
34 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 1, JANUARY 1998

A Hierarchical Adaptive Distributed
System-Level Diagnosis Algorithm

Elias Procópio Duarte Jr., Member, IEEE, and Takashi Nanya, Senior Member, IEEE

Abstract —Consider a system composed of N nodes that can be faulty or fault-free. The purpose of distributed system-level
diagnosis is to have each fault-free node determine the state of all nodes of the system. This paper presents a Hierarchical Adaptive
Distributed System-level Diagnosis (Hi-ADSD) algorithm, which is a fully distributed algorithm that allows every fault-free node to
achieve diagnosis in, at most, (log2 N)2 testing rounds. Nodes are mapped into progressively larger logical clusters, so that tests are
run in a hierarchical fashion. Each node executes its tests independently of the other nodes, i.e., tests are run asynchronously. All
the information that nodes exchange is diagnostic information. The algorithm assumes no link faults, a fully-connected network and
imposes no bounds on the number of faults. Both the worst-case diagnosis latency and correctness of the algorithm are formally
proved. As an example application, the algorithm was implemented on a 37-node Ethernet LAN, integrated to a network
management system based on SNMP (Simple Network Management Protocol). Experimental results of fault and repair diagnosis
are presented. This implementation by itself is also a significant contribution, for, although fault management is a key functional area
of network management systems, currently deployed applications often implement only rudimentary diagnosis mechanisms.
Furthermore, experimental results are given through simulation of the algorithm for large systems of 64 nodes and 512 nodes.

Index Terms —System-level diagnosis, adaptive diagnosis, distributed diagnosis, network management, fault management, SNMP.

—————————— ✦ ——————————

1 INTRODUCTION

S computer networks have grown into complex, en-
terprise-wide systems, management of operations and

associated risks has become a critical task. The goal of Net-
work Management Systems is to monitor, interpret, and
control network operations, optimizing costs and reducing
risks.

In the manager-agent paradigm, a Network Manage-
ment System consists of a Network Management Station
(NMS), also called monitor or manager, that queries a set of
agents for information describing the state of links, devices,
protocol entities, and nodes. Agents collect operational data
(e.g., performance parameters) and detect exceptional
events (e.g., error rates exceeding thresholds). This infor-
mation is kept in the Management Information Base (MIB).
Agents may issue alarms to inform the NMS about an ex-
ception. The NMS and the agents communicate through a
network management protocol. Applications based on the
Simple Network Management Protocol (SNMP) [1], [2], [3]
are currently widely available.

Current network management systems often implement
only rudimentary fault diagnosis mechanisms. Consider a
Local Area Network (LAN). The traditional approach to
monitoring [4] is to have a few managers, usually only one,
organized in a tree, each of them responsible for querying a
set of agents, and reporting to monitors in higher levels of

the tree, as shown in Fig. 1. In these trees, agents are the
leaves, and intermediate nodes are monitors that imple-
ment both an agent process (i.e., SNMP server) and a man-
ager process (i.e., SNMP client). This approach presents two
drawbacks:

1) If monitors become faulty or unreachable, diagnosis
stops on an entire portion of the network;

2) All monitors are required to test a large number of
network nodes.

Fig. 1. A common approach to network management monitoring.

The field of distributed system-level diagnosis has
flourished for years. Not only theoretical, but also practical
implementations have been presented. In [5], [6], Bianchini
and Buskens introduced the Adaptive Distributed System-
level Diagnosis (Adaptive DSD) algorithm, and also its im-
plementation in an Ethernet environment. Adaptive DSD
has diagnosis latency of N testing rounds for a network of
N nodes.

0018-9340/98/$10.00 © 1998 IEEE

¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥

• E.P. Duarte Jr. Is with the Department of Informatics, Federal University
of Paraná, C.P. 19081 Curitiba PR, 81531-990, Brazil.

 E-mail: elias@inf.ufpr.br.
• T. Nanya is with the Research Center for Advanced Science & Technology,

University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153, Japan.
 E-mail: nanya@hal.rcast.u-tokyo.ac.jp.

Manuscript received January 1997; revised September 1997.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 105898.

A

DUARTE AND NANYA: A HIERARCHICAL ADAPTIVE DISTRIBUTED SYSTEM-LEVEL DIAGNOSIS ALGORITHM 35

In this paper, we present a new Hierarchical Adaptive
Distributed System-level (Hi-ADSD) algorithm and its im-
plementation integrated to a Network Management System
based on SNMP (Simple Network Management Protocol).
Hi-ADSD is a fully distributed algorithm that has diagnosis
latency of, at most, log2 N testing rounds for a network of N
nodes. As in Adaptive-DSD, each fault-free node executes
tests until another fault-free node is found. Nodes are
grouped in progressively larger logical clusters, so that each
node executes tests in a hierarchical fashion. The algorithm
assumes no link faults, a fully-connected network and im-
poses no bounds on the number of faults. All logarithms
used in this paper are base 2.

The rest of the paper is organized as follows. Section 2 is
a brief revision of system-level diagnosis. In Section 3, the
Hierarchical Adaptive Distributed System-level (Hi-ADSD)
algorithm is specified and its correctness is formally
proved. Section 4 shows experimental results of diagnosis
on large networks obtained through simulation. Section 5
presents the implementation of Hi-ADSD integrated to an
SNMP-based Network Management System. This is fol-
lowed by conclusions in Section 6.

2 SYSTEM-LEVEL DIAGNOSIS

Consider a system consisting of N units, which can be
faulty or fault-free. The goal of system-level diagnosis is to
determine the state of those units [7]. For almost 30 years,
researchers have worked on this problem. The first model
of diagnosable systems was introduced by Preparata et al.,
the PMC Model [8]. In the PMC model, units are assigned a
subset of the other units to test, and fault-free units are able
to accurately assess the state of the units they test. The set
of all tests makes up a testing graph, i.e., a directed graph in
which vertices represent the system’s units and an edge
from vertex i to vertex j corresponds to a test performed by
unit i on unit j.

The collection of all test results is called the syndrome of
the system. The problem of diagnosis is to obtain the state
of the system from a given syndrome. The PMC model as-
sumes the existence of a central observer that, based on the
syndrome, can diagnose the state of all the units. For a
given testing assignment, the diagnosability of a system
may be limited by the number of faulty units, and deter-
mining this number is called the diagnosability problem.
Preparata et al. showed that, for a system to be t-
diagnosable, it is necessary that N ≥ 2t + 1, and that each
unit is tested by at least t other units. Later, Hakimi and
Amin [9] proved that if no two units test each other these
conditions are sufficient for t-diagnosability.

Early system-level diagnosis algorithms assumed that all
the tests had to be decided in advance. The tests were then
executed, and, from the obtained results, it was determined
which units were faulty. Those algorithms focused on
finding properties of the testing graph which would allow
the observer to identify the faulty units from the tests corre-
sponding to the testing graph’s edges.

An alternative approach, which requires fewer tests, is to
assume that each unit is capable of testing any other, and to
issue the tests adaptively, i.e., the choice of the next tests

depends on the results of previous tests, and not on a fixed
pattern. Hakimi and Nakajima called this approach adaptive
[10]. Early adaptive system-level diagnosis results assumed
the existence of the previously mentioned central observer.
Furthermore, a bound on the number of faulty nodes was
imposed for the system to achieve correct diagnosis.

