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Abstract 
 
 This work presents a new comparison-based 
diagnosis model and a new algorithm, called Hi-Dif , 
based on this model. The algorithm is used for checking 
the integrity of systems with replicated data, for instance, 
detecting unauthorized Web page modifications. Fault-
free nodes running Hi-Dif  send a task to two other nodes 
and the task results are compared. If the comparison 
produces a match, the two nodes are classified in the same 
set. On the other hand, if the comparison results in a 
mismatch, the two nodes are classified in different sets, 
according to their task results. One of the sets always 
contains all fault-free nodes. One fundamental difference 
of the proposed model to previously published models is 
that the new model allows the task outputs of two faulty 
nodes to be equal to each other. Considering a system of 
N nodes, we prove that the algorithm has latency equal to 
log2N testing rounds in the worst case; that the maximum 
number of tests required is O(N2); and, that the algorithm 
is (N–1)-diagnosable. Experimental results obtained by 
simulation and by the execution of a tool implemented 
applied to the Web are presented. 
 
1. Introduction 
 
 The number of Internet users has been estimated to 
be close to 600 million persons. The dependability of the 
network has become increasingly important for millions of 
organizations and individuals. On the other hand, attacks 
and acts of vandalism, such as non-authorized mod-
ifications of Web pages, are becoming very common [1].  
 According to [2], a service specialized on recording 
site invasions, in 2001 about 22,400 sites were invaded 
and had their contents updated by unauthorized persons or 
processes. In 2003, this figure grew to over 137,000 sites. 
Therefore, there is an pressing need for efficient 
monitoring systems, that are able to check the integrity of 
data made available through the network. In this work 
integrity is defined as the property that data is only 
modified by authorized entities. 
 The main purpose of a monitoring system is to dis-
cover which units of the system are faulty. The monitoring 
system must be fault tolerant, i.e. capable of working 
correctly even in the presence of faulty units. This work 

uses distributed [3] comparison-based [4] system-level 
diagnosis to check the integrity of data replicated across a 
network, such as the Internet. An example of the practical 
application of this work is the diagnosis of vandalism on 
replicated Web servers, also called Web clusters [5]. 
 A large number of tools and systems that deal with 
the detection of modifications in Web sites have been 
published [6, 7, 8, 9, 10]. Many of these tools even allow 
specific parts of a given Web page to be monitored. Most 
tools execute comparisons to determine that the contents 
have been modified, keeping a local copy or a checksum 
of the data to be checked. An example is WebMon [6]. 
Other tools work as a service within the Web, such as 
URL-minder [7]. 
 The new system-level diagnosis model proposed in 
this work is distributed, i.e. there is no centralized 
component responsible for monitoring. In fact, the units, 
which keep the replicated data, monitor each other 
according to a comparison-based distributed system-level 
diagnosis model. Each fault-free node of the system runs 
an algorithm, Hi-Dif , which is also introduced in this 
paper. Units running Hi-Dif  perform tests over other units 
in a distributed and hierarchical fashion. A test consists of 
sending a task to a pair of nodes. After receiving the two 
outputs for a task, the tester compares the two outputs and 
classifies the nodes in sets according to the result of the 
task. One of these sets contains the fault-free nodes of the 
system. Formal proofs for the latency, maximum number 
of tests and diagnosability of the algorithm are also 
presented. Experimental results obtained from the 
execution of a tool applied to the Web, and also results 
obtained through simulations are presented. 
 The rest of the paper is organized as follows. Section 
2 presents a survey of comparison-based system-level 
diagnosis. Section 3 describes the new system-level 
diagnosis model. Section 4 includes the specification and 
formal proofs of Hi-Dif . Section 5 presents simulation 
results. Section 6 presents a tool for checking the integrity 
of Web clusters. Section 7 concludes the paper. 
 
