
Fault-Tolerant Dynamic Routing Based on

Maximum Flow Evaluation

Jonatan Schroeder and Elias P. Duarte Jr.

Federal University of Paraná (UFPR)
Dept. of Informatics – P.O. Box 19018

81531-990 Curitiba - Brazil
{jonatan,elias}@inf.ufpr.br

Abstract. This work proposes a fault-tolerant dynamic routing algo-
rithm that employs maximum flow evaluation for route selection, in-
creasing the number of disjoint paths to the destination, enhancing the
path redundancy, and so extending the possibility of using detours, or
alternative paths if needed. Route distance is employed as a secondary
criterion. Routes may be dynamically changed by intermediate routers,
which usually have more recent information about topology changes.
Formal proofs for correctness of the algorithm are also presented. The
proposed algorithm was implemented in a simulation environment and
experimental results are presented.

1 Introduction

Most routing algorithms employ the distance in number of hops as the main, if
not the only, criterion for selecting routes. Nevertheless, for critical applications
a robust route is not necessarily the shortest route.

This work proposes a novel approach for route selection based on route ro-
bustness. A robust route improves the probability that if faults occur along the
route it is feasible and efficient to find another route, or detour, to the destina-
tion. A robust route improves the ability of finding detours to the destination in
case of faults.

The proposed routing algorithm chooses an edge for the route of a given
destination using maximum flow evaluation. This evaluation is employed in order
to increase the number of disjoint paths to the destination, enhancing the path
redundancy, and so improving the probability of quickly finding short detours,
or alternative paths, after faults are detected. Route distance is employed as a
secondary metric for route selection.

The proposed routing algorithm is dynamic in the sense that each node along
the route only selects the next hop of the route, based on its current informa-
tion. In other words, no route is pre-selected at the source, so that intermediate
routers dynamically determine the route as they process the packet. This be-
havior exploits the fact that topology changes are quickly discovered by nodes
that are closer to the change itself. This concept can be also extended to traffic
information, i.e. information about congested or heavily/lightly used links.

2 Jonatan Schroeder and Elias P. Duarte Jr.

The dynamicity of the algorithm has a potential impact on the behavior
of routing during the convergence latency interval. Routing protocols present a
convergence latency after the network topology changes [1] due to router or link
failures. During the convergence latency interval all routing tables are updated
in order to compute the new paths to be employed. For some protocols the
convergence latency is quite large. For instance, the average latency for the
Internet’s BGP, (Border Gateway Protocol), is about 3 minutes, but intervals of
up to 15 minutes [2] have also been reported. During the convergence latency
interval, packets may be lost, and connections may be broken.

The proposed algorithm does not require that routers be initialized with the
complete network topology, routers are initialized only with information about
their neighbors. Nodes keep a local topology representation that is updated
with periodic messages exchanged with neighbors. The algorithm is able to suc-
cessfully route messages even when the local representation of the topology is
out-of-date, or does not represent the complete network topology.

Figure 1 shows an example network topology and the route selected by the
proposed algorithm to send a packet from s to t. Initially s chooses to send the
packet through node a, from which there are two edge-disjoint paths to reach the
destination t. As from node b there is only one available path, the edge to node
a receives a better evaluation by the routing algorithm. Now, node a sends the
packet to node e, because in comparison to node c both have the same number
of edge-disjoint paths but the distance from e to t is shorter. However consider
that the link from node e to node t has failed, and so far only node e has this
information. Executing the algorithm, node e sends the packet back to node a,
which then forwards the packet through c and d to the destination t. Details
about the criteria employed and the formal specification of the algorithm are
presented in section 2.

Fig. 1: An example topology and the route chosen by the algorithm.

The algorithm was implemented, and the implementation is available on the
Internet, created with Java [3]. Implementation details, as well as experimental

Fault-Tolerant Dynamic Routing Based on Maximum Flow Evaluation 3

results obtained with Internet-like networks on a simulation environment, are
presented in section 4. A running applet is available at http://www.inf.ufpr.
br/jonatan/mfrp.

This work is organized as follows. Section 2 presents the algorithm specifi-
cation. Section 3 presents the proofs of correctness of the algorithm. Section 4
presents experimental results. Section 5 points to related work. Finally, section
6 concludes the paper.

2 The Proposed Algorithm

The proposed routing algorithm is executed for each packet that is sent from a
given source to a given destination. The algorithm is run initially by the source
node, which chooses the next node of the route, among its neighbors. When
the packet arrives at the next node, this node runs the algorithm to choose the
following node, and so on, until the packet reaches the destination.

The approach used by this algorithm is similar to that of Bellman-Ford al-
gorithm [1], in the sense that each node does not need a previous knowledge of
the topology. A node running the algorithm chooses the next node of the route,
instead of the complete route. Furthermore, the algorithm works even if the most
recent topology changes are not known by all nodes.

The proposed algorithm chooses the next node of the route through an eval-
uation of each adjacent edge. This evaluation is based on a trade-off between
redundancy and the distance of the paths to the destination from the evaluated
edge. After the evaluation, the best edge is chosen.

The formulae and equations for the computation of the metrics used in this
work assert that each node has a local representation of the network topology.
The topology is learnt and updated by each node through periodic messages
exchanged with neighbors, as described below. This topology update messages
are sets of tuples <edge,state,timestamp>, where state is either faulty or fault-
free and timestamp is a counter of state changes. This timestamp allows nodes
to determine whether the information is newer than the one it already has. The
local representation, however, does not need to be complete and up-to-date. The
topology is represented through a directed graph structure, with a set of vertices,
corresponding to the network nodes, and a set of edges, corresponding to the
network links.

