Distributed Integrity Checking for Systemswith Replicated Data

Roverli Pereira Ziwich, Elias Procopio Duarte Jr. Luiz Carlos Pessoa Albini
Federal University of Parana, Dept. Informatics Unicenp, Dept. Informatics
P.0.Box 19018 — 81531-990, Curitiba, PR Brazil R. Prof. Parigot de Souza, 5300, Curitiba, PR Brazi
{roverli,elias}@inf.ufpr.br albini@unicenp.br

Abstract uses distributed [3] comparison-based [4] system-level
diagnosis to check the integrity of data replicated across a
This work presents a new comparison-based”etworka such as the Internet. An example of the practical
diagnosis model and a new algorithm, calleti-Dif, application of this work is the diagnosis of vandalism on
based on this model. The algorithm is used for checkingeplicated Web servers, also called Web clusters [5].
the integrity of systems with replicated data, for instance, A large number of tools and systems that deal with
detecting unauthorized Web page modifications_ Fault_the _detectlon of modifications in Web sites have been
free nodes runningli-Dif send a task to two other nodes Published [6, 7, 8, 9, 10]. Many of these tools eveovall
and the task results are compared. If the comparisonSPecific parts of a given Web page to be monitored. Most
produces a match, the two nodes are classified in the sam@0ls execute comparisons to determine that the contents
set. On the other hand, if the comparison results in ahave been modified, keeping a local copy or a checksum
mismatch, the two nodes are classified in different setsOf the data to be checked. An example is WebMon [6].
according to their task results. One of the sets alwaysOther tools work as a service within the Web, such as
contains all fault-free nodes. One fundamental differenceRL-minder [7]. _ _ .
of the proposed model to previously published models is =~ The new system-level diagnosis model proposed in
that the new model allows the task outputs of twoyfault this work is distributed, i.e. there is no centralized
nodes to be equal to each other. Considering a system dfomponent responsible for monitoring. In fact, the units,
N nodes, we prove that the algorithm has latency equal toVhich keep the replicated data, monitor each other
log2N testing rounds in the worst case; that the maximumaccording to a comparison-based distributed system-level
number of tests required @(N?): and, that the algorithm diagnosis model. Each fault-free node of the system runs
is (N-1)-diagnosable. Experimental results obtained by an algorithm, Hi-Dif, which is also introduced in this

simulation and by the execution of a tool implementedPaper. Units runningli-Dif perform tests over other units
applied to the Web are presented. in a distributed and hierarchical fashion. A test consists of

sending a task to a pair of nodes. After receiving the two
outputs for a task, the tester compares the two outpdts a
classifies the nodes in sets according to the result of the
task. One of these sets contains the fault-free nodes of the
gystem. Formal proofs for the latency, maximum number
of tests and diagnosability of the algorithm are also
gresented. Experimental results obtained from the
xecution of a tool applied to the Web, and also results
obtained through simulations are presented.
The rest of the paper is organized as follows. Section
presents a survey of comparison-based system-level
iagnosis. Section 3 describes the new system-level
Yiagnosis model. Section 4 includes the specification and
formal proofs ofHi-Dif. Section 5 presents simulation
results. Section 6 presents a tool for checking the integrity
of Web clusters. Section 7 concludes the paper.

1. Introduction

The number of Internet users has been estimated t
be close to 600 million persons. The dependabilityhef t
network has become increasingly important for millions of
organizations and individuals. On the other hand, attack
and acts of vandalism, such as non-authorized mod
ifications of Web pages, are becoming very common [1].

According to [2], a service specialized on recording
site invasions, in 2001 about 22,400 sites were invade
and had their contents updated by unauthorized persons
processes. In 2003, this figure grew to over 137,0@3.si
Therefore, there is an pressing need for efficient
monitoring systems, that are able to check the integfity o
data made available through the network. In this work
integrity is defined as the property that data is only
modified by authorized entities.

The main purpose of a monitoring system is to dis-) o] o
cover which units of the system are faulty. The monitprin ~ 1he main objective of system-level diagnosis is to
system must be fault tolerant, i.e. capable of workingidentify which units of the system are faulty and whiat ar
correctly even in the presence of faulty units. This work fault-free [3]. Several models for system-level diagnosis