2. Comparison-Based Diagnosis 
 
 The main objective of system-level diagnosis is to 
identify which units of the system are faulty and which are 
fault-free [3]. Several models for system-level diagnosis 



 

can be found in the literature. Models for comparison-
based system-level diagnosis were initially proposed by 
Malek [11], and by Chwa and Hakimi [12]. These models 
assume that, in a system of N units, the comparison of the 
outputs produced by any pair of units is possible. These 
models also assume the existence of a central observer 
which collects and maintains information about the tasks 
outputs. This central observer also performs the diagnosis 
of the system based on comparison results, thus determin-
ing which are the faulty units of the system. The central 
observer is a trustful unit which cannot suffer any event. 
The difference between these two models is that in [12] 
two faulty units can produce the same output for a task, so 
that the comparison of these outputs results in a match. 
 The MM model, proposed by Maeng and Malek [13], 
is an extension of the model proposed by Malek [11]. This 
model assumes that the comparison results are sent to a 
central observer which performs the complete diagnosis of 
the system, but it allows the comparison of task outputs to 
be made by the units themselves. The only restriction is 
that the unit which performs the comparison must be 
different from the two units which perform the task. 
Sengupta and Dahbura in [14] present a generalization of 
the MM model, called MM*. This model allows the com-
parison unit to be one of the units that perform the task. 
 Blough and Brown in [15] present a comparison-
based system-level diagnosis model based on reliable 
broadcast. In this model a task is assigned as input to a 
pair of different nodes. These two nodes execute the task 
and broadcasts their outputs to all nodes of the system, 
including themselves. The output comparisons are made 
by each fault-free node. 
 In [16] Wang proposes a comparison-based system-
level diagnosis for both hypercubes and enhanced hyper-
cubes. Araki and Shibata in [17] present the diagnosability 
of butterfly networks with comparison-based system-level 
diagnosis. Also considering comparison-based system-
level diagnosis, Fan in [18] evaluates the diagnosability of 
crossed cubes, a variation of hypercubes, but with smaller 
diameter. 
 The Generalized Distributed Comparison-Based 
System-Level diagnosis model is presented by Albini and 
Duarte in [4]. This is the first hierarchical comparison-
based diagnosis model that is not limited to crash faults. 
Fault-free nodes test other nodes of the system to identify 
their state. This model has the following assumption: 
when a fault-free node compares the outputs produced by 
two faulty nodes, the result always show a difference.  
 
3. A General Comparison-Based Diagnosis 
Model 
 
 In this work we present a new general hierarchical 
comparison-based adaptive distributed system-level 
diagnosis model. We assume that the diagnosable system 
S consists of N nodes and is fully connected. The system 
is represented by graph G=(V, E), where V is a set of 

vertices and E is a set of edges. Each vertex in the graph 
corresponds to a node of the system and the edges 
correspond to the communication links. In this model 
links do not become faulty. Nodes of the system can be 
either faulty or fault-free. A node becomes faulty by either 
crashing or by replying arbitrarily to a given query. A 
change of the state of a node is called an event. 
 Fault-free nodes test other nodes and based on test 
results, tested nodes are classified in sets. A test is 
performed by sending a task to two nodes. Task outputs 
are then compared; if the comparison produces a match, 
the two nodes are classified in the same set. On the other 
hand, if the comparison results in a mismatch, the two 
nodes are classified in different sets, according to their 
task results. One of the sets always contains all fault-free 
nodes. If nodes are classified in more than one set, then 
there are faulty nodes in the system. 
 The new model allows the identification of crashed 
nodes, and also allows the identification of nodes that have 
not crashed but do not reply the correct, expected data.  
 The following assumptions are made about the 
system: 1) a fault-free node comparing outputs produced 
by two fault-free nodes always produces a match; 2) a 
fault-free node comparing outputs produced by a faulty 
node and a fault-free node always produces a mismatch; 
and, 3) the time interval required for a fault-free node to 
produce an output for a task is bounded. 
 One key difference of the proposed model to 
previously published models is that the new model allows 
the comparison performed by a fault-free node of the task 
outputs of two faulty nodes to be equal to each other. 
 A multi-graph, M(S), is defined to represent the way 
tests are executed in the system. M(S) is a directed  
multi-graph defined over graph G, when all nodes of the 
system are fault-free. The vertices of M(S) are the nodes 
of system S. Each edge of M(S) represents that a node is 
sending a task to another node. 
 As an example consider figure 1, where node 0 sends 
a task to itself and to node 1, and sends another task to 
itself and to node 2. In this example the edges are (0, 0)1, 
(0, 1)0, (0, 0)2 and (0, 2)0, and all edges are from node 0 to 
the other nodes or to node 0 itself. Edge (0, 1)0 indicates 
that node 0 sent a task to node 1 and the output of this task 
will be compared with the output returned by node 0, 
therefore the edge (0, 0)1 must also be in the multi-graph. 
 