This work considers crash faults, and the system is considered to be partially
synchronous, i.e., there is a finite time limit, not necessarily known, for the delay
on the communication between any pair of nodes.

2.1 Algorithm Specification

This section initially presents some preliminary definitions used in the algorithm
specification.

A directed graph (or digraph) G is a pair (V,E) of sets, in which V is a set
of nodes (or vertices) and E is a set of edges (or links). Each edge is a pair of
exactly two different nodes.

4 Jonatan Schroeder and Elias P. Duarte Jr.

Let G = (V,E) be a digraph; let c : E → ℜ be a function corresponding to
the capacity of the digraph edges; let u, v ∈ V be nodes of the digraph G. A flow
between u and v is a function f : E → ℜ where:

∀e ∈ E, f(e) ≤ c(e)

∀t ∈ V − {u, v},
∑

e=(t,t′)∈E

f(e) =
∑

e=(t′,t)∈E

f(e)

The size (or cardinality) of a flow f , represented as |f |, is defined as:

|f | =
∑

e=(u,t)∈E

f(e) −
∑

e=(t,u)∈E

f(e)

A flow f is said to be maximum if, for every flow f ′ between the same pair of
nodes, |f | ≤ |f ′|.

Let u, v ∈ V be nodes of the graph G. A cut between u and v is a set of
edges C so that removing all edges in C from the graph G, u and v are not
connected. The size (or cardinality) of a cut C, represented as |C|, is defined as
the cardinality of the set C. A cut C is said to be minimum if, for every cut
C ′ between the same pair of nodes, |C| ≤ |C ′|. For every pair of nodes of the
network, the maximum flow and the minimum cut have the same cardinality,
and are computed with the same algorithms [4]. So, this work will use both terms
interchangeably.

Figure 2 shows the algorithm that is run when node n has to route a packet
to a given destination. Γ (G, e) is an evaluation function, specified below.

The evaluation of the edges to be used in the routing process is computed
on a subgraph of the digraph that corresponds to the local representation of
the network topology. This subgraph is obtained with the removal of the nodes
already visited by the packet, and of the edges that are adjacent to these nodes.
This strategy guarantees there will not be loops.

There is a specific case in which edges that lead to loops are used. Considering
that topology information is not necessarily up-to-date in all nodes, a node can
choose an edge based on a path that is not available anymore, or is faulty. When
a packet reaches a node that already has up-to-date information, it is possible
that the only available paths to the destination pass through nodes already
visited. In this case, the packet needs to be delivered back to the node from
which it came. However, the node that receives this packet probably has out-of-
date information about the topology, since its selection led to a node without
available route options. So, in order to make it possible for this node to have up-
to-date information, the update message programmed to be sent to this node is
anticipated, and is sent before the packet is sent back to the node. This way, the
new node can take the decision for a new path based on more recently updated
information about the topology, and so avoiding paths with no routing options.

In order to make the information about the availability of the routes reach all
nodes in the network, a topology update process is run on each node. This process
is run every α seconds, where α is a parameter of the algorithm. Each node sends

Fault-Tolerant Dynamic Routing Based on Maximum Flow Evaluation 5

1. Add node n to the list of visited nodes of the message.

2. If there is an edge from node n to the destination, send the

message through this edge and finish.

3. Create an auxiliary graph G′, corresponding to the known

topology, removing the visited nodes of the message.

4. Evaluate each adjacent edge of node n, using function Γ (G, e)
in graph G′. Edges reaching visited nodes are not evaluated,

as well as edges without available paths to the destination.

5. If at least one edge was evaluated, send the message through

edge e with the largest Γ (G, e).
6. If no edge could be evaluated:

(a) Remove n from the list of visited nodes.

(b) If n is the source of the message, return an error.

(c) If n is an intermediate node, send an update message,

followed by the routed message, to the last node on the

list of visited nodes.

Fig. 2: The algorithm for choosing the next edge.

for all its neighbors recently learnt information about topology changes. When
a node receives a packet through an edge that was considered faulty, the node
adds the edge to its local representation of the topology. If an update message
is expected and is not received through an edge after a timeout, the edge is
considered faulty and is removed from the local representation of the network
topology. This timeout is called β (β > α), and is also a parameter of the
algorithm.

After receiving an update message, each node replies with an acknowledge-
ment. After this acknowledgement is received, all information is marked so that
the sender does not need to resend the information again in the next update
message.

2.2 Edge Evaluation: Path Redundancy & Distance

The computation of the edge evaluation function Γ (G, e) is based on a set of
quantitative criteria related to the redundancy and to the size of the paths that
pass through the evaluated edge. For each of these criteria, a weight is associated,
so that the computation can be adapted to the priority given to each criterion.
Each weight is a parameter of the algorithm.

The following formula corresponds to the computation of the edge evaluation:

Γ (G, e) =
∑

cn∈C

ωn × cn(e) (1)

6 Jonatan Schroeder and Elias P. Duarte Jr.

In this equation, Γ (G, e) is the evaluation function, e is the edge being eval-
uated, C is the set of criteria (described below) and ωn is the weight associated
to criterion cn.

