mongodb.org/ecosystem /use-cases/pre-
aggregated-reports/

3. CASE STUDY AND DESIGN REQUIRE-
MENTS

In this section, we present the case study that motivated
the implementation of a BIS over NoSQL document-stores.
Over the last years, the Brazilian government has been in-
vesting in nationwide projects to improve connectivity within
government institutions and provide better digital inclusion
for the Brazilian citizens. There are three main ongoing
projects: i) GESAC that aims to bring internet connection
to remote areas where commercial support is not available
(like in the middle of the Amazon Forest), ii) Digital Cities
that consists of a high speed fiber network connecting gov-
ernment buildings in small towns, while also providing free
broadband internet connection in public spots, and iii) Tele-
centers that are public LAN houses with free internet access
and open courses for digital inclusion.

With the increasing investments to accomplish these ini-
tiatives, the government is also acting to assess whether
the investments are actually implemented. Therefore, every
point of presence (Gesac or Digital City router, and comput-
ers on Telecenters) is being monitored, with network usage
collected in a five minute interval, for a current number of
more than 10,000 devices. Network usage, together with
some other metrics, not presented in this paper, can pro-
vide evidences on how the infrastructure is being used for
planning future upgrades and reacting to possible outages.

The BIS developed to address this amount of data, called
SIMMC?, was commissioned with the following requirements:
on-line time range queries, aggregates for predefined filters
(to fill predefined charts), no ad-hoc and agile development
for frequent software releases. The latter requirement is im-
portant because of the frequent addition of new points of
presence with different attributes.

The first version of the SIMMC was developed with Data
warehousing concepts: Extract, Transform and Load (ETL)
with overnight batch and multidimensional relational schema.
Figure 1 illustrates the data flow through SIMMC system,
starting in the Collecting System, where data is acquired
from computers and routers, going to an API that receives
data and inserts it into the Storage System. The Storage
System is a relational database with a Stating Area (SA)
that gets consolidated by an overnight batch process.

Collecting System Visualization System

Computer s
— ~ (DM Availability |
=l | i ;as;tggetwork v |
@ el +[o Daly e
[Rejected] E-
Router S

Figure 1: Data flow for SIMMC system.

Storage System

The biggest table to ingest data stores network traffic.
This table, called fact network usage, is the central piece to
build aggregate data into Data Marts for fast generation of
charts and reports in the Visualization System. The fact net-
work usage accounts for more than 300 million records and
is composed by attributes grouped as dimensions and met-
rics. The dimensions are id_point (point identifier), id_city
(location identifier), macaddr and ip_address (device identi-

2SIMMC, translated from Portuguese to “Monitoring Sys-
tem of the Ministry of Communication”, available online at
http://simmc.c3sl.ufpr.br/

fier®), and finally contact_date and collect_date (the date/-
time the collect agent contacted our server and retrieved
the data from the device, respectively). As metrics, we
have download_bytes, download_packages, upload_bytes and
upload_packages, accounting for the amount of bytes and
packets transferred in and out of the device during the in-
terval [collect_time, collect_time — bminutes]. Indexes are
present for collect_date, collect_time and id_point, the most
common search keys for aggregations in our queries.
However, performance degraded overtime and combined
to the addition of new points of presence, we had to con-
stantly evolve the database schema. This became a major
problem to deal with in the multidimensional model. There-
fore, we decided to explore one of the benefits of NoSQL
document-stores: they allow agile schema evolution, although
schema evolution is not the focus of this paper (see [14] for
a discussion of schema evolution in NoSQL). When switch-
ing a BIS to NoSQL, we found ourselves with performance
problems to run aggregate queries in documents, specially
for our large volume database. The goal of this paper is to
understand the performance gains and penalties of a NoSQL
document-store design running the SIMMC database.

4. DOCUMENT-ORIENTED DESIGN

In the SIMMC, each monitored device submits network
monitoring data as a record within a five minutes interval.
In the multidimensional model, we transform this record to
fit into fact (traffic information) and dimension tables (de-
vice description). We recall that the biggest challenge in the
SIMMC is the fact network usage to motivate the discussion
in this section. In the document model, different alternatives
are possible to transform and ingest the 300 million records,
but with performance considerations that need to be taken
into account. The designer could follow a naive approach
and store all records in a single document, but this would
result in several concurrency contention issues [15]. Another
naive approach is to convert each record to a document in a
one-to-one fashion. However, it would lead to performance
penalties in the storage level with 300 million separate doc-
uments.