(0,1)0

(0,0)1

(0,2)0

(0,0)2

 
Figure 1: Example of a multi-graph M(S). 

 

4. The Algorithm 
 
 In this section a hierarchical comparison-based 
adaptive distributed diagnosis algorithm, called Hi-Dif , is 
presented. The algorithm is based on the diagnosis model 



 

presented in the previous section. This new algorithm 
allows distributed integrity checking for systems with 
replicated data. This new algorithm also allows the 
identification of nodes that have the same replicated data. 
 
4.1 Description of Hi-Dif 
 
 The algorithm employs a testing strategy represented 
by a graph, called tested fault-free graph, T(S). This graph 
is a directed graph defined on M(S). T(S) is a hypercube 
when all nodes in the system are fault-free and when the 
number of nodes is a power of two. Figure 2(a) shows 
T(S) for a system with 8 nodes. 
 The diagnostic distance between node i and node j is 
defined as the shortest distance between node i and node j 
in T(S). For example, in figure 2(a) the diagnostic distance 
between node 1 and node 3 is 2. 
 The tested fault-free graph of node i, Ti(S), is a 
directed graph defined on T(S) and shows how the 
diagnostic information flows in the system. There is an 
edge in Ti(S) from node a to node b if there is an edge in 
T(S) from node a to node b and the diagnostic distance 
between node i and node a is shorter than the diagnostic 
distance between node i and node b. Figure 2(b) shows 
T0(S) for a system of 8 nodes. Nodes with diagnostic 
distance 1 to node i are called sons of node i. In figure 
2(b) the sons of node 0 are nodes 1, 2 and 4. 
 

(a)        (b)    

Figure 2: (a) T(S) for a system with 8 nodes.  
(b) T0(S) for a system with 8 nodes. 

 
 A testing round is defined as the time interval in 
which all fault-free nodes obtain diagnostic information 
about all nodes of the system. An assumption is made that 
after node i tests node j in a given testing round, another 
event cannot occur at node j in the same testing round. 
This assumption is necessary to guarantee the correct 
diagnostic information propagation. 
 The testing strategy groups nodes in clusters [19]. A 
function called ci,s,p defines the list of nodes about which 
node i can obtain diagnostic information through a given 
node p, with diagnostic distance equal or less than s in 
Ti(S). In Hi-Dif  s is always equal to log2N, i.e. each cluster 
has always N/2 nodes. Figure 3 depicts the cluster division 
for a system of 8 nodes in T0(S). The clusters are:  
(a) c0,3,1: nodes {1, 3, 5, 7}, (b) c0,3,2: nodes {2, 3, 6, 7} 
and (c) c0,3,4: nodes {4, 5, 6, 7}. 

(b)(a) (c)
 

Figure 3: Cluster division for a system of 8 nodes in T0(S). 
 

 In comparison with previously published diagnostic 
models, the new model has a key difference: there is no 
more an assumption that specifies that the comparison of 
the outputs produced by two faulty nodes never results in 
a match. In order to implement the removal of this 
assumption in Hi-Dif , every node considers itself as fault-
free. Furthermore, the testing strategy consists of sending 
tasks in pairs, and the tester always sends the task to itself 
and to another node, and compares the two task outputs. 
 If the comparison of these tasks outputs from node i 
and from node j produces a match, and node i is the tester 
it will obtain diagnostic information from node j.  
 Because of this reason, the algorithm has a new 
assumption about the external observer that is the user of 
the algorithm, and is who computes the diagnosis of the 
system. The observer is able to determine correctly if a 
given node is fault-free, so that it obtains diagnostic 
information from that node. In this way, this observer will 
never choose a faulty node from which it will obtain 
diagnostic information. 
 Besides determining if nodes have crashed or not, 
the algorithm also classifies all nodes that have returned 
task outputs in sets. These sets are constructed in a way 
that allows the easy identification of which nodes are 
returning the same output for the task. One application of 
this feature is to find corrupted nodes, i.e. nodes that are 
up and running but have had their contents modified.  
 In order to achieve the afore mentioned classification, 
the algorithm classifies nodes in sets with a sequential 
numeric identifier, as follows: set 0 contains nodes that 
have crashed; set 1 contains nodes with the correct data, 
i.e. nodes that are returning the same task output that the 
tester does; and the other sets that have identifiers greater 
than 1, contain nodes returning a different task outputs. If 
any two nodes return task outputs that are equal to each 
other but are different to the output of the tester, than 
those two nodes are classified in a set that is neither set 0 
nor set 1. The algorithm is fully specified below. 
 
