
Resilient Topology Discovery in Dynamic
Systems Based on Self-Diagnosis

Joao Gustavo Gazolla Borges, Elias P. Duarte Jr.
Department of Informatics

Federal University of Parana
Curitiba, Brazil

Email: {jggb,elias}@inf.ufpr.br

Abstract—This paper introduces a distributed strategy for
topology discovery in dynamic and decentralized networks, such
as P2P and mobile ad hoc networks. This strategy is inspired on a
distributed system-level diagnosis algorithm for general topology
networks. Each node tests its adjacent links periodically. Each
link may be in one of two states: fault-free or unresponsive.
An event is defined as a change in the state of a link. When a
tester detects an event, a message carrying event information is
disseminated. The strategy was implemented in a simulator, and
experiments were performed in networks with random power-law
topologies, with sizes ranging from 10 to 2000 nodes. Simulation
results evaluating the latency, cost and precision of the strategy
are presented.

I. INTRODUCTION

Several computer network applications require that nodes
keep the complete network topology. Examples include multi-
cast [1], group membership [2], network management, routing,
and others. This work proposes a distributed strategy for
topology discovery in dynamic and decentralized networks.
The network is dynamic because nodes can join and leave
at any time with or without previous notice. Furthermore,
links are logical and can be established and terminated at any
moment. Nodes can fail unexpectedly, as well as links. The
networks are considered decentralized: there are no central
servers nor special nodes of any kind. Examples of such
networks include decentralized P2P networks, such as Gnutella
[3], and wireless ad hoc networks [4].

The network is assumed to have arbitrary topology. Each
node stores a graph which is a local representation of the
network topology, with vertices standing for nodes and edges
standing for links between nodes. Furthermore, each node
executes periodic tests in order to be able to detect events
in its adjacent links. An event is a change in the state of a
link, such as the establishment, the termination, the failure or
the recovery of a link.

Due to the dynamic behavior of the network, the local
topologies kept by the nodes may not reflect the real topology.
Thus, the algorithm needs to be run continually, in order
to keep topology information as accurate as possible. The
proposed strategy is based on an existing algorithm for self-
diagnosis of general topology networks [5]. The contribution
of this work is to allow nodes to join and leave the system,
while the previously cited algorithm assumes a static topology.

The strategy was implemented in a simulator, in which
experiments we executed to assess the latency, cost, and
precision of the obtained topologies. The experiments were
performed in power-law networks, created randomly using a
topology generator based in [6]. The simulations were also
executed with networks with sizes ranging from 10 to 2000
nodes.

The rest of the paper is organized as follows. Section II
describes the proposed strategy. Section III presents experi-
mental results. Section IV points to related work, and section
V concludes the paper and presents an outline of future work.

II. THE PROPOSED STRATEGY

This section describes the strategy that is introduced in this
work. The goal of the strategy is to allow every node to have, at
any time, a view of the complete network topology as accurate
as possible.

A. Network Model

The network in which the strategy executes is assumed to be
an overlay network [7]. The network topology is represented
by an undirected graph G = (V,E), where set V represents the
network nodes and an edge (u, v) ∈ E represents a symmetric
logical connection between nodes u and v, such as a TCP
connection.

Each node has an unique identifier, which is often the
ordered pair (IP address, port). A node a may connect to
any other node b whose identifier is known by a, for that
node a uses a connection establishment protocol. A connection
established between two nodes may be terminated by either
node at any time by executing a connection termination
protocol.

A new node can join the network as long as it knows
the identifier of at least one node already in the network.
The arrival of a node in the network follows a subscription
protocol, which is described later in this paper. A node
may leave the network properly by following the network
departure protocol correctly, which causes all connections to
be terminated. However, a node may also leave the network
unexpectedly, without any previous notice. This may happen
for instance when a user accidentally pulls out the node’s
energy plug. In such a case, if the node wants to join the
network again, it has to execute the subscription protocol.

A node may be in one of two states: fault-free or unrespon-
sive. This model assumes crash faults and an asynchronous
system [8]. An event is defined as either an unresponsive
node becoming fault-free, or the opposite. A link may be
fault-free or unresponsive. An unresponsive link loses all
messages, whereas a fault-free link delivers all messages in
the same order they are sent. No assumptions are made
regarding the relative speed of processors, and link delays.
Consequently all the connections to a slow node may be
considered unresponsive, if a node does not answer within
expected timeout intervals.