When data is nested under different documents, query
processing requires traversing from a document to another [11,
12]. This processing is called path traversal in OO-DBMS.
Path traversal can be done in forward or reverse way. Queries
perform forward path traversal when filters are known. The
benefit of forward path traversal is that data associations
can be directly fetched in the order of the hierarchy. How-
ever, database schema with deeply nested associations can
slow down data access since many path traversal steps may
be required to access a single object, thus creating concur-
rency problems in situations of mixed workloads, such as
failed transactions [15]. When query filters are unknown
the database system performs the reverse path traversal with
high performance cost (see [17, 11] for a comparison between
forward and reverse path traversal).

To sum up, the main challenges to our design are: (1) the
amount of data can grow significantly as network devices are
asked to submit data within a tight time window, and (2)
the majority of queries submitted require the aggregation of

3As we monitor different type of devices, we need partic-
ular identifiers for each one. They are de-normalized here
because of performance concerns.

state: State.

HardwareDetails

metadata: <date, device: Device>.
data: <hh: <HourlyTraffic>>

mm: <MinuteTraffic>

— Association
— Aggregation

up_bytes, up_pkts.
down_bytes, down_pkts

Figure 2: Composite object schema for daily network traffic
data.

massive amounts of data.

In this section, we describe our design to efficiently keep
aggregate data in NoSQL document-stores for read-mostly
databases. As document-stores implement OO functionali-
ties, our design was originally inspired by the traditional O2
database language [9] and the Aggregation Query Model.
We show that the design choices evolved the model to bet-
ter handle path traversal operations and aggregate data.

4.1 Traditional composite modeling

We present a first object model proposal following tra-
ditional document-oriented design practices, where parts of
the model contains aggregation relationships. The conve-
nience of such design is that it can be embedded in NoSQL
documents under the same search key, avoiding performance
penalties in the storage level.

The object model (also called object schema) is defined
as a directed labeled graph G = (V, A), where V is the set
of vertices, which represent the classes; and A is the set of
arcs, representing the relationships (aggregations or compo-
sitions). Our object schema is illustrated in Figure 2. Aggre-
gation relationships are differentiated by boldface arcs. Each
node is labeled with a class name and a set of attributes.

The class DailyTraffic is the root of a composite object.
In a document oriented design, it is possible to store all the
components of a composite object into a single document.
This enables objects to be loaded without requiring path
traversal operations (i.e., navigation through the object re-
lationships) to fetch all its components, reducing the cost of
queries over the aggregation hierarchy. Figure 3 shows an
instance of the composite object stored in JSON.

However, when considering relationships between objects
that span through multiple documents, i.e., association re-
lationships, it is necessary to load them separately. This
means that, depending on the query, a significant amount of
path traversal operations is required to span through differ-
ent documents. For instance, consider the query written in
Object Query Language (OQL) illustrated in Figure 4: its
goal is to “retrieve the total amount of uploaded Bytes for an
entire state department” .

The corresponding path traversal graph indicates the need
of 5 path traversal operations. In addition, this query per-
forms reverse path traversal on all steps for two reasons: (1)
it does not perform any filtering (selection operations) on

{ metadata: {
device: "10.151.52.1"
date: "2015-05-07"
} ’

data: {
00: {
00: {
up_B: 50672, up_pkt: 348,
dl_B: 140372, dl_pkt: 329
Yooe..
55: {...}
b, .
23: {...}

H}

Figure 3: JSON representation of a document for the net-
work traffic data.

SELECT D.date, SUM(
SELECT SUM(SELECT M.up_bytes From M in H)
From H in D.data
) FROM
D in DailyTraffic, DV in D.device,
P in DV.point, C in P.city, S. in C.state

WHERE S.name = "Sao Paulo";
T O,

(name~"Séo Paulo’)

Figure 4: Upload data for “Sao Paulo” state department.

the root class, and (2) the number of accesses to the as-
sociated class through path traversal from the root class is
greater than the original number of associated objects.

4.2 Star-based composite modeling

In this section we present an alternative object model
that minimizes the path traversal operations. We model
the inter-document associations inspired by traditional Data
Warehouse “Star-schemas”. While it may not be the most
intuitive modeling technique, we link some of the classes
directly on the root class, as shown in Figure 5.