4.2 Specification of the Algorithm 
 
 Algorithm Hi-Dif  initially groups nodes in two sets: 
the set with faulty nodes F, and the set with fault-free 
nodes FF. These two sets are disjoint and the union of the 
two sets is equal to V, i.e. F ∩ FF = ∅ e F ∪ FF = V. The 
algorithm also employs a list of sets, called result-set-list, 



 

to classify nodes in according to the tasks outputs. Each 
node keeps these two sets F and FF and also keeps the list 
result-set-list. By the end of a testing round every node 
must be in exactly one of the sets F of FF, and must be in 
exactly one set of the list result-set-list. 
 When node i compares the task output produced by 
itself with the output returned by another node p and this 
comparison produces a match, node i identifies node p as 
fault-free. Then, node i puts node p in set FF, removing it 
from set F, if it is the case. 
 The tester then puts node p in set 1 of result-set-list, 
i.e. puts node p in the set of nodes with the correct repli-
cated data. When node i identifies a fault-free node, node i 
obtains diagnostic information from this fault-free node. 
Furthermore, as information is timestamped [19], node i 
must test if the received information is newer than its own 
information. The timestamps are implemented as event 
counters that every node keeps for all system nodes. This 
strategy allows the determination of the order in which 
events occurred and guarantees that node i will always 
keep and update only the most recent information about 
the state of any other node. If the received information is 
not new, node i simply rules the received information out. 
 When node i sends a task to itself and to node p, but 
node p doesn’t reply, node i identifies node p as faulty, 
and puts node p in F, removing it from set FF if this is the 
case. Furthermore, node i puts node p in set 0 of result-
set-list, i.e. puts node p in the set of crashed nodes of 
result-set-list. 
 When node i compares the tasks outputs produced by 
itself and by another node p, and this comparison produces 
a mismatch, node i identifies node p as faulty. Then, node 
i puts node p in the set F removing it from set FF, if this is 
the case. Furthermore, node i searches for a set in result-
set-list in which all nodes have returned the same output 
returned by node p. If there is no such set, node i creates a 
new set in result-set-list and puts node p in this set. 
 Hi-Dif  employs a hierarchical testing strategy, in 
which node i initially tests all it owns sons in Ti(S), by 
sending a task always to pairs of nodes: to itself and the 
next son. Thus by comparing tasks results node i can 
determine the state of all nodes. When node i finishes 
testing its son’s and there are still nodes about which no 
information about their state was obtained in the present 
testing round, node i starts to test these nodes, and obtains 
information from the ones that are fault-free. 
 Initially, node i tests nodes with diagnostic distance 
2, i.e. the sons of its sons; then, it tests nodes with 
diagnostic distance 3, and so on. Figure 4(a) shows an 
example of a system with 8 nodes where nodes 2 and 4 are 
faulty. In this example, after node 0 tests all his sons, it 
receives information about nodes 3, 5 and 7, but no 
information about node 6. Node 0 then performs one more 
test sending a pair of tasks to itself and to node 6. In figure 
4(b) node 0 tests its sons, i.e. tests nodes 1, 2 and 4 and 
find out that all are faulty and can’t obtain any information 
about any other node. Then, initially node 0 tests node 3. 
In the sequence, it tests nodes 5 and finally it tests node 6. 

(a)        (b)    

Figure 4: (a) System of 8 nodes in which 2 and 4 are faulty. 
(b): System of 8 nodes in which 1, 2 and 4 are faulty. 