Adaptive system-level diagnosis algorithms proceed in
testing rounds, i.e., the period of time in which each unit
has executed the tests it was assigned. To evaluate adaptive
algorithms, two measures are normally used: the total
number of tests required per testing round and the diagno-
sis latency, or delay, i.e., the number of testing rounds re-
quired to determine the state of the units.

Previously, Kuhl and Reddy [11], [12] introduced distrib-
uted system-level diagnosis, in which fault-free nodes relia-
bly receive test results through their neighbors, and each
node independently performs consistent diagnosis. They
proposed the SELF distributed system-level diagnosis algo-
rithm that, although fully distributed, is nonadaptive, i.e.,
each unit has a fixed testing assignment. We will alterna-
tively use the word node for unit and network for system.

Later, Hosseini et al. [13] extended the SELF algorithm,
introducing the NEW-SELF algorithm, which also has a
fixed internode test assignment, but is executed on-line,
permitting faulty nodes to reenter the network after being
repaired. NEW-SELF ensures the accuracy of test-results by
restricting the forwarding of testing results to fault-free
nodes. For correct diagnosis, NEW-SELF requires that every
fault-free node receives all test results from all other fault-free
nodes. To reduce the amount of network resources required
for diagnosis, the EVENT-SELF algorithm was proposed by
Bianchini et al. [14]. This algorithm uses event-driven tech-
niques to improve both the diagnosis latency and the impact
of the algorithm on network performance.

The Adaptive Distributed System-level Diagnosis algo-
rithm, Adaptive-DSD, was introduced by Bianchini and
Buskens [5], [6]. Adaptive-DSD is, at the same time, distrib-
uted and adaptive. Each node must be tested only one time
per testing interval. All fault-free nodes achieve consistent
diagnosis in at most N testing rounds. There is no limit on
the number of faulty nodes for fault-free nodes to diagnose
the system. Practical results of Adaptive-DSD were pre-
sented of its implementation on an Ethernet environment.

Adaptive-DSD is executed at each node of the system at
predefined testing intervals. Each time the algorithm is exe-
cuted on a fault-free node, it performs tests on other nodes
until it finds another fault-free node, or it runs out of nodes
to test. A testing round is defined as the period of time in
which all nodes of the system have executed Adaptive-DSD
at least once. After one testing round, if there are at least
two fault-free units, the testing graph has the format of a
ring, as shown in Fig. 2. In the example shown in Fig. 2,
node 1, node 4, and node 5 are faulty, and the rest are fault-
free. Node 0 tests node 1 and finds it faulty, so it goes on
and tests node 2, which is fault-free, and then stops testing.
Node 2 then tests node 3 as fault-free, and so on.

Each node i that executes the algorithm has an array,
called TESTED-UPi, that contains N entries, indexed by
the node identifier. The entry TESTED-UPi[k] = j means
that node i has received diagnostic information from a

36 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 1, JANUARY 1998

fault-free node specifying that node k has tested j to be
fault-free. An entry TESTED-UPi[j] is “arbitrary” if node j
is faulty.

When node i finds node j to be fault-free, it saves this in-
formation in TESTED-UPi[i]. In the next testing round, this
test data of i is taken by its first fault-free predecessor, and
so on, until all nodes get the information. In this way, the
diagnostic information in the TESTED-UP array is for-
warded to nodes in the reverse direction of the testing net-
work. Using the information in TESTED-UPi , a node i has
to diagnose the state of all nodes in system; for this task,
another algorithm, called Diagnose, is employed.

Adaptive-DSD has a diagnosis latency of N testing
rounds. It is desirable to reduce this latency. In the original
papers, Bianchini and Buskens use event-driven mecha-
nisms to reduce the latency, e.g., employing multicast or
broadcast just after a new situation is identified. There is no
proof that the suggested event-driven mechanisms can re-
duce the latency of Adaptive-DSD.

In this paper, we present the Hierarchical Adaptive Dis-
tributed System-level Diagnosis (Hi-ADSD) algorithm. Hi-
ADSD is a fully distributed algorithm that has diagnosis
latency of at most log2 N testing rounds for a network of N
nodes. The algorithm doesn’t employ extra event-driven
mechanisms, and requires less diagnostic information than
Adaptive-DSD. Nodes execute tests asynchronously, and
all the information that nodes exchange is diagnostic in-
formation. The algorithm assumes no link faults, a fully-
connected network, and imposes no bounds on the number
of faults. All logarithms used in this paper are base 2.

Hi-ADSD is hierarchical in the sense that it employs a
divide-and-conquer testing strategy [20]. Nodes are
grouped in progressively larger logical clusters, so that each
node executes tests in a hierarchical fashion. Hi-ADSD is
the first hierarchical diagnosis algorithm that is, at the same
time, adaptive and distributed. Previous hierarchical ap-
proaches include [22], [23], [24], and [25].

As an example application, the algorithm was imple-
mented on a 37-node Ethernet LAN, integrated to a net-
work management system based on SNMP (Simple Net-
work Management Protocol). Experimental results of fault
and repair diagnosis are presented. Furthermore, experi-
mental results are given through simulation of the algo-
rithm for large systems of 64 nodes and 512 nodes.

The results discussed here assume a fully connected
network, no link faults, and the PMC fault model. Besides
the PMC fault model, many other fault models have been
proposed. For example, a survey of probabilistic diagnosis
is presented in [19]. Diagnosis of link faults was treated in

[15]. Diagnosis on networks of general topology has re-
ceived a great deal of attention recently, e.g., [18], [17], [16].

3 HIERARCHICAL ADAPTIVE DISTRIBUTED SYSTEM-
LEVEL DIAGNOSIS

In this section, the Hierarchical Adaptive Distributed Sys-
tem-Level Diagnosis (Hi-ADSD) algorithm is presented, its
correctness is formally proved, and it is compared to the
Adaptive-DSD algorithm. Hi-ADSD maps nodes to clus-
ters, which are sets of nodes, and employs a divide-and-
conquer testing strategy to permit nodes to independently
achieve consistent diagnosis in, at most, log2 N testing
rounds.

Before the algorithm is specified, it is important to recall
the concepts of test and testing round, to avoid confusion.
These concepts are the same used by Bianchini and Buskens
for Adaptive-DSD in [5], [6]. At specified time intervals, for
example, 30 seconds, each fault-free node in the system
executes tests on other nodes of the system, until the testing
node finds another node that is fault-free, or tests all other
nodes as faulty. For instance, if the first node tested is fault-
free, the tester stops testing; otherwise, it will test another
node, and so on, until a fault-free node is found. A testing
round is defined as the period of time in which every fault-
free node in the system has tested another node as fault-
free, and has obtained diagnostic information from that
node, or has tested all other nodes as faulty. The diagnosis
latency of Hi-ADSD is defined as the number of testing
rounds required for all fault-free nodes in the system to
achieve diagnosis.

Although it is possible to measure a testing round in
terms of seconds or minutes, one should note that this is
not always easy. For instance, one tester may test a fault-
free node immediately, while another one may first have to
test many faulty nodes until a fault-free node is finally
found. Furthermore, if timeouts are used, it takes much
longer to test a faulty node than to test a fault-free node. In
spite of these problems, the notion of a testing round is a
very convenient measure to determine and prove the la-
tency of a diagnosis algorithm.