NetworkDetails

HardwareDetails

device: Device city: City

metadata: <date, device: Device,
point: Point, city: City>.
data: <hh <HourlyTraffic>>

hh: <HourlyTraffic>

mm: <MinuteTraffic>

up_bytes. up_pkts,
down_bytes, down_pkts

Figure 5: Star-based Composite Object Schema

The implementation of such change in the document is
straightforward, since it is only necessary to encode the
inter-document associations in the document metadata. The
benefit is similar to what is expected from “Star-schemas”:
we reduce the number of path traversals. Figure 6 shows

the query over the star-based composite to answer the same
question presented in the previous section.

SELECT D.date, SUM(
SELECT SUM(SELECT M.up_bytes FROM in H)
FROM H in D.data
) FROM D in DailyTraffic,
C in D.metadata.city, S. in C.state

WHERE S.name = "Sao Paulo";
(name="Sao Paulo")

3
Figure 6: Upload data for “Sao Paulo” state department in
the star-based composite.

4.3 Integrating aggregated data

Operations to summarize data is commonplace in read-
mostly databases to support insight reports about business
processes. This operation potentially requires the aggre-
gation of a massive amount of data. A common strategy
used in data warehouses is to keep pre-calculated aggrega-
tion tables [8] with summarized facts, constructed by either
eliminating dimensionality or by associating the facts with
rolled-up dimensions. The benefit of this approach is dra-
matically positive for queries on large data sets with perfor-
mance improvements in orders of magnitude [1].

In our case, the network traffic data is modeled in such
a way that aggregate data can be easily stored in the com-
posite object itself. For instance, in the class Daily Traffic, it
is possible to store the pre-aggregated sum of HourlyTraffic
(with a “many-to-one” relationship to DailyTraffic). With
this design, queries do not need to traverse the entire Daily-
Traffic to compute aggregate data for the “daily” granularity.

The maintenance of aggregated data is also easy on our
model. Since all the pre-aggregated data is contained in the
same document, when an update or insertion happens.

5. EXPERIMENTAL RESULTS

In this section we present an empirical investigation of
our document oriented design and a discussion about stor-
age footprint and performance, compared to the multidimen-
sional relational model. A snapshot of the SIMMC database
was taken for each model and the experiments run on the
same machine, a Xeon E5506@2.13GHz processor with 12GB
of RAM and Debian 8.3 GNU/Linux OS. The queries were
implemented in Node.js* and the backends for the relational
store is PostgreSQL 9.4 and for the document-store is Mon-
goDB 3.2, with default WiredTiger storage engine.

5.1 Storage Footprint

In a document oriented database the name of the at-
tributes (i.e., metadata) need to be repeated in every doc-
ument. This fact can represent a substantial overhead on
storage footprint. Given that our database has around 300
million records with eleven attributes, each record stores
114 bytes of metadata which uses approximately 32GB of
storage. Although the cost for hard disks are continuously
dropping, it is important to notice that the extra space for
metadata impacts on the efficiency of the cache system, since
less data can fit in memory at a given time.

“https://nodejs.org/en/

The first effort commonly used to mitigate this issue is to
shorten the attribute names, preferably to something that
can still be meaningful to the developer. Reducing the at-
tribute names by just a few bytes can save a considerable
amount of space as the number of records grow. For in-
stance, in a naive “one record-to-one document” design of the
fact network usage table, simply shortening our attributes
upload and download to up and down would reduce the over-
head by 37%, from 32GB to 20GB. However, the real gain
comes from the star-based composite schema, reaching an
even better storage footprint than its relational counterpart.

A single document on the composite object model aggre-
gates information of an entire day, while the relational model
stores one record for each five minute interval. This lower
granularity level allows us to avoid repetition on a ratio of
288 : 1 for every dimension value on the de-normalized re-
lational model, namely: id_point, device, location and col-
lect_date. Now these attributes are stored a single time on
each document. As a result, despite the repetition of at-
tribute names, the document-oriented model has achieved a
considerable lower storage footprint. We compare disk space
usage for both MongoDB and PostgresSQL, grouped by data
itself and B-tree indexes (which are the same on both mod-
els). Considering only data, PostgreSQL consumed 37GB
of disk space against 11.5GB for MongoDB. As for indexes,
MongoDB was remarkably more efficient, using mere 10MB
of disk space compared to 12GB on PostgreSQL. This dif-
ference is due mainly to the lower data granularity on the
non-relational schema, but can be also attributed to an effi-
cient data compression engine implemented in MongoDB®.
Consequently, having a smaller amount of records, it was
nine times faster to create indexes on MongoDB.