 
 So, at the end of each testing round, every fault-free 
node i has put all other nodes in either set F or FF, i.e.  
F ∪ FF = V. Furthermore every node is also in one of the 
sets of result-set-list. A node in set 0 of result-set-list, is 
necessarily also in set F. A node in set 1 of result-set-list, 
is necessarily also in the FF. Each one node in the other 
sets of result-set-list, are necessarily also in set F. The 
algorithm in pseudo-code is given below. 
 
Algorithm Hi-Dif running at node i: 
 

F = EMPTY; FF = EMPTY; 
REPEAT FOREVER 
 Initialize( result-set-list ); 
 TO_TEST = {ALL NODES}; 
 

 REPEAT 
  p = next_node_to_test in TO_TEST; 
  send_task( i, p );   
  TO_TEST = TO_TEST – {p}; 
 

  IF ( result(p) == ∅ ) THEN 
   FF = FF – {p};  F = F + {p}; 
   result-set-list[set 0] = result-set-list[set 0] + {p}; 
  ELSE IF ( result(i) == result(p) ) THEN 
    F = F – {p}; FF = FF + {p}; 
    result-set-list[set 1] =  
       result-set-list[set 1] + {p}; 
    OBTAIN diagnosis information of p’s cluster; 
     COMPARE timestamps of cluster’s nodes; 
     UPDATE local information if necessary; 
     TO_TEST = TO_TEST – {nodes with info updated};  
  ELSE IF( result(i) != result(p) ) THEN 
   FF = FF – {p};  F = F + {p}; id_set = NULL; 
 

   FOR (x starting in 2;  
     x <= result-set-list.id_biggest_set  
     AND id_set == NULL ) DO 
    IF ( result(a node from result-set-list[set x])  
        == result(p) ) THEN 
     id_set = x; 
    END_IF 
   END_FOR 
 

   IF ( id_set != NULL ) THEN 
    result-set-list[set id_set] =  
     result-set-list[set id_set] + {p}; 
   ELSE 
    id_new_set = result-set-list.create_new_set; 
    result-set-list[set id_new_set] = {p}; 
   END_IF 
  END_IF 
 UNTIL ( the state of all nodes is obtained ) 
END_REPEAT_FOREVER 

 
4.3 Proofs 
 
 In this section we present the formal proofs for the 
latency, the maximum number of tests and the 
diagnosability of the algorithm. 
 

Theorem 1: All fault-free nodes running the algorithm 
Hi-Dif  require, at most, log2N testing rounds to achieve 
the complete diagnosis of the system. 



 

Proof: Consider a new event at node a. By the definition 
of testing round, all nodes that are sons of node a, 
diagnose the event in the first testing round after it 
occurred. Considering graph Ta(S), shown in figure 5, in 
the first testing round after the event, all sons of node a 
diagnose the event. 
 In the second testing round, all nodes with diagnostic 
distance equal to 2 diagnose the event, either by getting 
diagnostic information from nodes with diagnostic 
distance equal to 1 to node a, or by directly testing node a, 
if all nodes with diagnostic distance equal to 1 to node a 
are faulty. In Ta(S) illustrated in figure 5, the nodes that 
are sons of a diagnose the event either by getting informa-
tion from other sons of a or by directly testing node a. 
 Assume that fault-free node i with diagnostic 
distance d to node a diagnose the event at node a in at 
most d testing rounds. 
 Now consider node j with diagnostic distance d+1 to 
node a. By the definition of diagnostic distance, any node 
with diagnostic distance d+1 to node a is a son of a node 
with diagnostic distance d to node a. So node j is son of 
some node i. By the definition of testing round, a node 
must test all its sons in each testing round, so node j tests 
node i in all testing rounds, then node j can take at most 
one testing round to get new information from node i. 
        As node i diagnoses node a’s event in at most d testing 
rounds, and node j takes at most one testing round to get 
new diagnostic information from node i, node j can take at 
most d+1 testing rounds to diagnose the node a’s event. 
 Therefore, if node j has diagnostic distance d+1 to 
node a, j diagnoses an event that happened at node a, in at 
most d+1 testing rounds. Thus, if the diagnostic distance 
between two nodes is x one of these nodes may take up to 
x testing rounds to diagnose an event at the other node. 
 Thus, the maximum latency occurs when nodes with 
the largest distance in the system obtain information about 
each other. According to the definition of the hypercube’s 
[16] the largest diagnostic distance between two nodes is 
log2N. Therefore the algorithm’s maximum latency is 
log2N testing rounds.                                                          □ 
 

 
Figure 5: Graph Ta(S). 