3.1 Algorithm Specification
Consider a system S consisting of a set of N nodes, n0, n1,
...., nN-1. In this paper, we alternatively refer to node ni as
node i. The system is assumed to be fully connected, i.e., there
is a communication link between any two nodes (ni, nj). Each
node ni is assumed to be in one of two states, faulty or fault-
free. A combination of the state of all nodes constitutes the
system’s fault situation. Nodes perform tests on other
nodes in a testing interval, and fault-free nodes report test
results reliably.

In Hi-ADSD, nodes are grouped into clusters for the pur-
pose of testing. Clusters are sets of nodes. The number of
nodes in a cluster, its size, is always a power of two. Ini-
tially, N is assumed to be a power of 2, and the system itself
is a cluster of N nodes.

A cluster of n nodes nj, ..., nj+n-1, where j MOD n = 0, and
n is a power of two, is recursively defined as either a node,
in case n = 1; or the union of two clusters, one containing

Fig. 2. Example of test assignment in Adaptive-DSD.

DUARTE AND NANYA: A HIERARCHICAL ADAPTIVE DISTRIBUTED SYSTEM-LEVEL DIAGNOSIS ALGORITHM 37

nodes nj, ..., nj+n/2-1 and the other containing nodes nj+n/2, ...,
nj+n-1. Fig. 3 shows a system with eight nodes organized in
clusters.

In the first testing interval, each node performs tests on
nodes of a cluster that has one node, in the second testing
interval, on nodes of a cluster that has two nodes, in the
third testing interval, on nodes of a cluster that has four
nodes, and so on, until the cluster of 2logN -1, or N/2, nodes
is tested. After that, the cluster of size 1 is tested again, and
the process is repeated.

The lists of ordered nodes tested by node i in a cluster of
size 2s-1, in a given testing interval, are denoted by ci,s. The
following is an expression that completely characterizes list
ci,s, for all i = 0, 1, ..., N - 1, and s = 1, 2, ..., log N . In the ex-
pression, a DIV b is the quotient of the integer division of a by
b, and a MOD b is the remainder of the same integer division.

c
n t i j

i b j
i s

t
s s s a

s s s s,
; , , , ,

=
= + + +

* + * = -

- - +

- -

 MOD MOD

 DIV

2 2 2

2 2 2 0 1 2 1

1 1

1 1

4 9J
4 9 L�

where

a
s s

= <%&'
-1 2 2

0
1if MOD

otherwise

b

a i j

i i

s s

s a s s=

= + +

+ * <

%
&
KK

'
KK

-

- +

1 1 2 2

2 2 2
0

1

1

if AND MOD

MOD DIV
otherwise.

4 9

4 9

When node i performs a test on nodes of ci,s, it performs
tests sequentially until it finds a fault-free node or all other
nodes are faulty. Supposing a fault-free node is found; from
this fault-free node, node i copies diagnostic information of
all nodes in ci,s. For the system in Fig. 3, for all i and s, ci,s is
listed in Table 1.

Using function ci,s, when two different nodes test the a
given cluster, they will start testing different nodes.

If all nodes in ci,s are faulty, node i goes on to test ci,s+1 in
the same testing interval. Again, if all nodes in ci,s+1 are

faulty, node i goes on to test ci,s+2, and so on, until it finds a
fault-free node or all nodes are found to be faulty. For ex-
ample, Fig. 4 shows the testing hierarchy for eight nodes,
from the viewpoint of node 0. When node 0 tests a cluster
of size 22, it first tests node 4. If node 4 is fault-free, node 0
copies diagnostic information regarding nodes 4, 5, 6, and
7. If node 4 is faulty, node 0 tests node 5, and so on.

Fig. 4. Each node adaptively tests all clusters.

Hi-ADSD uses a tree to store information about the tests
in all clusters. To effectively diagnose the state of all nodes,
it is sufficient to list all nodes in the tree. Fig. 5 shows the
tree for node 0, for the case that all nodes are fault-free.

Fig. 5. A tree keeps all testing information.

A description of the algorithm in pseudocode is given in
Fig. 6.

It is important to observe that the system is asynchronous,
i.e., at any time, different nodes in the system may be testing
clusters of different sizes. In other words, a node running Hi-
ADSD does not know which tests are being performed by
other nodes at any time. Even if nodes could be initially syn-
chronized, after some of them become faulty and recover, the
system would lose the initial synchronization. If there are at
least two fault-free nodes in the system, in a testing round of
Hi-ADSD, each node has tested at least one other fault-free
node in ci st, , but the other nodes don’t know which st. This

fact has major consequences on the performance of the algo-
rithm, as will be seen in the next subsection.

Fig. 3. A hierarchical approach to test clusters.

TABLE 1
ci,s FOR THE SYSTEM IN FIG. 2

s c0,s c1,s c2,s c3,s c4,s c5,s c6,s c7,s

1 1 0 3 2 5 4 7 6
2 2, 3 3, 2 0, 1 1, 0 6, 7 7, 6 4, 5 5, 4
3 4, 5, 6, 7 5, 6, 7, 4 6, 7, 4, 5 7, 4, 5, 6 0, 1, 2, 3 1, 2, 3, 0 2, 3, 0, 1 3, 0, 1, 2

38 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 1, JANUARY 1998

Algorithm Hi-ADSD;
{at node i}
{please refer to the text for c(i,s)}
{j indexes the nodes of a given c(i,s)}
REPEAT

FOR s := 1 TO logN DO
REPEAT

node_to_test := next in c(i,s);
IF “node_to_test is fault-free”
THEN “update cluster diagnostic information”

UNTIL (“node_to_test is fault-free”) OR
(“all nodes in c(i,s) are faulty”);

IF “all nodes in c(i,s) are faulty”
THEN “erase cluster diagnostic information”;

END FOR;
FOREVER

Fig. 6. The Hi-ADSD algorithm.

It is assumed that a node cannot fail and recover from
that failure during the time between two tests by another
node. In Hi-ADSD this time may be of up to log N testing
rounds, in the worst case. This assumption can be enforced
by, for example, recording and storing fault events, or by
reducing the testing interval between consecutive tests [5].

In Hi-ADSD, whenever a faulty node becomes fault-free,
it doesn’t have complete diagnostic information. The tester
of such a node must not get diagnostic information from
this node, for it can be incorrect. A sufficient amount of
time, at most, log2 N testing rounds, should be allowed be-
fore diagnostic information can be obtained from that node.

However, during the algorithm initialization, every node
has incomplete diagnostic information, for they have been
fault-free for less than log2 N testing rounds. To guarantee
the correct initialization, it is sufficient to have all nodes
diagnostic information initialized as fault-free. The nodes
will have the correct diagnostic information after the initial
log2 N testing rounds.

3.2 Correctness Proof
We now proceed to prove the correctness and the worst case
of the diagnosis latency of the algorithm. For this proof, we
assume a system fault situation that doesn’t change for a
sufficient amount of time, until all fault-free nodes achieve
diagnosis. The correctness proof of Adaptive-DSD also car-
ried this assumption.

We begin by defining the Tested-Fault-Free graph, T(S).

DEFINITION 1. The Tested-Fault-Free graph T(S) is a directed
graph whose nodes are the nodes of S. For each node i, and
for each cluster ci,s, there is an edge (i, t), directed from i to
t Œ ci,s if i has tested t as fault-free in the most recent test-
ing interval in which it tested ci,s.