The criteria used for edge evaluation are functions that receive a graph rep-
resenting the topology as input and an edge, and return a numeric value. This
work uses two criteria: the cardinality of the maximum flow (or the minimum
cut) from the node adjacent to the evaluated edge to the destination node (c1)
and the length of the shortest path between these nodes (c2).

The main criterion used in this work for the evaluation of the edges for
routing is the maximum flow (or minimum cut) from the node adjacent to the
evaluated edge to the destination. This criterion is called c1. A classic algorithm
for the computation of the maximum flow is the Ford and Fulkerson algorithm
[4, 5]. This algorithm uses an edge-valued graph structure, in which, for a graph
G = (V,E) there is a function c : E → ℜ, that associates a value for each edge,
corresponding to the capacity of the edge. Our algorithm assumes that c(e) = 1
for all edges. The complexity of this algorithm, when the capacity is an integer,
is O(NM), where N is the number of nodes and M is the number of edges of the
graph [5]. For the weight associated with this criterion (ω1) a positive value is
used, since the evaluation of an edge is intended to be proportional to the result
of this function.

In order to select routes that are not only robust but also short, one of the
criterion used for the evaluation of an edge is the minimum distance from the
node adjacent to the evaluated edge to the destination. This criterion is called
c2. As this work considers that all edge capacities or costs are equal to one,
a breadth-first search on the graph, in which the number of rounds, or levels,
passed through to find the destination node, starting at the evaluated node, is
used as the result of the criterion. The breadth-first search is run in O(M) steps,
where M is the number of edges in the network [6, 5]. For the weight associated
to this criterion (ω2) a negative value is used, since a shorter distance is better
for evaluation of the edge.

2.3 Example Executions

Figure 3 shows an example execution of the algorithm. In this figure, suppose
node s has to send a packet to node t, The routing algorithm is run on s,
evaluating all adjacent edges, i.e., (s, a), (s, b) and (s, c), and choosing the one
that has the best evaluation and that will be used for the routing. Suppose the
chosen edge is (s, b), the packet is then sent from s to b through this edge.

When node b receives the packet sent by s to t, it evaluates edges (b, d) and
(b, e). Edge (b, s) is not evaluated, since node s has already been visited and,
so, is removed from the graph used for the evaluation. Suppose the chosen edge
is (b, e). The packet is then sent to node e. Similarly e evaluates its neighbor
edges, discarding (e, b) and choosing (e, h). Finally, node h evaluates its adjacent
edges. As it has an edge that goes directly to the final destination t, this edge
is used. So, the packet is sent to node t through edge (h, t), achieving the final
destination.

Fault-Tolerant Dynamic Routing Based on Maximum Flow Evaluation 7

Fig. 3: An example execution.

Fig. 4: Rerouting after an edge becomes faulty.

Consider another example. Suppose that, in the same network described
above, a fault occurs on edge (h, t), that is used on the path between s and
t. Figure 4 shows the resulting network after this fault. Suppose, again, that s

has a packet to send to t, immediately after the fault occurs. Suppose that, when
the packet is sent, only nodes h and t (adjacent to the faulty edge) have infor-
mation about the occurrence of the fault. The algorithm is run by node s, which
sends the packet to b, that sends the packet to node e, that sends the packet
to node h. This procedure is executed in the same way it was in the previous
example, since these nodes have not had their topology information changed.

When node h receives the packet to be sent to node t, it finds out that the
only possible paths leading to t pass through nodes already visited by the packet,
such as node e. Since there is no alternative route for sending the packet, node h

sends a topology update message to node e. As node e receives this message, it
will be able to take a decision based on more recent topology information. Finally,
after sending the update message, node h sends the original packet back to e.
When node e receives the original packet, it will take a new decision about the
edge that should be used, now considering that the edge (h, t) is not employable.
So, another edge is chosen, for example, edge (e, g), sending the packet to node
g. This node sends the packet to node t, using the edge (g, t), and the packet
achieves its destination.

8 Jonatan Schroeder and Elias P. Duarte Jr.

Fig. 5: An example execution with Γ evaluation.

Another example execution is shown in figure 5. The network shown in this
figure is the same as that shown in figure 1. In this example we show the eval-
uation function Γ (G, e) computed for the selection of the edges. Suppose the
weights for the criteria described above, ω1 and ω2, are respectively 20 and -5.
Suppose node s has a packet to send to node t, and edge (e, t) is faulty, but only
edges e and t have this information at this time.

Initially, node s evaluates all its adjacent edges, i.e. edges (s, a) and (s, b).
Both evaluations are made in a subgraph G′, that is equivalent to the original
topology representation in node s, except for node s itself. Note that edge (e, t),
even faulty, is still in graph G′, since node s does not have the information that
it is faulty. In graph G′, the maximum flow from node a to node t is equal to two,
and from node b to node t is equal to one, so c1((s, a)) = 2 and c1((s, b)) = 1.
The minimum path from node a to node t is a − e − t, with distance 2. The
minimum path from node b to node t is b − f − t, also with distance 2. So,
c2((s, a)) = c2((s, b)) = 2. Applying these values to the Γ (e) equation, we have:
Γ ((s, a)) = 30 and Γ ((s, b)) = 10, and thus edge (s, a) is selected.