2. Comparison-Based Diagnosis

can be found in the literature. Models for comparison-vertices ancE is a set of edges. Each vertex in the graph
based system-level diagnosis were initially proposed bycorresponds to a node of the system and the edges
Malek [11], and by Chwa and Hakimi [12]. These models correspond to the communication links. In this model
assume that, in a systemMfunits, the comparison of the links do not become faulty. Nodes of the system can be
outputs produced by any pair of units is possible. &hes eitherfaulty or fault-free A node becomes faulty by either
models also assume the existence of a central observerashing or by replying arbitrarily to a given query. A
which collects and maintains information about the taskschange of the state of a node is calle@dwaent
outputs. This central observer also performs the diagnos Fault-free nodes test other nodes and based on test
of the system based on comparison results, thus determimesults, tested nodes are classified in sets. A test is
ing which are the faulty units of the system. The centralperformed by sending a task to two nodes. Task outputs
observer is a trustful unit which cannot suffer any event.are then compared; if the comparison produces a match,
The difference between these two models is that in [12]the two nodes are classified in the same set. On the other
two faulty units can produce the same output for a task, sthand, if the comparison results in a mismatch, the two
that the comparison of these outputs results in a match. nodes are classified in different sets, according to their
TheMM model, proposed bMaeng and Malek [13], task results. One of the sets always contains all fault-free
is an extension of the model proposed by Malek [11]. Thisnodes. If nodes are classified in more than one set, then
model assumes that the comparison results are sent tothere are faulty nodes in the system.
central observer which performs the complete diagnosis of The new model allows the identification of crashed
the system, but it allows the comparison of task outimuts nodesandalsoallows the identification of nodes that have
be made by the units themselves. The only restriction is1ot crashed but do not reply the correct, expected data.
that the unit which performs the comparison must be The following assumptions are made about the
different from the two units which perform the task. system: 1) a fault-free node comparing outputs produced
Sengupta and Dahbura in [14] present a generalization dby two fault-free nodes always produces a match; 2) a
the MM model, called MM*. This model allows the com- fault-free node comparing outputs produced by a faulty
parison unit to be one of the units that perform the task. node and a fault-free node always produces a mismatch;
Blough and Brown in [15] present a comparison- and, 3) the time interval required for a fault-free node to
based system-level diagnosis model based on reliablproduce an output for a task is bounded.
broadcast. In this model a task is assigned as input to a One key difference of the proposed model to
pair of different nodes. These two nodes execute the tasfreviously published models is that the new model allows
and broadcasts their outputs to all nodes of the systenthe comparison performed by a fault-free node of the task
including themselves. The output comparisons are madeutputs of two faulty nodes to be equal to each other.
by each fault-free node. A multi-graph,M(S), is defined to represent the way
In [16] Wang proposes a comparison-based systemtests are executed in the systeM(S) is a directed
level diagnosis for both hypercubes and enhanced hypemulti-graph defined over grap®, when all nodes of the
cubes. Araki and Shibata in [17] present the diagnosabili system are fault-free. The verticesM{S) are the nodes
of butterfly networks with comparison-based system-levelof systemS. Each edge oM(S represents that a node is
diagnosis. Also considering comparison-based systemsending a task to another node.
level diagnosis, Fan in [18] evaluates the diagnosability o As an example consider figure 1, where node 0 sends
crossed cubes, a variation of hypercubes, but with smallea task to itself and to node 1, and sends another task to
diameter. itself and to node 2. In this example the edges are {0, 0)
The Generalized Distributed Comparison-Based (0, 1), (0, 0 and (0, 2), and all edges are from node 0 to
System-Level diagnosis model is presented by Albini andthe other nodes or to node O itself. Edge (@,iridicates
Duarte in [4]. This is the first hierarchical comparison- that node 0 sent a task to node 1 and the output abgks
based diagnosis model that is not limited to crash faultswill be compared with the output returned by node O,
Fault-free nodes test other nodes of the system to identifgherefore the edge (0,,0hust also be in the multi-graph.
their state. This model has the following assumption:
when a fault-free node compares the outputs produced by
two faulty nodes, the result always show a difference.

3. A General Comparison-Based Diagnosis
M odel

Figure 1: Example of a multi-graph M(S).

In this work we present a new general hierarchical4, The Algorithm
comparison-based adaptive distributed system-level
diagnosis model. We assume that the diagnosable system | this section a hierarchical comparison-based
S consists o nodes and is fully connected. The system y4anive distributed diagnosis algorithm, calldieDif, is
is represented by grapB=(V, E), whereV is a set of yresented. The algorithm is based on the diagnosis model

presented in the previous section. This new algorithm
allows distributed integrity checking for systems with
replicated data. This new algorithm also allows the
identification of nodes that have the same replicated data.

4.1 Description of Hi-Dif

The algorithm employs a testing strategy represented
by a graph, calletested fault-free grapfr(S). This graph @
is a directed graph defined &A(S). T(S) is a hypercube Figure 3: Cluster division for a system of 8 nodes in Ty(S).
when all nodes in the system are fault-free and when the
number of nodes is a power of two. Figure 2(a) shows
T(9 for a system with 8 nodes.