B. Specification

The distributed strategy is continuously executed on-line,
in order to make each fault-free node aware of the entire
network topology. Each fault-free node stores an undirected
graph G = (V,E), which is its local representation of the
network topology. Each vertex v ∈ V stands for a node, and
each edge (i, j) ∈ E stands for a link between the nodes i
and j.

A natural number (timestamp) is associated with each edge
in the graph. An even timestamp means that the corresponding
link is fault-free, whereas an odd timestamp means the link
is unresponsive. Any link that has properly executed a termi-
nation protocol, is erased from topology descriptions. When
a link is established for the first time, its corresponding edge
timestamp is set to 0.

When a node detects a change in the state of a link, it
increments the corresponding timestamp and disseminates a
message with the new event information. This timestamp is
used to ensure that nodes can determine whether a received
event has up-to-date information. For instance, if a node
receives two messages with information about a certain link,
the message with the smaller timestamp is ignored. Besides
that, the timestamp is also used to reduce the number of
redundant messages in each dissemination.

C. Joining the Network

A node a willing to join the network must connect to a
node inside the network (called b). Node b checks in its graph
whether edge (a, b) already exists, which could happen if a
had failed previously. If edge (a, b) exists in its graph, node
b increments the corresponding edge timestamp to the next
even number, to indicate that the edge is now fault-free. On
the other hand, if edge (a, b) does not exist, node b assumes
that the link is being created for the first time, and thus creates
a new edge (a, b) in its graph, setting the timestamp to 0.

Afterwards, node b sends to node a its graph representing
the network topology. It is then necessary to disseminate the
new event information to all fault-free nodes, i.e. node b
disseminates a message containing the identification of the
link (a, b), as well as the new link timestamp.

After the first connection, a node may, at any time, connect
to other nodes in the network. The process is the same, except
that it is not required to send the graph again.

D. Test Phase

Each node tests its adjacent links periodically in order to
determine the occurrence of events. Tests are executed for that
purpose. Each node sends, from time to time, a test message
to each neighbor. If the node receives a reply within a timeout
interval, the node assumes that link is fault-free.

However, if a node tests a link and receives no reply until
the timeout interval expires, it is possible that either the link is
faulty or its neighbor has failed. Because of that ambiguity, the
node considers that the link is unresponsive. When detecting
an event on a link, the node increments the corresponding
edge timestamp. Afterwards, the node disseminates the event,
sending a message with the identification of the link that
suffered the event (i.e., the id’s of the nodes connected by
the link), and the new link timestamp.

E. Event Dissemination

In order to disseminate events, the node responsible for the
dissemination sends a message to each neighbor, which in
turn relay the message to their neighbors, and so on. When a
node receives a message, it updates its graph with the received
information. In this way, if the same node receives another
message with the same information, the node can detect that
it has already been informed about the event and does not
disseminate the message again.

The dissemination message contains the id’s of the nodes
connected by the link, together with an integer (timestamp)
that represents the link state. If the event is about a proper
link termination, the timestamp is equal to −1, indicating that
the link can be removed from the topology representation. The
dissemination is executed throughout the entire network, and
takes at most d steps where d is the network diameter. When
a node receives a dissemination message, it compares the
message timestamp to the link timestamp in its local topology
representation graph. If the message timestamp is smaller
or equal to the local timestamp, then the node had already
received the dissemination previously, so no dissemination is
required.

III. EXPERIMENTAL RESULTS

A simulator was built to allow to the evaluation of the
proposed strategy. The simulation goal is to evaluate the
cost, the latency and the precision for randomly generated
topologies.

The simulator, which was implemented in C++, employing
an abstraction we call a cycle. The simulation program initially
creates an object of type “Node” for each existing node. In
each cycle, all nodes (i.e., the objects that represent the nodes)
are executed sequentially. A node, when executed, can read
messages that have been written in its queue by other nodes,
and can also send messages to its neighbors. Queues are
used to send messages, i.e., each node has a message queue
accessible by its neighbors. When a message is sent in a cycle,
it can only be read in the execution of the receiver in the next
cycle.