When the packet arrives at node a, it evaluates edges (a, c) and (a, e). Edge
(a, s) is ignored, since node s was already visited. Now the evaluation is made
on a subgraph G′′, similar to the original topology representation in node a, but
removing nodes s and a, already visited. Note that edge e − t, even faulty, is
still in subgraph G′′, since node a does not have the information it is faulty. In
subgraph G′′, the maximum flow from both nodes c and e to the destination t

is equal to 1, so c1((a, c)) = c1((a, e)) = 1. The minimum path from node c to
node t is c− d− t, with distance 2. The minimum path from node e to node t is
e− t, with distance 1. So, c2((a, c)) = 2 and c2((a, e)) = 1. Applying these values
to the Γ (e) equation, we have: Γ ((a, c)) = 10 and Γ ((a, e)) = 15, and thus edge
(a, e) is selected.

Node e, receiving the packet, has no alternatives for routing, as its only non-
faulty adjacent edge leads to node a, already visited. So, a topology update
message is sent to node a, containing the information about edge (e, t), followed

Fault-Tolerant Dynamic Routing Based on Maximum Flow Evaluation 9

by the packet itself. When node a receives both the message and the packet, it
re-evaluates all its adjacent edges. Edge (a, e) is now ignored, as it does not have
any available path to the destination. Edge (a, s) is ignored, and Γ ((a, c)) = 10,
as described above, and (a, c) is select.

Now node c receives the packet, and it evaluates the only possible edge (c, d),
with c1((c, d)) = 1, c2((c, d)) = 2 and Γ ((c, d)) = 15. The packet is delivered to
node d, that has a direct available link to node t, and sends the packet to the
destination through this link.

3 Proofs

In this section we present proofs of correctness of the algorithm, as well as proofs
for the number and size of the update messages, the edge selection complexity
and the latency of the algorithm.

3.1 Correctness

The first proof corresponds to the correctness of the algorithm, i.e., if there
is a route between two nodes, the algorithm will route a packet successfully
between these two nodes. This proof assumes the following hypotheses. The first
hypothesis states that nodes that are adjacent to an edge (or to another node)
have correct information about the state of this edge (or node). The second
hypothesis states that the source node has at least one non-faulty path to the
destination in its local representation, i.e., in the local representation of the
topology in the source node at least one available path between source and
destination must be fully working; please note that this is not necessarily the
selected route. Another hypothesis states there is no topology change from the
time the packet leaves the source and the time it arrives at the final destination,
or until the source learns that there is no available path to the destination.

Initially a lemma is proved stating that if a packet is sent through all edges
with paths in the source’s local representation of the network and returns to the
source in every path, the source will learn there is no route to the destination
and the routing will correctly fail. After that, another lemma proves that, if
there is a non-faulty path to the destination through the selected edge, this edge
is used in the route. The next lemma proves that if there is one or more paths in
the local representation of the network in the source that are not faulty, then an
edge that is part of one of these paths is chosen to the route. Finally, using the
proved lemmas, the theorem stating the correctness of the algorithm is proven.

Lemma 1. Consider graph G = (V,E), and two non-faulty nodes s, t ∈ V

of this graph. Consider all nodes have the correct state information of their
adjacent edges in their local representations of the topology. If s sends a packet
with destination t using the proposed algorithm, and no edge adjacent to s is
selected, or if after the message is sent in several tries through all adjacent edges
and all return an update message to the source, then s learns there is no available
route to the destination.

10 Jonatan Schroeder and Elias P. Duarte Jr.

Proof. Assume the set of adjacent non-faulty edges of s is the set {e1, e2, . . . en}.
Edges that do not have available paths leading to the destination are ignored by
the algorithm, and so are not included in this set. Proving by induction, assume
initially that this set is empty, i.e., s does not have any fault-free adjacent edge.
The proof in this case is trivial, since s learns that there is no available route to
the destination.

Assume now the lemma is true for set {e1, e2, . . . en−1}. Assume that the
set is {e1, e2, . . . en−1, en}. Assume, without loss of generality, that the chosen
edge for routing is edge en. So, the packet is sent through edge en to the next
node, say node u. As there is no path to the destination, the packet has to
return to the node from where it came from. One of the hypotheses assumes
the packet is sent back through the same edge, en, but this happens only after
u sends s a message with all topology updates learned by u, considering u has
no available route to the destination t. After s receives this update message, it
updates its local representation of the topology. When the original packet arrives,
a new evaluation will start, and this time edge en is ignored, since the received
topology information points to the nonexistence of paths to the destination t

through edge en. So the set of available edges is changed to {e1, e2, . . . en−1}, for
which the lemma is true. So, by induction, the lemma is true, and s learns there
is no available route to the destination.

Lemma 2. Consider G = (V,E) is a graph, and s, t ∈ V are two non-faulty
nodes of this graph. Consider all nodes have the correct state information of
their adjacent edges in their local representations of the topology. Consider there
is a path from s to t, and that (s, u) is the first edge of this path (u and t may
be the same node). If s sends a packet with destination t through the edge (s, u)
using the proposed algorithm, the packet will either reach its destination or return
to the source s.

Proof. We prove by induction. First assume graph G has only two nodes. These
nodes have to be s and t and, by definition, they are not the same node. The
only edge that can be evaluated by node s is edge (s, t), since there is no other
possible edge in the graph. So, t = u. If this edge is faulty, s has the information
about this fault (hypothesis) and so (s, u) cannot be evaluated. However, if the
edge is not faulty, then the packet is sent by node s directly to node t through
the edge (s, u), arriving node t. When t = u a similar proof can be given.