In T(S), for each node i and each ci,s, there is an edge di-
rected from node i to the last node that node i tested as
fault-free in that ci,s. If, in the most recent testing interval in
which node i tested ci,s, all nodes in ci,s were tested as faulty,
then T(S) doesn’t contain an edge from node i to any node
in that ci,s.

For example, consider a system of 16 nodes. Fig. 7 shows
the Tested-Fault-Free graph of that system, if all nodes are
fault-free. It can be seen that it is a hypercube. It contains a
directed edge from any node i to the last node that i tested
as fault-free in ci,1, another edge to the last node that i tested

as fault-free in ci,2, another edge to the last node that i tested
as fault-free in ci,3, and another edge to the last node that i
tested as fault-free in ci,4.

LEMMA 1. For any node i, any given s, and at any given instant
of time ti, it takes, at most, log N testing rounds for node i
to test ci,s.

PROOF. This follows from the definition of the algorithm,
i.e., at a given testing interval node i tests a cluster,
and looks for a fault-free node in that cluster. In one
testing round, by definition, each fault-free node tests
at least another fault-free node, if there is one. There
may be at most log N clusters for node i to test. In log N
consecutive intervals, at each interval, a different
cluster is tested. Thus, if node i executes exactly one
successful test per testing round, it will take log N
testing rounds for it to test all clusters. Therefore, in
the worst possible case, for ti immediately after a
given cluster is tested, it will take up to log N testing
rounds for that cluster to be tested again. �

THEOREM 1. The shortest path between any two fault-free nodes
in T(S) contains, at most, log N edges.

PROOF. We will use induction on t, for a system of 2t nodes.
First, consider a system of 21

 nodes; each node tests
the other, thus the shortest paths in T(S) contain one
edge.

Next, assume that for a system of 2t nodes, a short-
est path between any two nodes in T(S) contains, at
most, t edges. Then, by definition, in the system of 2t+1

nodes there are two clusters of 2t nodes. Consider a
subgraph of T(S) that contains only the nodes in one
of these clusters. By definition, this subgraph is iso-
morphic to the Tested-Fault-Free graph of a system of
2t nodes. So, by the assumption above, the shortest
path between any two nodes in this subgraph has at
most t edges. Consider any two nodes, i and j. If i and
j are in the same cluster of 2t nodes, the shortest path
between them in T(S) has, at most, t edges. Now, con-
sider the case in which i and j are in different clusters
of 2t nodes. Without loss of generality, let’s consider
the shortest path from i to j. Node i tests one node in
the cluster in which j is contained: Call this node p. In
T(S), the shortest distance from i to p contains one
edge, and the shortest distance from p to j contains, at
most, t edges. Thus, the shortest distance from i to j
contains, at most, t + 1 edges. �

As an example, consider a system of size 22; this system
has size four and each node tests two other nodes and gets
information about the fourth node indirectly through the
tested nodes. This makes up a path of length two. Now,

Fig. 7. The Tested-Fault-Free graph for a system of 16 fault-free nodes.

DUARTE AND NANYA: A HIERARCHICAL ADAPTIVE DISTRIBUTED SYSTEM-LEVEL DIAGNOSIS ALGORITHM 39

consider a system of size 23: There are two clusters of size
22, and each node in one cluster tests one node in the other,
thus, in T(S), there is an edge from each node in one cluster
to the other. Therefore, the paths from a node in one cluster
to the nodes in the other have lengths of the paths within
the cluster which are at most of length 2, plus 1, for the
edge linking the two clusters. Thus, in a system of size 23,
the shortest path has length, at most, three. For example,
look at node 5 and node 2 in Fig. 8. For node 5 to get infor-
mation about node 2, node 5 tests node 1, which tests node 3,
which tests node 2. In this system of eight nodes, the maxi-
mum path has size log 8.

Now let’s consider each test in this worst case shortest
path. How many testing rounds does it take to execute one
test, in the worst case? Consider Fig. 8 again. If node 3 has
tested node 2 just before it became faulty, then, only after
three testing rounds, node 3 will discover that node 2 is
faulty. Then, in the worst case, if node 1 tests node 3 just
before node 3 tests node 2, it will take another three testing
rounds for node 1 to discover that node 2 is faulty. If we are
very unlucky and node 5 tested node 1 just before node 1
tested node 3, then it will take another three testing rounds
for node 5 to discover that node 2 is faulty. In other words,
there are three tests in the shortest path of longest length,
and each one takes three testing rounds to be executed in
the worst case, thus, in total, it may take up to nine testing
rounds to execute all three tests.

THEOREM 2. Consider the system fault situation at a given time.
After, at most, log2 N testing rounds, each node that has
remained fault-free for that period correctly determines that
fault situation.

PROOF. It was proved in Theorem 1 that the shortest path
between any two nodes in T(S) has, at most, log N
edges. But, from Lemma 1, each of the tests corre-
sponding to an edge in T(S) can take up to log N test-
ing rounds to be executed in the worst case. In other
words, there are up to log N different tests to execute,
and each may take up to log N testing rounds to be
executed. So, in total, they may take at most log N * log N
testing rounds to be executed. Thus, it may take up to
log2 N testing rounds for a fault-free node to obtain
diagnostic information about an event in S. �

We believe that, on the average, nodes running Hi-ADSD
achieve diagnosis in less than log2 N testing rounds, and our
experimental results confirm this fact. If nodes are roughly
synchronized, they will run the algorithm in O(log N) testing
rounds. If extra synchronization mechanisms are intro-

duced, better bounds can be guaranteed.
It should be clear that, in Hi-ADSD, as in Adaptive-DSD,

there is no limit on the number of faulty nodes for fault-free
nodes to perform consistent diagnosis. In the worst case,
when N - 1 nodes are faulty, the number of tests required is
still N. For example, if N - 1 nodes are faulty, the fault-free
node must test all other nodes to diagnose the system.

It is not necessary that the number of nodes, N, be a per-
fect power of 2. In this case, testing nodes must skip the

2ÈlogN˘ - N nonexisting nodes during test and diagnostic
information transfer. For instance, the implementation dis-
cussed in Section 4 was done on a 37-node system.

Nevertheless, the worst possible latency is Èlog2 N˘, as
there are at least some nodes for which the longest path in
the Tested-Fault-Free graph have length log N.

For example, consider the system of eight nodes in Fig. 8.
If that system had six nodes, instead of eight, i.e., if it didn’t
have node 6 and node 7, the length of the longest path
would still be log 8 = 3.

3.3 Comparison of Adaptive-DSD and Hi-ADSD
To compare Hi-ADSD and Adaptive-DSD, we begin com-
paring the number of testing rounds required by both algo-
rithms. We then compare the number of tests required, and
conclude with the amount of diagnostic information that
must be exchanged by nodes in the system until the fault
situation is diagnosed.

The first difference between the two algorithms is their
worst case diagnosis latencies, in terms of testing rounds.
While Adaptive-DSD’s diagnosis latency is N testing
rounds, Hi-ADSD’s is log2 N.