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
yc

le
s

Number of Nodes

Cycles required to disseminate to the whole network

Fig. 1. Number of cycles required to disseminate a message.

The greatest advantage of such a kind of simulation is its
scalability, since details that would prevent the simulation of a
large number of nodes are ignored. As the simulator is based
on cycles, the concept of real time in the simulation does not
exist. For example, it is possible to measure how many cycles
it takes for a message to reach the entire network, but not the
corresponding amount of time.

Initially, when the simulator is executed, n nodes are created
and connected in a random topology. To execute the exper-
iments, a power-law topology generator based on the GLP
(Generalized Linear Preference) algorithm [6] was employed.

A. Experiments

The first experiment evaluates the cost and the latency to
disseminate a message throughout the entire network. The
experiment was performed by creating initially n nodes of
a network with power-law topology, and later by making
a random node disseminate a message. We measured the
number of messages sent and received by each node in the
dissemination, as well as the required number of cycles for the
dissemination to reach the entire network. Assuming that all
links have the same speed and latency, the greater the number
of cycles, the more time is necessary for the dissemination to
finish, and hence the less accurate the local topologies get.

Each test was performed 10 times. Tests with 10, 100,
1000 and 2000 nodes were executed. The graph in figure
1 shows the average number of cycles required in order to
have the dissemination message received by every node in
the network. The number of cycles depends basically of the
network diameter, i.e. the distance between the node that
disseminates the message and node with the greatest shortest
distance to the source. The graph shows that the number of
cycles increases quickly in networks with up to 100 nodes,
but after that the number of cycles increases more slowly.
The graph also shows that disseminations are propagated
throughout the network in relatively few cycles.

In the graph shown in the figure 2 it is possible to see the
average number of messages sent or received by each node,

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
ve

ra
ge

 m
es

sa
ge

 p
er

 n
od

e

Number of nodes

Messages per node in message dissemination

Fig. 2. Average number of messages sent or received by each node.

according to the size of the network. Since no node failed in
the simulation, the total number of received messages is equal
to the number of messages sent, as a sent message is always
received by another node. Therefore, the graph representing
the average number of messages sent is equal to the graph
representing received messages. It can be noticed that from
1000 nodes, the number of messages employed increases
slowly.

Nonetheless, the average number of received or sent mes-
sages does not present an accurate idea about the distribution
of the number of messages sent or received by nodes. To
investigate that, in the graph of figure 3 it is shown, along
the x axis, 5 intervals, which are related to the amount of
messages sent to disseminate a message in a network with 100
nodes. According to the graph, 67 nodes sent 0 or 1 message
during the dissemination. On the other hand, 3 nodes sent
between 21 and 50 messages, each one. That shows that most
of the nodes sent few messages, and had a small burden in the
dissemination, whereas few nodes received a great burden, and
needed to send several messages. This behavior was expected
due to inherent properties of power-law networks, which have
few nodes with many neighbors and many nodes with low
connectivity.

Figure 4 presents the same graph, but this time for a network
with 1000 nodes. The same behavior of the previous graph is
noticed. 760 nodes sent, each one, 0 or 1 messages during the
dissemination, whereas 3 nodes sent more than 100 messages.
The node that sent the greatest number of messages sent 148
messages. 12 nodes sent between 51 and 100 messages each,
15 nodes between 21 and 50 messages, 31 between 11 and
20, 46 between 6 and 10, and 134 nodes sent between 2 and
5 messages. The distribution of received messages is similar
to the distribution of sent messages.

These results show that, despite the heterogeneous distribu-
tion of the dissemination cost of a message, the disseminations
occurred in relatively few cycles, which guarantee that local
representations of the topology converge relatively quickly to
reflect the real topology.

 0

 10

 20

 30

 40

 50

 60

 70

 80

21−5011−206−102−50−1

N
od

es

Messages sent in dissemination (network with 100 nodes)

Number of nodes that sent x messages

Fig. 3. Number of messages sent per node, in a network with 100 nodes.