Assume now that the lemma is true for a graph with (n − 1) nodes. Sup-
pose that G has n nodes. When s sends a packet through the edge (s, u), the
hypotheses assert s has the information that this edge is not faulty. Node u, on
receiving the packet and after evaluating its adjacent edges, removes node s from
the graph used for the evaluation, and so continues the execution on a subgraph
containing (n − 1) nodes, for which the lemma is true. So, by induction, the
lemma is proven true for every number of nodes.

Lemma 3. Consider graph G = (V,E), and two non-faulty nodes s, t ∈ V .
Consider all nodes have the correct state information of their adjacent edges in
their local representations of the topology. Consider s has a available path leading

Fault-Tolerant Dynamic Routing Based on Maximum Flow Evaluation 11

to t in its local representation. If s has to send a packet to t, using the proposed
algorithm, an edge that belongs to a fully available route is chosen.

Proof. Proving by induction, consider s has only one neighbor, called u. As there
is an available path leading to t, this path has to pass through u (which can be
t itself). When the edges are evaluated, edge (s, u) is chosen because s has a
non-faulty route passing through this edge in its local representation, and it is
the only available edge. So, the lemma is true for one neighbor.

Now consider the lemma is true for (n−1) neighbors. Suppose s has n neigh-
bors, called u1, u2, . . .un−1, un. Using the proposed algorithm, some edges are
going to be discarded, as they do not belong to available paths to the destination,
as proven by the previous lemma. Suppose, without loss of generality, (s, un) is
discarded. So, the algorithm continues with (n−1) neighbors, for which case the
lemma is true.

Consider now that no edge is discarded. Without loss of generality, consider
the edge evaluated as the best is (s, un). The algorithm sends a packet through
this edge. If the edge belongs to a available path leading to t, the lemma is
proven. If, however, there is no available path leading to t through (s, un), the
packet returns to node un, as proven by lemma 2, and a routing message is sent
back to node s with more recent information about the network topology. So,
edge (s, un) is discarded, as it does not belong to an available to node t. The
algorithm continues with (n−1) neighbors, for which it is true. Thus the lemma
is proven for any number of neighbors.

Theorem 1. Consider graph G = (V,E), and two non-faulty nodes s, t ∈ V .
Consider all nodes have the correct state information of their adjacent edges in
their local representations of the topology. Consider s has at least one available
non-faulty path leading to t in its local representation. If s sends a packet to t

using the proposed algorithm, the packet is delivered to t.

Proof. Initially consider there is a non-faulty edge linking s to t. In this case, as
s is adjacent to the edge and, so, has the information about its state, the packet
is sent from s to t through the edge (s, t), arriving at t, as proposed.

Consider now there is no direct link between s and t, or it exists, but is faulty.
According to lemma 3, as s has a non-faulty path leading to destination t in its
local representation of the topology, an edge that belongs to a non-faulty route
is chosen. According to lemma 2, as the chosen edge leads to a available path,
the packet arrives its destination. So, the packet arrives the destination t.

3.2 Number and Size of Update Messages

Theorem 2. Consider a network that employs the proposed algorithm for rout-
ing. The number of topology update messages sent by all nodes is O(M) every α

seconds, and each message has O(M) entries.

Proof. The proposed algorithm employs periodic topology update messages. Ac-
cording to the algorithm specification, each node sends a message every α seconds

12 Jonatan Schroeder and Elias P. Duarte Jr.

for each of its neighbors. If gv is the degree of node v, i.e. the number of adjacent

edges of node v, each node sends gv messages every α seconds. Thus
∑

v∈V

gv = 2M

2M messages are sent by all nodes every α seconds, and the number of messages
sent is O(M) every α seconds.

The worst case of the message size is when it has information about all links
in the network. As each edge is counted twice (once for each adjacent node), the
largest possible message has 2M entries, so the message size, in the worst case,
is O(M) entries.

3.3 Edge Selection Complexity

Theorem 3. Consider a network that employs the proposed algorithm for rout-
ing. The complexity for evaluating and selecting an edge for routing is O(M2).

Proof. For the selection of an edge, the proposed algorithm computes Γ (G, e) for
each of its neighbor edges, i.e. for gv edges. The Γ (G, e) computation includes
the computation of two criteria: the criterion c1, corresponding to the maximum
flow, that has a complexity of O(NM) [5]; and the criterion c2, corresponding
to the breadth-first search, with complexity of O(M) [5]. Thus, the complexity
for the computation of Γ (e) is O(NM + M) = O(NM). As this function is
computed for each neighbor edge, the selection of an edge is done in O(NMgv)
steps. As Ngv = 2M , the selection is done in O(M2) steps.

3.4 Latency

In this subsection, we evaluate the time required after a topology change for a
message to be properly routed.

Theorem 4. Consider a network that employs the proposed algorithm for rout-
ing. Consider that the source node has an available route to the destination in
its local representation of the topology. Consider that the state of an edge tog-
gles. The time elapsed from the occurrence of this event until a packet can be
successfully delivered to the destination is β seconds.

Proof. Assume that there is a route to the destination in the source’s local
representation of the topology, and that this route does not pass through the
edge that toggled state. This can be assumed as the route was assumed to be
available. In this case, only the nodes adjacent to the edge have information
about the state change. If the edge becomes faulty, each neighbor will learn the
state after β seconds without receiving any message through the faulty edge. If
the state change is the recovery of a faulty edge, or a new edge that is added
to the network, then the neighbors will learn the state change after at most α

seconds, when the next topology update message is sent. As β > α, in this case
the latency is β seconds.