Theorem 2: The maximum number of tests required by 
all fault-free nodes running in one testing round of Hi-Dif  
is O(N2). 
Proof: Considering a system with N nodes, the worst case 
of the number of tests required in a testing round is the 
sum of the worst case of the number of tests for each one 
of the N nodes. In the worst case, the number of tests 
required by one node is when this node needs to test all of 
other N–1 nodes in the system; one example is the 
situation where N–1 nodes are faulty. In this case the 
fault-free node executes N–1 tests. 
 Considering this case, in which there is only one 
fault-free node i and N–1 faulty nodes, and also 
considering that none of them have crashed, and none of 
them produces the same output to a given task, the fault-
free node sends tests to itself and each of the other faulty 
nodes. However each of the faulty nodes assumes itself to 
be fault-free, thus each executes N–1 tests. In conclusion, 
the number of tests for all nodes is N * (N–1) = N2–N, that 
is O(N2).                                                                            □ 
 

Theorem 3: A system running Hi-Dif  is (N–1)-diagno-
sable. 
Proof: Initially, consider a system with only one fault-free 
node and N–1 faulty nodes. By definition, the fault-free 
node tests all nodes, sending tests in pairs to itself and 
each other node, identifying the state of all nodes as 
faulty. 
 Now, consider a system with more than one fault-
free node. Each of these fault-free nodes executes tests 
until it finds another fault-free node. When the tester finds 
a fault-free node, it obtains diagnostic information from 
this tested fault-free node. By getting diagnostic informa-
tion from the tested fault-free node and, considering the 
information obtained by its own tests, the tester achieves 
the complete and correct diagnosis of the system. 
 However, if a situation such as shown in figure 6 
happens, i.e. if node a could obtain diagnostic information 
about node c from node b and at the same time node b 
obtains diagnostic information about node c from node a, 
then both, node a and node b, would not achieve the 
complete diagnosis of the system. 
 

 
Figure 6: Nodes a and b exchange information  

about node c. 
 

 This situation never happens because if node a 
receives information about node c from node b, the 
diagnostic distance between nodes a and c must be larger 
than the diagnostic distance between nodes b and c; 
analogously for node b to receive diagnostic information 
about node c from node a, the diagnostic distance between 
nodes b and c must be larger than the distance between 
nodes a and c. 



 

 In conclusion, even if there is only one fault-free 
node, this node is capable of correctly achieving the 
complete diagnosis of the system, so the algorithm is  
(N–1)-diagnosable.                                                            □ 
 

5. Simulation Results 
 
        In this section 1,200 experiments obtained by 
simulating Hi-Dif in systems with 128 nodes are reported. 
Initially 600 experiments were executed in which up to 32 
nodes – randomly chosen – can be faulty. After that, other 
600 experiments were executed in which up to 64 nodes – 
also randomly chosen – can be faulty. In all experiments 
the fault type (crash or data modification) was randomly 
chosen. 
 The first 600 experiments considered the probability 
of, at most, 32 nodes – randomly chosen – becoming 
faulty. All nodes were initially fault-free. In order to 
determine which nodes were be faulty, 200 experiments 
were performed with a fault probability of 30%; 200 
experiments were performed with a probability of 60%, 
and the remaining 200 experiments considered a probabil-
ity of 90%. The other 600 experiments were analogously 
performed but considering the probability of, at most, 64 
nodes – also randomly chosen – becoming faulty.  
 The latency was measured for all fault-free nodes to 
identify all faulty nodes. The number of tests was counted 
from the instant the faults occurred until the moment 
where all fault-free nodes identified the change of the 
status of all nodes that became faulty. 
 Figure 7 shows the average latency for each of the 3 
groups of 200 experiments for both probabilities of faulty 
nodes. With up to 32 faulty nodes, it is possible to notice 
that with a fault probability equal to 90%, the average 
latency, i.e. the number of testing rounds for all nodes to 
complete the diagnosis, was 3.94 rounds. With up to 64 
faulty nodes and fault probability equal to 90%, the 
average latency was 4.25 testing rounds.  
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Figure 7: Average latency in a system in which  

up to 32 of 128 nodes are faulty. 
 