 0

 100

 200

 300

 400

 500

 600

 700

 800

100−51−10021−5011−206−102−50−1

N
od

es

Messages sent in dissemination (network with 1000 nodes)

Number of nodes that sent x messages

Fig. 4. Number of messages sent per node, in a network with 1000 nodes.

IV. RELATED WORK

Several related work present solutions to the problem of
topology discovery. The approaches presented in [9], [10]
are concerned with topology discovery in the physical layer,
instead of the application layer, and are also centralized. The
solutions that come closer to our proposal are the ones based
on mobile agents, such as the one presented in [11]. In those
types of solutions, several mobile agents wander in a wireless
network spreading information about the topology. However,
the main problem of those solutions is the high latency of the
topology convergence.

In [5] a distributed diagnosis algorithm is presented that al-
lows nodes to keep diagnostic information about the topology,
but the approach considers that the set of the nodes is known
a priori, which means it is not possible to dynamically add
and remove nodes from the network, as it happens in a P2P

network. Moreover, the algorithm uses breadth-first trees in
order to disseminate the events, and uses tree concatenations
when two or more trees are received by the same node. This
approach is unfeasible in dynamic environments, since the
concatenation of trees could possibly never complete.

V. CONCLUSION

This work presented a strategy for topology discovery in
dynamic and decentralized networks. The strategy is based on
previous system-level diagnosis results, and uses tests to detect
link events. After the occurrence of events, nodes disseminate
the information throughout the network. Using a simulator,
experiments were carried out, which allowed the evaluation
of latency, precision and number of messages required. The
experiments show that event disseminations occur in relatively
few cycles, and that as the number of nodes increases, the
number of cycles does not grow at the same rate. The
experiments were executed on randomly generated networks
with power-law topology, and show that node connectivity
does have an impact on the number of messages sent and
received by nodes in the network.

Future work includes implementing the system for real
P2P network monitoring, as well as employing other hybrid
techniques, such as intelligent agents, in order to disseminate
messages.

REFERENCES

[1] M. Castro, M. B. Jones, A. M. Kermarrec, A. Rowstron, M. Theimer,
H. Wang, and A. Wolman, “An evaluation of scalable application-level
multicast built using peer-to-peer overlays,” in Proc. IEEE INFOCOM,
vol. 2, 2003, pp. 1510–1520.

[2] K. Birman, A. Schiper, and P. Stephenson, “Lightweight causal and
atomic group multicast,” ACM Transactions on Computer Systems,
vol. 9, no. 3, pp. 272–314, 1991.

[3] M. Ripeanu, A. Iamnitchi, and I. Foster, “Mapping the gnutella network,”
IEEE Internet Computing, vol. 6, no. 1, 2002.

[4] R. Bruno, M. Conti, and E. Gregori, “Mesh networks: commodity
multihop ad hoc networks,” IEEE Communications Magazine, vol. 43,
no. 3, pp. 123–131, 2005.

[5] E. P. Duarte Jr. and A. Weber, “A distributed network connectivity algo-
rithm,” in Proc. International Symposium on Autonomous Decentralized
Systems, 2003.

[6] T. Bu and D. Towsley, “On distinguishing between internet power law
topology generators,” in Proc. IEEE INFOCOM, vol. 2, 2002, pp. 638–
647.

[7] K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey and
comparison of peer-to-peer overlay network schemes,” IEEE Communi-
cations Surveys & Tutorials, pp. 72–93, 2005.

[8] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” Journal of the ACM,
vol. 32, no. 2, pp. 374–382, 1985.

[9] Y. Breitbart, M. Garofalakis, C. Martin, R. Rastogi, S. Seshadri, and
A. Silberschatz, “Topology discovery in heterogeneous IP networks,” in
Proc. IEEE INFOCOM, vol. 1, 2000, pp. 265–274.

[10] Y. Bejerano, Y. Breitbart, and M. Garofalakis, “Physical topology
discovery for large multisubnet networks,” in Proc. IEEE INFOCOM,
vol. 1, 2003, pp. 342–352.

[11] R. RoyChoudhury, S. Bandyopadhyay, and K. Paul, “A distributed
mechanism for topology discovery in ad hoc wireless networks using
mobile agents,” in Proc. ACM International Symposium on Mobile Ad
Hoc Networking & Computing, 2000, pp. 145–146.