Fault-Tolerant Dynamic Routing Based on Maximum Flow Evaluation 13

Theorem 5. Consider a network that employs the proposed algorithm for rout-
ing. Consider, now, there is no available route to the destination in the source’s
local representation of the network. Consider that the state of an edge toggles.
The time elapsed after the occurrence of this event until a packet can be suc-
cessfully delivered to the destination is O(D(G)α) seconds, where D(G) is the
diameter of the graph representing the network topology.

Proof. In this case the source node does not have any available path to the
destination in its local representation of the network. However, there is a path
leading to the destination passing through a faulty link that becomes available.
The neighbors of this link learn the state change in at most α seconds. This
information has to be sent to the neighbor’s neighbors, and so on until the
information arrives at the node that has a packet to send. In each step the
information takes at most α seconds to arrive at the next node. As each node
sends the message to all its neighbors, the message will arrive at the node that
needs the information in a number of steps equivalent to the minimum distance
between this node and the edge that has its state changed. As the maximum
shortest distance of two nodes in a graph is the diameter of the graph, or D(G),
the latency of the proposed algorithm for this case is O(D(G)α).

4 Implementation and Experimental Results

A simulator for the proposed routing algorithm was implemented in Java [3],
version J2SE (Java 2 Standard Edition) 1.4.2. A running applet is available at
http://www.inf.ufpr.br/jonatan/mfrp.

The implementation was divided in three modules. The first module is the
main module, which contains internal procedures, such as those employed for the
communication between nodes and edges, the edge evaluation for routing, and
the procedures for sending and receiving the topology update messages. The
second module is the graphical interface module, used for setting parameters
and visualizing the execution of the algorithm; the user can draw the topology,
observe the flow of routing information, determine the state of links and nodes,
and check selected routes. The third module is the simulation module, employed
to obtain experimental results on random graphs with random events.

The random graphs were generated using the Power Law distribution model
[7]. This model is proven to generate topologies that are very similar to those
of real networks, such as the Internet [8–10]. The simulation module, mentioned
before, implements the algorithm by Bu and Towsley [11] for creating random
Power Law graphs.

The experimental results presented in this paper take into account the num-
ber of messages that successfully arrive at the destination. For each simulation,
several graphs of 100 nodes each were generated. We could not employ larger
graphs due to lack of resources for the simulation. For each graph, a set of events
was generated. An event corresponds to either the change of the state of an edge,
the change of the state of a node state or the creation of a packet for routing.
Each event has an associated timestamp.

14 Jonatan Schroeder and Elias P. Duarte Jr.

The graph generator employed the Bu and Towsley algorithm with the follow-
ing parameters: m0 (initial backbone size) corresponding to 5 nodes, p (related
to the number of edges) equal to 0.6, and β (related to the graph sparsity) equal
to 0.2. In each graph random events were scheduled for about 10 minutes. About
every 120 seconds a randomly chosen node toggled its state; a random edge state
change was scheduled for about every 60 seconds; a packet was generated about
every two seconds. In all tests, the simulation was run several times for each
graph, using a representative result as the final result for each simulation.

Since for all simulations the same set of events was used, packets were ignored
in case they did not arrive at the destination because (1) the source or destination
failed or (2) there is no available route between source and destination. Each
simulation generated a total of 286 messages for each graph in average, and
about 25 messages were discarded for one of the reasons presented above.

In the first simulation experiment a varying time interval between topology
update messages, known as α, was employed. The following values were used
for α: 10 milliseconds, 0.5 seconds, 1 second, 2 seconds, 5 seconds, 10 seconds
and 20 seconds. In all simulations, β was defined as 2α, the delay for a message
transmission through an edge was 200 milliseconds and the values 20 and -5
were used respectively for the weights of the criteria c1 and c2 (ω1 and ω2). The
results are presented in figure 6, in (A). In this figure, the average number of
messages arriving at the destination in all graphs is used as result.

 230

 235

 240

 245

 250

 255

 260

 265

 270

 20000 10000 5000 2000 1000 500

R
ec

ei
ve

d
m

es
sa

ge
s

α (milliseconds)

Result

 256

 258

 260

 262

 264

 50000 30000 20000 15000 10000 7500 5000

R
ec

ei
ve

d
m

es
sa

ge
s

β (milliseconds)

Result

(A) (B)

Fig. 6: Simulation results for a varying α and β.

We can observe through the results of experiment 1 that the algorithm per-
formance is worse for higher values of α. The same occurs for very low values,
as 10 milliseconds. In the latter case, only five messages were successfully routed
to their destinations. This happens because, for a very low α, the number of
messages in the network is higher, causing congestion at some points and the
topology update messages get delayed. With a higher value of α, there is a re-
duction in the number of messages and most topology update messages can be
received in time. However, as α increases, the time for a node to receive topology
update messages also increases, and the local representation of the topology at

Fault-Tolerant Dynamic Routing Based on Maximum Flow Evaluation 15

the nodes get out-of-date for longer periods. Thus, for this experiment we can
conclude that the best range for α is between 500 milliseconds and two seconds.

Another experiment varied the timeout interval for receiving information from
a given neighbor, called β. The simulation was run having α equal to 5 seconds,
and using the following values for β: 5, 7.5, 10, 15, 20, 30 and 50 seconds. In all
simulations, the delay for a message to pass through an edge is 200 milliseconds,
and the values 20 and -5 were used respectively for the criterion weights ω1

and ω2. The result is shown in figure 6, in (B). In this figure, as above, results
correspond to the average of the number of packets arriving at the destination
when routed with the proposed algorithm.