Thediagnostic distancbetween nodeand nodg is
defined as the shortest distance between hade nodg
in T(S). For example, in figure 2(a) the diagnostic distance
between node 1 and node 3 is 2.

In comparison with previously published diagnostic
models, the new model has a key difference: there is no
more an assumption that specifies that the comparison of
the outputs produced by two faulty nodes never results in
a match. In order to implement the removal of this
. assumption irHi-Dif, every node considers itself as fault-

_ The tested fault-free graph of node Ti(S), iS @ fee Furthermore, the testing strategy consists of sending
directed graph defined off(S and shows how the taqks in pairs, and the tester always sends the task to itself

diagngstic information flows in th.e system. There i§ aN and to another node, and compares the two task outputs.
edge inTi(S) from nodea to nodeb if there is an edge in If the comparison of these tasks outputs from riode

T(S) from nodea to nodeb and the diagnostic distance g from nodg¢ produces a match, and ndde the tester
between node and nodea is shorter than the diagnostic i \vill obtain diagnostic information from noge

distance between nodeand nodeb. Figure 2(b) shows Because of this reason, the algorithm has a new
To(S) for a system of 8 nodes. Nodes with diagnostic 555 mption about the external observer that isiseeof

distance 1 to node are calledsonsof nodei. In figure the algorithm, and is who computes the diagnosis of the

2(b) the sons of node 0 are nodes 1, 2 and 4. system. The observer is able to determine correctly if a
given node is fault-free, so that it obtains diagnostic
information from that node. In this way, this observdt wi

(9) (0)
never choose a faulty node from which it will obtain
o e ° o o o diagnosti.c informatior_l.. .
Besides determining if nodes have crashed or not,
”‘ ” the algorithm also classifies all nodes that have returned
O‘Q (&) () () (8 task outputs in sets. These sets are constructed in a way
O,

that allows the easy identification of which nodes are

0 returning the same output for the task. One application of
this feature is to find corrupted nodes, i.e. nodes tleat ar
@ (b) up and running but have had their contents modified.
Figure 2: (a) T(S) for a system with 8 nodes. In orderto achieveheafore mentioned classification,
(b) To(S) for a system with 8 nodes. the algorithm classifies nodes in sets with a sequential

numeric identifier, as follows: set 0 contains nodes that
A testing roundis defined as the time interval in have crashed: set 1 contains nodes with the correct data,
which all fault-free nodes obtain diagnostic information i.e. nodes that are returning the same task output that the
about all nodes of the system. An assumption is made thatster does; and the other sets that have identifiers greater
after nodei tests nodg in a given testing round, another than 1, contain nodes returning a different task outpiuts. |
event cannot occur at nogen the same testing round. any two nodes return task outputs that are equal to each
This assumption is necessary to guarantee the corredither but are different to the output of the tester, than
diagnostic information propagation. those two nodes are classified in a set that is neith€r set
The testing strategy groups nodes in clusters [19]. Anor set 1. The algorithm is fully specified below.
function calledc;,s,, defines the list of nodes about which
nodei can obtain diagnostic information through a given 4 Specification of the Algorithm
node p, with diagnostic distance equal or less tlsaim
Ti(9). In Hi-Dif sis always equal ttog:N, i.e. each cluster
has always$\/2 nodes. Figure 3 depicts the cluster division
for a system of 8 nodes iMy(S). The clusters are:
(a) Co,3,1: NOdes {1, 3, 5, 7}, (bko,s,2: nodes {2, 3, 6, 7}
and (C)co,3,4: Nodes {4, 5, 6, 7}.

Algorithm Hi-Dif initially groups nodes in two sets:
the set with faulty nodeF, and the set with fault-free
nodesFF. These two sets are disjoint and the union of the
two sets is equal t9, i.e.F n FF=0 eFO FF=V. The
algorithm also employs a list of sets, caltedult-set-list

to classify nodes in according to the tasks outputs. Each
node keeps these two sétandFF and also keeps the list
result-set-list By the end of a testing round every node
must be in exactly one of the sét®f FF, and must be in
exactly one set of the lisesult-set-list

When nodd compares the task output produced by
itself with the output returned by another nqdeand this
comparison produces a match, nodéentifies nodep as
fault-free. Then, nodeputs node in setFF, removing it
from setF, if it is the case.

The tester then puts nogén set 1 ofresult-set-list
i.e. puts nod@ in the set of nodes with the correct repli-
cated data. When nodéentifies a fault-free node, node
obtains diagnostic information from this fault-free node.