5.2 Performance

The performance measurement between the two models
was designed to test common queries and aggregations used
to generate reports and charts for the visualization system.
We consider the impact of indexes and different levels of
granularity for the aggregation.

Figure 7 shows the response time for a query that returns
all stored data within one week. Results are presented in
logarithmic scale and both sequential and index scan bene-
fit from the composite model, specially due to the smaller
amount of documents to be fetched from MongoDB than
records from PostgreSQL.

10000

PostgresqL [

1000 |- mongoos [7

With Index Without Index

Figure 7: Query on attribute date.

In a more in-depth experiment we perform a progressive
increase in the selectivity factor to analyze the impact of a
table and collection scan (see Figure 9). The x axis shows the

®MongoDB WiredTiger white-paper, available online at:
https://docs.mongodb.org/v3.0/core/wiredtiger/

selectivity factor, while y axis represents the query latency
compared to a full table scan. The baseline represents the
hypothetical scenario where latency increases at the same
ratio as the selectivity factor.

It is noticeable that the composite model implemented
on MongoDB follows the baseline performance, while the
relational model in PostgreSQL degrades at the very be-
ginning. First of all, by using composite objects we have
fewer records, consequently reducing the time to fetch the
requested data. Besides, when selectivity factor is greater
than 10% PostgreSQL chooses to do a table scan, while Mon-
goDB still relies on indexes.

For the next experiment we have selected four different ag-
gregation keys to assess performance between the two mod-
els: i) “PoP,day,min”, to aggregate metrics (bytes and pack-
ets transferred in/out of the device) for every device that
belongs to a PoP (Point of Presence) for each five minute
interval within a day, ii) “PoP,day” to sum up metrics for ev-
ery PoP in one day interval, iii) “PoP” to sum up metrics for
each monitored PoP, and finally iv) “city” to group metrics
by the cities where “PoPs” are located. All queries touch the
entire database. Aggregation in MongoDB was performed
via MapReduce framework®, while for PostgreSQL we used
the standard “GROUP BY” statement.

Figure 8a displays the results, this time with the relational
model running faster by a considerable margin for every ag-
gregation key. Results might be concerning depending on
the frequency that aggregations need to be generated and
whether it is possible to perform incremental aggregation,
meaning that new data can just be merged into existent
table/collection. As this is our case, we created functions
on PostgreSQL to mimic MongoDB built-in incremental ag-
gregation and ran the tests simulating ingestion of one day
worth of data. Figure 8b shows the results, and whilst Mon-
goDB is still slower, the difference is less relevant as we can
easily update results faster than they arrive (5-minute inter-
val bursts), assuring a real-time view for the SIMMC system.

6. CONCLUSION

In this paper we discussed that read-mostly systems can
leverage from composite objects to design aggregate data.
We present a document-oriented design combining the best
of two worlds: composite objects from OO-DBMS and star
schema from Data Warehouses. We showed that our doc-
ument oriented design can present significant performance
gains if specific design requirements are met. We also showed
that our design saved storage space when compared to the
traditional multidimensional relational design for BIS. Our
results come from an open-source BIS database serving in
production for the Ministry of Communications of Brazil
with more than 300 million records. Future work is still
needed to explore other optimization features, namely shard-
ing, and also improve our data ingestion procedure as NoSQL
presents many possibilities, such as MapReduce and Pipelin-

ing.

7. ACKNOWLEDGMENTS

This work was partially funded by the SIMMC Project:
Monitoring System of the Ministry of Communication of
Brazil, the FNDE Telecenter Project of the Ministry of Ed-
ucation of Brazil and CNPq grant 441944,/2014-0.

Shttps://docs.mongodb.org/manual/core/map-reduce,/

Figure 9: Selectivity factor between PostgreSQL and Mon-

10000

T
PostgresQL [
MongoD8 [

1000 -

100

Time (s)

PoP, day, min PoP, day PoP city

Aggregations

(a) Aggregation.