The results obtained show that there is a very low variation for the value of β

(note that the scales are different than the ones of the previous figure), however
the result is better for shorter values of β, closer to α. For higher values, the
algorithm’s latency is increased, and the time for a node to acknowledge the
failure of an edge is also increased, and so rising the probability of sending a
message through a faulty edge.

5 Related Work

The dependability requirements for modern networks is increasingly high. The
convergence latency of current Internet routing protocols, especially BGP is a
problem [2, 12]. During this interval packets are lost and connections are broken.
This situation can persist even when the physical network is redundant, offering
alternative physical routes for communication.

Several approaches have been proposed in order to decrease BGP’s conver-
gence latency and/or to avoid its consequences. Recently, Sahoo et al. [13]
presented a strategy for adjusting BGP parameters, specially MRAI (Mini-
mum Route Advertisement Interval) and for reducing the processing overhead
of routers, allowing the reduction of the convergence latency after large-scale
failures. A set of tools for monitoring BGP routers, as well as determining rel-
evant events that may result in routing anomalies are presented in [14]. In [15]
an alternative BGP version is proposed, with messages for reporting faults that
allow new information to be distinguished from old information. The authors
show that their strategy avoids part of BGP instability problems.

Another strategy is FRTR (Fast Routing Table Recovery), introduced in [16],
which was proposed to detect and correct inconsistencies in neighbor routers
tables; the paper shows that the original BGP neither detects nor solves sev-
eral types of inconsistencies. An evaluation of the packet loss rate during the
convergence latency is presented in [17]. The authors conclude that increasing
the network connectivity causes a decrease of the packet loss rate, and that the
ability of the protocol of quickly propagating network state information is also
important to reduce the packet loss rate. Two papers [18, 19] propose strategies
for path dependence analysis, in order to reduce the number of paths considered
during the convergence, and so reducing the convergence latency. None of these
papers proposes a solution that solves completely the problem.

16 Jonatan Schroeder and Elias P. Duarte Jr.

An approach for finding robust paths, proposed in [20], is based on the iden-
tification of nodes that belong to highly connected components on the network,
in order to find paths that pass through these nodes. Two connectivity crite-
ria are defined, named #C(v) and MCC(v), or the connectivity number and
the maximum connectivity component of a vertex, respectively. Polynomial al-
gorithms based on Gomory and Hu’s cut tree [21] are proposed for computing
these criteria. However, this approach is intended to be used for internal routing
only, as nodes are required to to maintain a complete and up-to-date topology
representation of the network.

Another related work refers to QoS routing, in which besides distance other
criteria are taken into account such as bandwidth, jitter and delay. In this case,
even if there are no link or node failures, and communication is not totally inter-
rupted, the previously agreed quality of service (QoS) level has to be maintained.
When a QoS violation is predicted or detected, rerouting is required [22]. The
MPLS (Multi Protocol Label Switching) protocol [23] is usually employed in this
setting. Using MPLS, it is possible to establish virtual circuits that carry flows
with specific QoS requirements. When a MPLS router has to change the virtual
circuit used for transmitting a flow, rerouting occurs for QoS restoration [24].

Several strategies for MPLS rerouting have been proposed. In [25], an archi-
tecture is presented based on mobile agents for monitoring virtual circuits and
rerouting after a QoS failure tendency is detected. This kind of approach is said
to be proactive, as opposed to reactive approaches which cause rerouting only
after detecting that the agreed parameters have been broken. In the proactive
approach periods when the network does not offer the required QoS levels are
avoided; on the other hand, rerouting is some times executed without being nec-
essary, as a QoS fault tendency is not always confirmed. Most proactive QoS
restoration techniques are based on back-up routes that are reserved for the flow
from the time it is established to the time it is released [26], even when they
are not necessary. A comparison between proactive and reactive strategies based
on traffic engineering is presented in [27]. Tanaka et al. [28] take into account
the physical network technology to evaluate rerouting strategies, considering
IP routers and optical devices, such as PXC’s (Photonic Cross Connects) and
DWDM (Dense Wavelength Division Multiplexing).

6 Conclusion

This work introduced a new fault-tolerant dynamic routing algorithm. Routes
are dynamically selected with maximum flow evaluation and distance. The pro-
posed algorithm does not require that routers be initialized with the complete
network topology. Intermediate routers are able to switch the path employed,
and this path itself is selected based on robustness, i.e. the number of edge-
disjoint routes it offers. The proposed routing approach was formally specified.
The correctness of the algorithm was proven in as well as the complexity, latency,
and the number and sizes of messages. Experimental results obtained through

Fault-Tolerant Dynamic Routing Based on Maximum Flow Evaluation 17

simulation in Internet-like topologies were presented, allowing an evaluation of
choices for the algorithm parameters.

Future work includes extending the proposed algorithm to deal with QoS
(Quality of Service) routing, allowing the selection of paths based on delay, cost
and bandwidth. The development of a path cache, for which the first message for
a source-destination pair establishes a path for others to follow, and so reducing
overflow, is under study. Employing additional criteria for evaluating edges, such
as the number of paths leading to the destination and the average distance of
such paths, is also under consideration, as well as simulation tests comparing
the algorithm with other well-known routing algorithms, such as Dijkstra and
Bellman-Ford. Implementations on larger networks and on real networks are also
planned for the future. Finally, a protocol using the proposed algorithm is being
developed. In order to be practical when deployed in large networks, this protocol
must employ techniques for enhancing the performance of the algorithm, such
as off-line route evaluation, and routing flows instead of single packets.