 Figure 8 shows the average number of tests 
performed in each of the 200 experiments also for both 
probabilities of faulty nodes. With up to 32 faulty nodes, it 
is possible to notice that with a fault probability equal to 
90%, the average of number of tests realized was 2,100 
tests. With up to 64 faulty nodes and fault probability 
equal to 90% the average was equal to 2,264 tests. 
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Figure 8: Average number of tests in a system in which  

up to 32 of 128 nodes are faulty. 
 

 Comparing the two experiments, respectively with 
up to 32 and 64 faulty nodes, the average latency stayed 
between 4 and 5, but the average number of tests had a 
steeper increase. This follows from the fact that the larger 
the number of faulty nodes, more tests are executed by the 
fault-free nodes. 

 
6. Checking the Integrity of Web Clusters 
 
 Experiments were also performed with a practical 
tool that implements the algorithm to check the integrity 
of nodes with replicated data across a Web cluster. The 
tool was implemented with two components: a server and 
a client. The server is the component responsible of 
replying to tests and sending diagnostic information to 
other system nodes. The client implements Hi-Dif . This 
client is responsible for setting testing intervals, running 
the tests, asking for diagnostic information and 
completing diagnosis. These two components execute as 
individual processes in the system, i.e. the tool isn’t 
executed within the Web server. 
 Figure 9 shows a group of 4 Web servers with 
replicated data executing the implemented tool. In this 
example, server 1 is faulty, server 2 has a modification in 
his data that is supposed to be replicated, and servers 3 
and 4 are fault-free. The tool that executes in all servers, 
tests all of other configured servers to check the integrity 
of the replicated data among all servers. 
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Figure 9: A Web server cluster executing  
the implemented tool. 



 

 One experiment was performed in a system with 32 
nodes in which 8 nodes became faulty by having their data 
modified, simultaneously. The testing round was 10 
seconds. The graph in figure 10 shows the number of 
nodes and the moment that all 24 fault-free nodes 
identified the 8 faulty nodes. 
 In this graph, all nodes that identified all faults in the 
first 10 seconds, appear in the first column, and so on. It is 
possible to notice that in the first 10 seconds after the 8 
faults happened, 2 nodes identified all 8 faults. It is also 
possible to notice that most of the fault-free nodes 
identified all faults in between 20 and 30 seconds. And 
after at most 50 seconds all fault-free nodes had identified 
all faulty nodes. 
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Figure 10: Experiment run in a system with 32 nodes  

in which 8 nodes become faulty. 
 

7. Conclusion 
 
 This work introduced a new general model for 
Hierarchical Adaptive Distributed Comparison-Based 
System-Level Diagnosis, and also presented a new 
diagnosis algorithm, Hi-Dif , which is based on the 
presented model. Hi-Dif  allows the distributed detection 
of integrity violations in replicated data, available for 
instance through Web servers. A key difference of this 
model to previously published ones is that the comparison, 
performed by a fault-free node, over outputs of faulty 
units can match. 
 A formal proof is presented showing that Hi-Dif  has 
a worst-case latency of log2N testing rounds for a system 
of N units. The algorithm is also (N–1)-diagnosable and 
the maximum number of tests required is O(N2). 
Simulation experiments of the algorithm and experiments 
performed with a tool that implements the algorithm 
applied to Web clusters were also presented. Experimental 
results confirm the maximum number of tests and the 
latency of the algorithm. 
 Future work includes applying the algorithm for 
peer-to-peer networks. 
 
References 
 
[1]  CERT Coordination Center, http://www.cert.org, 

Accessed on 05/09/2004. 
[2]  ALDAS, Analytisches Labor Dr. Axel Schumann, 

http://www.aldas.de, Accessed on 05/10/2003. 