Table 2 lists the diagnosis latency in terms of testing
rounds for both algorithms, for networks having from four to
1,024 nodes. The figures in this table should be clearly under-
stood. They show the number of testing rounds that are
needed for all nodes in the system to diagnose one event in
the fault situation. For example, if all nodes are fault-free, and
one node becomes faulty, that diagnostic information will
take N testing rounds in Adaptive-DSD, being transferred
sequentially through N nodes until all nodes diagnose the
situation. In Hi-ADSD, the diagnostic information will be
transferred through a tree of depth log N and, to reach all
nodes, it takes at most log2 N testing rounds. For networks of
four and 16 nodes, the algorithms present the same worst
case latency. In one case, for a network of eight nodes, Adap-
tive DSD presents better latency than Hi-ADSD, but this
changes quickly as the number of nodes grows.

Fig. 8. The shortest path from node 5 to node 2 has log 8 = 3 edges.

TABLE 2
EXAMPLES OF DIAGNOSIS LATENCY

N Hi-ADSD Adaptive-DSD
4 4 4
8 9 8

16 16 16
32 25 32
64 36 64
128 49 128
256 64 256
512 81 512

1,024 100 1,024

40 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 1, JANUARY 1998

To compare the number of tests required by both algo-
rithms, we show the number of tests required in one testing
round. When all nodes are fault-free, both algorithms em-
ploy exactly the same number of tests per testing round, for
each fault-free node executes tests until it finds another
fault-free node. However, if there are faulty nodes in the
system, Adaptive-DSD needs N tests per testing round,
while Hi-ADSD may need more tests, depending on which
nodes are faulty and which clusters are being tested in a
given testing round.

These extra tests correspond to the situation in which
two or more nodes test a given faulty node in the same
testing interval. In this case, those nodes will run more
tests. The lists of nodes to be tested in each cluster (ci,s) de-
scribed previously in this section helps to make this situa-
tion unlikely, as all entry points are specific for each node
to its clusters. However, in the worst possible case, if N/2
nodes are faulty, and they are all in the same cluster, and all
testers test this cluster in the same testing round, the total
number of tests is N2/4. This situation is unlikely, not only
because it requires a large number of faulty nodes, but also
because it requires that specific nodes be faulty and tested
in the same testing round.

Now, consider the total number of diagnostic messages
required by the algorithms. Adaptive-DSD requires a total
of N2 messages for all nodes to achieve diagnosis, while Hi-
ADSD requires N log2 N messages in the worst case.

There is also a major difference in the size of diagnostic
messages in Adaptive-DSD and Hi-ADSD. Nodes running
Adaptive-DSD get messages with diagnostic information
concerning all nodes in all testing intervals; in contrast, Hi-
ADSD’s diagnostic messages only contain information
about the nodes in each cluster being tested. Let’s call the
information about one node a diagnostic unit. Consider log N
consecutive testing intervals; during this period, a node
running Adaptive-DSD requires N log N diagnostic units,
while a node running Hi-ADSD requires only 20 + 21 + ...
+2logN-1 = N - 1 units during the same period.

Fig. 9 compares the total number diagnostic units re-
quired by both algorithms for all nodes to achieve diagno-
sis. It can be seen that Hi-ADSD brings a significant im-
provement in terms of network bandwidth utilization.

Fig. 9. Comparison of the amount of diagnostic units required.

The comparison shown in Fig. 9 is not meaningful if ex-
tra mechanisms, like timestamps, could be employed to
avoid transferring diagnostic messages unless strictly nec-
essary. Using these mechanisms, only information regard-
ing a new event is transferred. However, to use any mecha-
nism like this, it is necessary to prove its correctness and
impact on the algorithm.

4 SIMULATION

In this section, we present experimental results of diagnosis
on large networks using Hi-ADSD, obtained through
simulation. The simulation was conducted using the dis-
crete-event simulation language SMPL [21]. Nodes were
modeled as SMPL facilities, and each node was identified
by an SMPL token number. Three kinds of events were de-
fined:

1) test,
2) fault, and
3) repair.

Tests were scheduled for each node at each 30 ± s units of
time, where s is a random number between 0 and 3.

We modeled the fault as the facility being reserved, and
the repair as the facility being released. During each test,
the status of the facilities are checked and, if the node is
fault-free, diagnosis information regarding the cluster is
copied to the testing node. If the tested node is faulty, the
testing nodes proceed testing as in the algorithm.

We conducted several experiments with networks of dif-
ferent sizes. In this paper, we present results of two ex-
periments: In the first experiment, on a network of 64
nodes, after a node becomes faulty, a second node also be-
comes faulty, and, after that, they are sequentially repaired.
These four events were scheduled for times 100, 1,000,
2,100, and 3,000, respectively. The second experiment was
conducted on a network of 512 nodes; a fault occurs at time
100, and the node is repaired at time 1,100. Results of diag-
nosis presented here are representative from the large set of
simulation runs executed for each experiment.

Table 3 and Table 4 show the number of tests it takes for
fault-free nodes to diagnose the first event of each experiment.

Table 3 shows that, for the first event in the 64-node
system, the 63 fault-free nodes take up to k = 9 tests to suc-
cessfully diagnose the event. For example, there is one node
that successfully diagnoses the event after one test, this
node tested directly the faulty node.

TABLE 3
NUMBER OF TESTS REQUIRED

FOR 63 NODES TO DIAGNOSE ONE EVENT

Number k of Tests Number of Nodes that
Executed Diagnosed the Event

1 1
2 3
3 7
4 8
5 10
6 14
7 21
8 35
9 63

DUARTE AND NANYA: A HIERARCHICAL ADAPTIVE DISTRIBUTED SYSTEM-LEVEL DIAGNOSIS ALGORITHM 41

Table 4 shows that, for the first event in the 512-node
system, the 511 fault-free nodes take up to k = 15 tests to
successfully diagnose the event. To compare with Adap-
tive-DSD, without extra event-driven mechanisms, we
point out that Adaptive-DSD would take 511 testing rounds
for all fault-free nodes to diagnose any event in this 512-
node system.

TABLE 4
NUMBER OF TESTS REQUIRED

FOR 511 NODES TO DIAGNOSE ONE EVENT

Number k of Tests Number of Nodes that
Executed Diagnosed the Event

1 1
2 3
3 7
4 15
5 31
6 63
7 64
8 66
9 70
10 77
11 91
12 119
13 175
14 287
15 511

As we discussed before, nodes running Hi-ADSD run
tests asynchronously, with consequences on algorithm per-
formance. For each experiment, we ran a second simulation
in which each node starts testing from a random cluster, as
opposed to starting synchronized by testing cluster 1. The
graphs in Figs. 10 and 11 show results from both types of
simulation.

Both graphs have the number of testing rounds as the x-
axis and the number of nodes that diagnosed the event as
the y-axis. For the first event of the 64-node system, the
original simulation took up to nine tests, while the random
version took up to 21 tests. For the second event, they took
eight and 18 tests, respectively.

For the first event on the 512-node system, the first ex-
periment took up to 15 tests, the random experiment took
52 tests. The second event took 17 tests, and the random
experiment took 50 tests.

These experiments confirm the impact of the asynchro-
nous execution of tests on Hi-ADSD’s performance.

As a final comment, the graphs in Fig. 11 of the simula-
tion of diagnosis on the initially synchronized 512-node
system present some curves that deserve explanation.
Those curves reflect a change of the number of nodes that
learn about a new event. In other words, in Hi-ADSD, in-
formation flows from cluster to cluster, so there is a testing
round when only one node learns about a new event, but,
later, there is another testing round in which up to N/2
nodes diagnose that same event simultaneously.