100000

T
PostgresQL I

10000 MongoDs [l

1000

Time (ms)

100

10

PoP, day, min

POP, day PoP city

Incremental Aggregations

(b) Incremental aggregation.

Figure 8: Aggregation time between PostgreSQL and MongoDB.

100

2
8
T

a
3
T

N
&
T

PostgresQL —=
MongoDB —
i Baseline
——1 L L

Query Latency / Full table scan latency (%)
N
5
T
\

1 2 4 8 16 32 64 100
Selectvity (% of dataset)

goDB.

8.
1]

2]

[4]

[5]

7]

REFERENCES

C. Adamson. Mastering Data Warehouse Aggregates:
Solutions for Star Schema Performance. Wiley, 2006.
F. Bugiotti, L. Cabibbo, P. Atzeni, and R. Torlone.
Database design for nosql systems. In Conceptual
Modeling - 33rd International Conference, ER, pages
223-231, 2014.

F. Bugiotti, L. Cabibbo, P. Atzeni, and R. Torlone.
How I learned to stop worrying and love nosql
databases. In 23rd Italian Symposium on Advanced
Database Systems, SEBD, pages 216—223, 2015.

T. Cerqueus, E. C. de Almeida, and S. Scherzinger.
Safely managing data variety in big data software
development. In 1st IEEE/ACM International
Workshop on Big Data Software Engineering,
BIGDSE@ICSE, pages 4-10, 2015.

K. Chodorov. MongoDB: The Definitive Guide.
O’Reilly, 2013.

J. Gray, S. Chaudhuri, A. Bosworth, A. Layman,

D. Reichart, M. Venkatrao, F. Pellow, and

H. Pirahesh. Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and
sub-totals. Data Min. Knowl. Discov., 1(1):29-53, jan
1997.

I. Katsov. Data modeling at scale: Mongodb +
mongoid, callbacks, and denormalizing data for
efficiency.
http://blog.michaelhamrah.com/2011/08/data-
modeling-at-scale-mongodb-mongoid-callbacks-and-
denormalizing-data-for-efficiency/,

2011.

R. Kimball and M. Ross. The Data Warehouse
Toolkit: The Complete Guide to Dimensional
Modeling, chapter Building the Data Warehouse,

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

pages 331-370. 2nd edition, 2002.

C. Lécluse and P. Richard. The 02 database
programming language. In Proceedings of the 15th
International Conference on Very Large Data Bases,
VLDB 89, pages 423-432, 1989.

K. Mahmood, T. Risch, and M. Zhu. Utilizing a nosql
data store for scalable log analysis. In Proceedings of
the 19th International Database Engineering &
Applications Symposium, pages 49-55, 2015.

G. Mitchell, S. B. Zdonik, and U. Dayal. Optimization
of object-oriented queries: Problems and approaches.
In NATO ASI OODBS, pages 119-146, 1993.

H. Pirahesh, B. Mitschang, N. Siidkamp, and B. G.
Lindsay. Composite-object views in relational DBMS:
an implementation perspective. In 4th International
Conference on Extending Database Technology,
EDBT’94, pages 23-30, 1994.

J. W. Rahayu, D. Taniar, and X. Lu. Aggregation
query model for oodbms. In Proceedings of the
Fortieth International Conference on Tools Pacific:
Objects for Internet, Mobile and Embedded
Applications, CRPIT, pages 143-150, 2002.

S. Scherzinger, T. Cerqueus, and E. C. de Almeida.
Controvol: A framework for controlled schema
evolution in nosql application development. In 31st
IEEE International Conference on Data Engineering,
ICDE, 2015, pages 1464-1467, 2015.

S. Scherzinger, E. C. De Almeida, F. Ickert, and M. D.
Del Fabro. On the necessity of model checking nosql
database schemas when building saas applications. In
Proceedings of the 2013 International Workshop on
Testing the Cloud, TTC 2013, pages 1-6, 2013.

M. Stonebraker and U. Cetintemel. "one size fits all”:
an idea whose time has come and gone. In Data
Engineering, 2005. ICDE 2005. Proceedings. 21st
International Conference on, pages 2—11. IEEE, 2005.
D. Taniar. Forward vs. reverse traversal in path
expression query processing. In TOOLS 1998: 28th
International Conference on Technology of
Object-Oriented Languages and Systems, pages
127-140, 1998.