[3] A. Subbiah, and D. M. Blough, “Distributed Diagnosis in 
Dynamic Fault Environments,” IEEE Trans. on Parallel 
and Distributed Systems, Vol. 15, No. 5, pp. 453-467, 
May 2004. 

[4]  L. C. P. Albini, and E. P. Duarte Jr., “Generalized 
Distributed Comparison-Based System-Level Diagnosis,” 
2nd IEEE Latin American Test Workshop, pp. 285-290, 
Sep. 2001.  

[5] D. Ingham, S. K. Shrivastava, and F. Panzieri, 
“Constructing Dependable Web Services,” IEEE Internet 
Computing, Vol. 4, No. 1, pp 25-33, Jan/Feb 2000. 

[6]  B. Tan, S. Foo, and S. C. Hui, “Monitoring Web 
Information Using PBD Technique,” Proc. 2nd Intl. 
Conference on Internet Computing (IC’2001), Las Vegas, 
USA, pp. 666-672, Jun. 2001. 

[7]  Url Minder, http://www.netmind.com/URL-minder/URL-
minder.html. Accessed on 22/09/2003. 

[8]  B. Lu, S. C. Hui, and Y. Zhang, “Personalized Information 
Monitoring Over the Web,” 1st Intl. Conference on 
Information Technology & Applications (ICITA 2002), 
Nov. 2002. 

[9]  V. Boyapati, K. Chevrier, A. Finkel, N. Glance, T. Pierce, 
R. Stockton, and C. Whitmer, “ChangeDetectorTM: A Site-
Level Monitoring Tool for the WWW,” Intl. World Wide 
Web Conference, USA, pp. 570-579, May 2002. 

[10]  S.-J. Lim, and Y.-K. Ng, “An Automated Change-
detection Algorithm for HTML documents Based on 
Semantic Hierachies,” Proceedings of the 17th Intl. 
Conference on Data Engineering (ICDE’01), Heidelberg, 
Germany, pp. 303-312, Apr. 2001. 

[11] M. Malek, “A Comparison Connection Assignment for 
Diagnosis of Multiprocessor Systems,” Proc. 7th Intl. 
Symp. Computer Architecture, pp. 31-36, 1980. 

[12] K. Y. Chwa, and S. L. Hakimi, “Schemes for Fault-
Tolerant Computing: A Comparison of Modularly 
Redundant and t-Diagnosable Systems,” Information and 
Control, Vol. 49, pp. 212-238, 1981. 

[13] J. Maeng, and M. Malek, “A Comparison Connection 
Assignment for Self-Diagnosis of Multiprocessor 
Systems,” Digest 11th Intl. Symp. Fault Tolerant 
Computing, pp. 173-175, 1981. 

[14] A. Sengupta, and A. T. Dahbura, “On Self-Diagnosable 
Multiprocessor Systems: Diagnosis by Comparison 
Approach,” IEEE Trans. on Computers, Vol. 41, No. 11, 
pp. 1386-1396, 1992. 

[15] D. M. Blough, and H. W. Brown, “The Broadcast 
Comparison Model for On-Line Fault Diagnosis in 
Multicomputer Systems: Theory and Implementation,” 
IEEE Trans. on Computers, Vol. 48, pp. 470-493, 1999. 

[16]  D. Wang, “Diagnosability of Hipercubes and Enhanced 
Hypercubes under the Comparison Diagnosis Model,” 
IEEE Trans. on Computers, Vol. 48, No. 12,  pp. 1369-
1374, 1999. 

[17]  T. Araki, and Y. Shibata, “Diagnosability of Butterfly 
Networks under the Comparison Approach,” IEICE Trans. 
Fundamentals, Vol. E85-A, No. 5, May 2002. 

[18]  J. Fan, “Diagnosability of Crossed Cubes,” IEEE Trans. 
on Computers, Vol. 13, No. 10, pp. 1099-1104, Oct. 2002. 

[19]  E. P. Duarte Jr., A. Brawerman, and L. C. P. Albini, “An 
Algorithm for Distributed Hierarquical Diagnosis of 
Dynamic Fault and Repair Events,” Proc. IEEE Intl. 
Conference on Parallel and Distributed Systems 2000, pp. 
299-306, 2000. 