5 PRACTICAL IMPLEMENTATION

In this section, we present the application of Hi-ADSD to
SNMP-based LAN fault management. We describe the role
of the NMS (Network Management Station) when Hi-ADSD

is used for fault management. This is followed by the de-
scription of an approach to include monitoring of network
devices that are not capable of testing. Finally, we present our
implementation and experimental results obtained.

5.1 The Role of the Network Management Station
To apply system-level diagnosis to network fault manage-
ment, one must take into account the fact that the primary
goal of SNMP-based fault management is to permit a cen-
tral NMS to determine the state of all nodes in the network
in a reliable and efficient way. By reliable, we mean that, if
any node fails in the network, the diagnosis process contin-
ues, even if the faulty-node is the current NMS itself. By
efficient, we mean that the diagnosis is accomplished
within a small delay, and the overhead imposed by diagno-
sis messages requires a reasonable percentage of network
bandwidth.

One of the goals of network management systems is to
provide network state information to the human manager
at the NMS. The concept of a central observation point is
not contradictory to the previously presented distributed
approach: The NMS can now be seen as a management in-
terface and not as the single monitor. This approach gives a
number of advantages to the human manager, as she/he

Fig. 10. Simulation of Hi-ADSD on a 64-node network.

Fig. 11. Simulation of Hi-ADSD on a 512-node network.

42 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 1, JANUARY 1998

has a choice of workstations to monitor the network.
Furthermore, there are obvious advantages in terms of the
reliability of the network monitoring system itself, as fault-
free nodes achieve correct diagnosis for any number of
faulty nodes.

It has been shown that Hi-ADSD has a diagnosis latency
of, at most, log2 N testing rounds. To further reduce this
latency at the NMS, a feasible solution is to employ SNMP
traps, i.e., an agent reports any new state information as
soon as it is discovered. This combination of distributed
monitoring and traps gives the system high resilience over
errors, while keeping delays conveniently short. The NMS
receives all changes in state information as soon as they are
discovered. Using a simple configuration mechanism, all
stations know the current NMS identity. Nevertheless, this
event-driven approach is not fault-tolerant. There is no as-
surance that traps will be correctly delivered. However,
even if the NMS is changed (or becomes faulty) soon after
receiving and acknowledging the trap, by the time another
node assumes the role of NMS, the information is delivered
to this new NMS through the testing network.

5.2 Network Device Fault Management
To permit Hi-ADSD to monitor the state of network de-
vices, each unit is classified into a testing node or a tested-
only node. Testing nodes are usually workstations, which
are not only subject to tests, but are also capable of testing.
In contrast, tested-only nodes are only tested, and don’t per-
form any testing on other elements. A number of managed
devices, like printers, modems, terminals, among others,
are tested-only. Furthermore, to improve the diagnosis de-
lay, some workstations may be tested-only.

There are two possible approaches to include tested-only
nodes in the algorithm. In the first approach, each testing
node has some associated tested-only nodes that are tested at
each testing interval. Whenever a testing node finds another
testing node to be faulty, it must test all tested-only nodes
associated with that faulty testing node. In the other ap-
proach, tested-only nodes are simply tested as normal test-
ing nodes, the only difference being that they don’t carry
diagnostic information. Thus, an MIB variable identifies of
which class a given node is part. If the second approach is
used, it is interesting to distribute the tested-only nodes
wisely through the network to avoid specific nodes exe-
cuting a large number of tests.

It is important to provide a graphical interface for the
fault management system and, currently, interfaces based
on Web browsers are increasingly popular for this task.

5.3 Experimental Results
The implementation of Hi-ADSD was run on a 10 Mbps
Ethernet LAN (Local Area Network) that consisted of 37
Sun workstations, SPARCstation 20. Several experiments
were conducted. In this section, we describe a representa-
tive set of experiments and diagnosis results.

The implementation confirmed our expectation that even
if the algorithm is run on a communication network based
on a shared medium where collisions are possible, like the
Ethernet, the probability of a collision of diagnosis packets
is small. The reason is that the testing interval is large (e.g.,

10s or 30s), diagnosis packets are small, and shared me-
dium networks work at relatively high data rates (e.g., 10
Mbps). If there are a few collisions they will be handled by
data link layer protocols. Furthermore, nodes are not syn-
chronized, and are not expected to run tests at exactly the
same time.

The CMU SNMP public-domain packet [26] was used as
a base to implement the diagnosis agent in which we coded
the Diagnosis MIB variables. From the SNMP toolkit of the
WILMA project [27], we used client programs to access and
update MIB variables.

The ASN.1 coding of the Hi-ADSD MIB, as imple-
mented, is shown in the Appendix.

The program that implements Hi-ADSD runs on top of
SNMP, using its services. In each test, initially, an SNMP query
is issued, and the correct reply is expected. As SNMP is an
application layer entity, a correct reply implies that the node is
fully fault-free, except, possibly, for other applications.

However, as SNMP itself is not fault-tolerant and uses
the UDP (Internet’s User Datagram Protocol) unreliable
transport protocol, a timeout may be caused by the SNMP
server being faulty, or a lost message, not necessarily by the
tested node being faulty itself. To handle this situation, in
the second part of the test, a ping query is issued, and, if
there is a correct reply, it is concluded that the tested node
is partially faulty, or that SNMP is not replying to queries. If
there is a ping timeout, it is concluded that the tested node
is faulty.

It is important to realize that a test may have an impact
on the performance of the tested node. This depends on
how the test is implemented and on the characteristics of
the tested nodes. In Hi-ADSD, this point is more critical
than in Adaptive-DSD, because each node may be tested
more than once every testing interval.

Faults were injected through the use of a specific MIB
variable that, when queried, made the SNMP server “sleep”
for a specified amount of time. In that period, the remain-
ing nodes in the network diagnosed that the node was not
replying to SNMP, but also was not faulty.

As SNMP tables index entries from 1, the nodes were as-
signed identifiers from 1 to 37.

The testing interval was set at 40 seconds, for all nodes.
Fig. 12 shows how diagnosis progressed for the first

three initial events. Initially, node 6 was actually faulty.
Before the algorithm was initialized, we didn’t know that,
but all remaining 36 nodes diagnosed the fault situation in
198 seconds from the time they started testing.

After that, we did the first fault injection, and node 16’s
SNMP server stopped replying to queries. But, as the graph
in Fig. 12 shows, at roughly the same time, node 6 was re-
paired, and started replying to ping. This was also an un-
expected occurrence. From Fig. 12, it can be seen that, al-
though the pace of diagnosis was different for both events,
they were diagnosed in roughly the same amount of time:
575 seconds for node 6’s fault, and 562 seconds for node 6’s
partial recovery, considering, for the latter case, the time
since the first node diagnosed the event.

Next, we proceeded to inject faults on three nodes, first
at node 35, and, after some time, at nodes 20 and 21 simul-
taneously. The diagnosis of these events is shown in the

DUARTE AND NANYA: A HIERARCHICAL ADAPTIVE DISTRIBUTED SYSTEM-LEVEL DIAGNOSIS ALGORITHM 43

graph of Fig. 13. The event at node 35 was diagnosed in 346
seconds. The events at node 20 and node 21 were diagnosed
almost simultaneously, in 421 seconds, and 416 seconds.
Not only the total amount of time, but also the pace with
which both events were diagnosed, were very similar, as
can be confirmed by the fact that Fig. 13 seems to show the
diagnosis of two events and not the real three.