References

1. Huitema, C.: Routing in the Internet. 2nd edn. Prentice Hall, Upper Saddle River
(1999)

2. Labovitz, C., Ahuja, A., Bose, A., Jahanian, F.: Delayed internet routing conver-
gence. In: SIGCOMM. (2000) 175–187

3. : Java Technology () http://java.sun.com.
4. Ford Jr., L.R., Fulkerson, D.R.: Flows in networks. Princeton University Press

(1962)
5. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. Second

edn. McGraw-Hill (1990)
6. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische

Mathematik 1 (1959) 269–271
7. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On Power-Law Relationships of the

Internet Topology. In: Proceedings of the ACM Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication (SIG-
COMM’99), Cambridge, Massachusetts, USA, ACM Press (1999) 251–262

8. Medina, A., Matta, I., Byers, J.: On the Origin of Power Laws in Internet Topolo-
gies. SIGCOMM Computer Communication Review 30(2) (2000) 18–28

9. Chen, Q., Chang, H., Govindan, R., Jamin, S., Shenker, S., Willinger, W.: The
Origin of Power-Laws in Internet Topologies Revisited. In: Proceedings of the 21st
Annual Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM’2002). (2002)

10. Tangmunarunkit, H., Govindan, R., Jamin, S., Shenker, S., Willinger, W.: Net-
work Topology Generators: Degree-Based vs. Structural. In: Proceedings of the
ACM Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communication (SIGCOMM’2002). (2002) 147–159

11. Bu, T., Towsley, D.F.: On Distinguishing between Internet Power Law Topology
Generators. In: Proceedings of the 21st Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM’2002). (2002)

12. Pei, D., Zhang, B., Massey, D., Zhang, L.: An analysis of convergence delay in
path vector routing protocols. In: Computer Networks. Volume 50:3. (2006)

18 Jonatan Schroeder and Elias P. Duarte Jr.

13. Sahoo, A., Kant, K., Mohapatra, P.: ”improving bgp convergence delay for large-
scale failures”. In: The 7th IEEE/IPIP International Conference on Dependable
Systems and Networks (DSN’06), Philadelphia, U.S.A. (2006)

14. Wong, T., Jacobson, V., Alaettinoglu, C.: Internet Routing Anomaly Detection
and Visualization. In: The 6th IEEE/IPIP International Conference on Dependable
Systems and Networks (DSN’05), Yokohama, Japan (2005)

15. Zhang, H., Arora, A., Liu, Z.: A Stability-Oriented Approach to Improving BGP
Convergence. In: The 23rd IEEE International Symposium on Reliable Distributed
Systems (SRDS’04), Florianópolis, Brazil (2004)

16. Wang, L., Massey, D., Patel, K., Zhang, L.: FRTR: A scalable mechanism for global
routing table consistency. In: Proceedings of the IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN’2004), Florence, Italy (2004)
465–474

17. Pei, D., Wang, L., Massey, D., Wu, S.F., Zhang, L.: A Study of Packet Delivery
Performance During Routing Convergence. In: The 4th IEEE/IPIP International
Conference on Dependable Systems and Networks (DSN’03), San Francisco, U.S.A.
(2003)

18. Chandrashekar, J., Duan, Z., Zhang, Z.L., Krasky, J.: Limiting Path Exploration
in BGP. In: The 24th IEEE INFOCOM (INFOCOM’04), Miami, U.S.A. (2005)

19. Pei, D., Zhao, X., Wang, L., Massey, D., Mankin, A., Wu, S., Zhang, L.: Improving
BGP Convergence through Consistency Assertions. In: The 21st IEEE INFOCOM
(INFOCOM’02), New York, U.S.A. (2002)

20. Duarte Jr., E.P., Santini, R., Cohen, J.: Delivering packets during the routing
convergence latency interval through highly connected detours. In: Proceedings
of the IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN’2004), Florence, Italy (2004) 495–504

21. Gomory, R.E., Hu, T.C.: Multi-terminal network flows. SIAM Journal on Applied
Mathematics 9 (1961) 551–556

22. Funagalli, A., Valcarenghi, L.: Restauration vs. WDM Protection: Is There an
Optimal Choice? In: IEEE Network. (2000)

23. Rosen, E., Viswanathan, A., Callon, R.: RFC 3031: Multi-Protocol Label Switchin.
(2001)

24. Hellstrand, F., Sharma, V.: RFC 3469: Framework for MPLS-based Recovery.
(2004)

25. Correia, R.B., Pirmez, L., et al.: Rerroteamento Parcial Pró-Ativo em Redes
Baseadas em Circuito Virtual no Suporte ao Gerenciamento de Desempenho Pró-
Ativo. In: XXIII Simpósio Brasileiro de Redes de Computadores (SBRC’2005),
Fortaleza, Brazil (2005)

26. Medhi, D.: A Perspective on Network Restoration. Handbook of Optimization in
Telecommunications (2005)

27. Puype, B., Yan, Q., Colle, D., et al.: Multi-Layer Traffic Engineering in Data
Centric Optical Networks. In: COST266-IST OPTIMIST Workshop on Optical
Networks, Budapest, Hungary (2003)

28. Tanaka, S., et al.: Field Test of GMPLS All Optical Path Rerouting. IEEE
Photonics Technology Letters 17(3) (2005)