Now, all four nodes in which faults were injected are re-
paired. For the repair of node 16, the remaining nodes take
524 seconds, for the repair of node 35, they take 241 sec-
onds, the second best latency we got. The remaining two
events are the repair of node 20 and node 21, which are also
diagnosed almost simultaneously, but not as much as was
their previous fault diagnosis. The time was, respectively,
474 seconds and 514 seconds. We believe this slight differ-
ence is due to the fact that other nodes had been faulty and
then repaired and were not issuing testing synchronously
with other nodes.

The average latency for all 10 experiments above is 427.1
seconds. With a testing interval of 40s, latency could have been
up to 1,440 seconds. These results, together with previously
shown simulation results, might confirm our belief that in av-
erage Hi-ADSD’s latency is less than log2 N testing rounds.

6 CONCLUSIONS

In this paper, we presented a Hierarchical Adaptive Dis-
tributed System-level Diagnosis algorithm. Hi-ADSD maps
nodes to clusters and uses a divide-and-conquer testing
strategy to achieve diagnosis in, at most, log2 N testing
rounds. In this way, Hi-ADSD improves the diagnosis la-
tency of previous algorithms, while keeping the number of
tests conveniently low. The correctness and worst-case la-
tency of the algorithm were formally proven. Simulation
results of diagnosis on large networks of 64 and 512 nodes,
obtained using simulation, were shown.

Hi-ADSD was implemented, integrated to an SNMP-
based network management system on a 37-node Ethernet
LAN. Issues regarding the actual deployment of the algo-
rithm were discussed, experimental results of fault and re-
pair diagnosis were presented. As SNMP applications are
currently widely deployed, but fault management is still
based on rudimentary procedures, this implementation by
itself is also a significant contribution to the field of net-
work management.

The next step of our research is to work on Hi-ADSD for a
dynamic fault situation, in which any number of nodes become
faulty and are repaired at any time. Other important issues in-
clude synchronization mechanisms to guarantee a log N diag-
nostic latency, fault-tolerant mechanisms for event-driven dis-
semination of events and for timestamps, that would guarantee
the minimal amount of diagnostic information exchange.

APPENDIX

The ASN.1 coding of the SNMP Hi-ADSD MIB, as imple-
mented, is shown below:
DIAGNOSIS-MIB DEFINITIONS ::= BEGIN

EXPORTS � everything �;

IMPORTS

OBJECT-TYPE, OBJECT-GROUP

FROM SMP-SMI

enterprises, IpAddress

FROM RFC1155-SMI

DisplayString

FROM RFC1213-MIB;

Fig. 12. First three events of the experiment.

Fig. 13. Next three events, but second and third are diagnosed almost
simultaneously.

Fig. .14 Nodes are repaired and diagnosed.

44 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 1, JANUARY 1998

DiagnosisMIB OBJECT IDENTIFIER ::=

{enterprises 200}

� this number is NOT official

HiADSDGroup OBJECT-GROUP

OBJECTS {DiagTree, IsTestedOnly, NMSid,

HiADSDisUP}

DESCRIPTION

�The diagnosis group.�

::= {DiagnosisMIB 1}

DiagTree OBJECT-TYPE

SYNTAX SEQUENCE OF diagTreeEntry

ACCESS not-accessible

STATUS mandatory

DESCRIPTION

�Table in which each testing node

keeps network diagnostic info.�

::= {HiADSDGroup 1}

diagTreeEntry OBJECT-TYPE

SYNTAX DiagTreeEntry

ACCESS not-accessible

STATUS mandatory

DESCRIPTION

�Each entry of DiagTree identifies

which node the testing node recognized

as up in the last testing round.�

INDEX {testingID}

::= {DiagTree 1}

DiagTreeEntry ::=

SEQUENCE {

NodeID INTEGER,

NodeAD IpAddress,

NodeStatus INTEGER

}

NodeID OBJECT-TYPE

SYNTAX INTEGER

ACCESS read-only

STATUS mandatory

DESCRIPTION

�The integer unique identifier of all the

nodes participating in HiADSD.

Also indexes the table.�

::= {DiagTreeEntry 1}

NodeAD OBJECT-TYPE

SYNTAX IpAddress

ACCESS read-write

STATUS mandatory

DESCRIPTION

�IP-address of all the nodes participating

in Hi-ADSD�

::= {DiagTreeEntry 2}

NodeStatus OBJECT-TYPE

SYNTAX INTEGER

ACCESS read-write

STATUS mandatory

DESCRIPTION

�0 - node is fault-free;

1 - node is faulty;

2 - node replies to ping but not to SNMP�

::= {DiagTreeEntry 3}

IsTestedOnly OBJECT-TYPE

SYNTAX DisplayString (SIZE (0..1))

MAX-ACCESS read-only

STATUS mandatory

DESCRIPTION

�If value is 0, then node is testing node.

Otherwise tested_only node.�

::= {HiADSDGroup 2}

NMSid OBJECT-TYPE

SYNTAX IpAddress

MAX-ACCESS read-write

STATUS mandatory

DESCRIPTION

�Used by the human manager to set the id

of the machine from which she/he is

monitoring the network�

::= {HiADSDGroup 3}

HiADSDisUP OBJECT-TYPE

SYNTAX DisplayString (SIZE (0..1))

MAX-ACCESS read-write

STATUS mandatory

DESCRIPTION

�When queried, this variable checks if

hiadsd process is up�

::= {HiADSDGroup 4}

END

The main portion of the Diagnosis MIB is the Diag-Tree,
which is implemented as an SNMP table. NodeID is the
identifier of each node; it varies from 1 to N. NodeAD is the
ip-address of the each node. NodeStatus contains 0 if the
node is known to be fault-free, and 1 if the node is faulty,
and 2 if the node is replying to ping but not to SNMP.

IsTestedOnly identifies if the node has diagnostic infor-
mation, i.e., is a testing node or a tested-only node.

NMSid is the IP address of the station from which the
human manager is monitoring the network. Whenever a
new event is discovered, a trap is sent to this address.

HiADSDisUP is an important MIB variable. In our im-
plementation, Hi-ADSD was done on top of SNMP, so there
is a possibility that SNMP is up, but Hi-ADSD is not, and
the MIB doesn’t have current information. This variable
checks if Hi-ADSD is up.

ACKNOWLEDGMENTS

We wish to thank Prof. Doug Blough of the University of
California at Irvine for his insightful comments on the algo-
rithm, Fátima L.P. Duarte for her expert support in the
SMPL simulation, and the many colleagues at Tokyo Insti-
tute of Technology who have helped with this project, espe-
cially Yoichiro Ueno for his UNIX administration support
during the implementation of Hi-ADSD. Elias P. Duarte Jr.
was partially supported by a scholarship from the Brazilian
CNPq/Japanese Monbusho for his PhD course, during
which this research was done. This work was done when
both authors were at Tokyo Institute of Technology, De-
partment of Computer Science, 2-12-1, Ookayama, Meguro-
ku, Tokyo, 152, Japan.

REFERENCES

[1] M. Rose,and K. McCloghrie, “Structure and Identification of
Management Information for TCP/IP-Based Internets,” RFC 1155,
1990.

[2] J.D. Case, M.S. Fedor, M.L. Schoffstall, and J.R. Davin, “A Simple
Network Management Protocol,” RFC 1157, 1990.

[3] K. McCloghtie and M.T. Rose, “Management Information Base for
Network Management of TCP/IP-Based Internets,” RFC 1213,
1991.

[4] L. Steinberg, “Techniques for Managing Asynchronously Gener-
ated Alerts,” RFC 1224, 1991.

DUARTE AND NANYA: A HIERARCHICAL ADAPTIVE DISTRIBUTED SYSTEM-LEVEL DIAGNOSIS ALGORITHM 45

[5] R.P. Bianchini and R. Buskens, “An Adaptive Distributed System-
Level Diagnosis Algorithm and Its Implementation,” Proc. FTCS-
21, pp. 222-229, 1991.

[6] R.P. Bianchini and R. Buskens, “Implementation of On-Line Dis-
tributed System-Level Diagnosis Theory,” IEEE Trans. Computers,
vol. 41, pp. 616-626, 1992.

[7] P. Jalote, Fault Tolerance in Distributed Systems. Englewood Cliffs,
N.J.: Prentice Hall, 1994.

[8] F. Preparata, G. Metze, and R.T. Chien, “On The Connection As-
signment Problem of Diagnosable Systems,” IEEE Trans. Elec-
tronic Computers, vol. 16, pp. 848-854, 1968.

[9] S.L. Hakimi and A.T. Amin, “Characterization of Connection
Assignments of Diagnosable Systems,” IEEE Trans. Computers,
vol. 23, pp. 86-88, 1974.

[10] S.L. Hakimi and K. Nakajima, “On Adaptive System Diagnosis”
IEEE Trans. Computers, vol. 33, pp. 234-240, 1984.

[11] J.G. Kuhl, and S.M. Reddy, “Distributed Fault-Tolerance for Large
Multiprocessor Systems,” Proc. Seventh Ann. Symp. Computer Ar-
chitecture, pp. 23-30, 1980.

[12] J.G. Kuhl and S.M. Reddy, “Fault-Diagnosis in Fully Distributed
Systems,” Proc. FTCS-11, pp. 100-105, 1981.

[13] S.H. Hosseini, J.G. Kuhl, and S.M. Reddy, “A Diagnosis Algo-
rithm for Distributed Computing Systems with Failure and Re-
pair,” IEEE Trans. Computers, vol. 33, pp. 223-233, 1984.

[14] R.P. Bianchini, K. Goodwin, and D.S. Nydick, “Practical Applica-
tion and Implementation of System-Level Diagnosis Theory,”
Proc. FTCS-20, pp. 332-339, 1990.

[15] C.-L. Yang and G.M. Masson, “Hybrid Fault-Diagnosability with
Unreliable Communication Links,” Proc. FTCS-16, pp. 226-231,
1986.

[16] S.Rangarajan, A.T. Dahbura, and E.A. Ziegler, “A Distributed
System-Level Diagnosis Algorithm for Arbitrary Network To-
pologies,” IEEE Trans. Computers, vol. 44, pp. 312-333, 1995.

[17] M. Stahl, R. Buskens, and R. Bianchini, “Simulation of the Adapt
On-Line Diagnosis Algorithm for General Topology Networks,”
Proc. IEEE 11th Symp. Reliable Distributed Systems, Oct. 1992.

[18] A. Bagchi and S.L. Hakimi, “An Optimal Algorithm for Distrib-
uted System-Level Diagnosis,” Proc. FTCS-21, June, 1991.

[19] G. Masson, D. Blough, and G. Sullivan, “System Diagnosis,”
Fault-Tolerant Computer System Design, D.K. Pradhan, ed. Prentice
Hall, 1996.

[20] E.P. Duarte Jr. and T. Nanya, “Multi-Cluster Adaptive Distrib-
uted System-Level Diagnosis Algorithms,” IEICE Technical Report
FTS 95-73, 1995.

[21] M.H. MacDougall, Simulating Computer Systems: Techniques and
Tools. Cambridge, Mass.: The MIT Press, 1987.

[22] M. Malek and J. Maeng, “Partitioning of Large Multicomputer
Systems for Efficient Fault Diagnosis,” Proc. FTCS-12, pp. 341-348,
1982.

[23] A. Bagchi, “A Distributed Algorithm for System-Level Diagnosis
in Hypercubes,” Proc. 1992 IEEE Workshop Fault-Tolerant Parallel
and Distributed Systems, pp. 106-113, 1992

[24] M. Barborak and M. Malek, “Partitioning for Efficient Consen-
sus,” Proc. 26th Hawaii Int’l Conf. System Sciences, vol. II, pp. 438-
446, 1993.

[25] J. Altman, F. Balbach, and A. Hein, “An Approach for Hierarchi-
cal System-Level Diagnosis of Massively Parallel Computers
Combined with a Simulation-Based Method for Dependability
Analysis,” Proc. First European Dependable Computing Conf., Lecture
Notes in Computer Science, vol. 852, pp. 371-385, 1994.

[26] M.T. Rose, The Simple Book—An Introduction to Internet Manage-
ment, second ed. Englewood Cliffs, N.J.: Prentice Hall, 1994.

[27] J. Swoboda, et al. http://www.ldv.e-technik.tu-muenchen.de/
dist/WILMA/.

[28] W. Stallings, SNMP, SNMPv2, and RMON: Practical Network Man-
agement, second ed. Reading, Mass.: Addison Wesley, 1996.

Elias Procópio Duarte Jr. received the BS and
MSc degrees in computer science from Federal
University of Minas Gerais, Belo Horizonte, Bra-
zil, in 1988 and 1991, respectively. He also re-
ceived an MSc degree in networks and commu-
nication systems from the Polytechnical Univer-
sity of Madrid, Spain, in 1991. He received his
PhD in computer science from Tokyo Institute of
Technology, Tokyo, Japan, in 1997. He is an as-
sociate professor in the Department of Informatics
at the Federal University of Paraná, Curitiba, Bra-

zil. His main research interests include distributed systems and computer
networks, their dependability, management, performance evaluation, and
algorithms. He is a member of the ACM and the IEEE.

Takashi Nanya received the BE and ME de-
grees in mathematical engineering and informa-
tion physics from the University of Tokyo, Tokyo,
Japan, in 1969 and 1971, respectively, and the
DrEng degree in electrical engineering from the
Tokyo Institute of Technology, Tokyo, Japan, in
1978. He worked on digital system design meth-
odology at NEC Central Research Laboratories
from 1971 to 1981. In 1981, he moved to the
Tokyo Institute of Technology, where he was a
professor of computer science. In 1995, he

joined the University of Tokyo, where he is a professor at the Research
Center for Advanced Science and Technology.

Dr. Nanya was a visiting research fellow at Oakland University, Michi-
gan, in the fall quarter of 1982, and at Stanford University, California, in
the 1986-1987 academic year. His research interests include fault-
tolerant computing, computer architecture, design automation, and asyn-
chronous computing. He received the Best Paper Award from IEICE in
1987, and the Okawa Prize for Publication in 1994. He served as pro-
gram cochair of the 1995 IEEE International Symposium on Fault-
Tolerant Computing, as the conference cochair of the 1996 IEEE Interna-
tional Symposium on Advanced Research in Asynchronous Circuits and
Systems, and as guest editor of a special issue on asynchronous archi-
tecture in IEE Proceedings, Computers and Digital Techniques. He is a
senior member of the IEEE.