@

(b)

Figure 4: (a) System of 8 nodes in which 2 and 4 are faulty.

(b): System of 8 nodes in which 1, 2 and 4 are faulty.

So, at the end of each testing round, every fault-free

Furthermore, as information is timestamped [19], node nodei has put all other nodes in either §ebr FF, i.e.
must test if the received information is newer than its ownF [J FF = V. Furthermore every node is also in one of the
information. The timestamps are implemented as evensets ofresult-set-list A node in set 0 ofesult-set-lis is
counters that every node keeps for all system nodes. Thisecessarily also in s€t A node in set 1 ofesult-set-list
strategy allows the determination of the order in whichis necessarily also in tHeF. Each one node in the other

events occurred and guarantees that noddl always

sets ofresult-set-list are necessarily also in sEt The

keep and update only the most recent information abouélgorithm in pseudo-code is given below.

the state of any other node. If the received information is
not new, nodeé simply rules the received information out.

When node sends a task to itself and to nqgéut
nodep doesn't reply, node identifies nodep as faulty,
and puts node in F, removing it from seFEF if this is the
case. Furthermore, nodeputs nodep in set 0 ofresult-
set-list i.e. puts node in the set of crashed nodes of
result-set-list

When node compares the tasks outputs produced by
itself and by another nodg and this comparison produces
a mismatch, nodeidentifies node as faulty. Then, node
i puts nodep in the sef removing it from seEF, if this is
the case. Furthermore, nodsearches for a set iesult-
set-listin which all nodes have returned the same output
returned by node. If there is no such set, nodereates a
new set irresult-set-listand puts nodp in this set.

Hi-Dif employs a hierarchical testing strategy, in
which nodei initially tests all it owns sons iii(S), by
sending a task always to pairs of nodes: to itself and the
next son. Thus by comparing tasks results nbaan
determine the state of all nodes. When nod@ishes
testing its son’s and there are still nodes about which no
information about their state was obtained in the present
testing round, nodestarts to test these nodes, and obtains
information from the ones that are fault-free.

Initially, nodei tests nodes with diagnostic distance

F=
REPEAT FOREVER
Initialize(result-set-list);
TO_TEST ={ALL NODESY};

REPEAT

Algorithm Hi-Dif running at node i:

EMPTY; FF = EMPTY;

p = next_node_to_testin TO_TEST,;
send_task(i, p);
TO_TEST = TO_TEST - {p};

IF (result(p) == 0) THEN
FF = FF - {p}; F=F+{p}
result-set-list[set 0] = result-set-list[set 0]
ELSE IF (result(i) == result(p)) THEN
F=F—{p}, FF=FF+{p}
result-set-list[set 1] =
result-set-list[set 1] + {p};
OBTAIN diagnosis information of p’s cluster;
COMPARE timestamps of cluster’s nodes;
UPDATE local information if necessary;
TO_TEST = TO_TEST - {nodes with info updated};
ELSE IF(result(i) != result(p)) THEN
FF=FF-{p} F=F+{pk
FOR (x starting in 2;
X <= result-set-list.id_biggest_set
AND id_set == NULL) DO
IF (result(a node from result-set-list[set x])
== result(p)) THEN

+{pk

id_set = NULL;

id_set=x;
END_IF
END_FOR
IF (id_set = NULL) THEN
result-set-list[set id_set] =
result-set-list[set id_set] + {p};
ELSE
id_new_set = result-set-list.create_new_set;
result-set-list[set id_new_set] = {p};
END_IF
END_IF

UNTIL_(the state of all nodes is obtained)

2, i.e. the sons of its sons; then, it tests nodes wit END_REPEAT_FOREVER

diagnostic distance 3, and so on. Figure 4(a) shows an

example of a system with 8 nodes where nodes 2 and 4 afe3 Proofs

faulty. In this example, after node 0 tests all his sons, it
receives information about nodes 3, 5 and 7, but no

information about node 6. Node 0 then performs one mordatency,
diagnosability of the algorithm.

test sending a pair of tasks to itself and to node 6gindi
4(b) node 0 tests its sons, i.e. tests nodes 1, 2 amdl 4
find out that all are faulty and can’t obtain any information
about any other node. Then, initially node 0 tests node 3
In the sequence, it tests nodes 5 and finally it tests 6od

In this section we present the formal proofs for the
the maximum number of tests and the

Theorem 1. All fault-free nodes running the algorithm
Hi-Dif require, at mostlog;N testing rounds to achieve
the complete diagnosis of the system.

Proof: Consider a new event at nodeBy the definition
of testing round, all nodes that are sons of nage

Theorem 2: The maximum number of tests required by
all fault-free nodes running in one testing roundeDif

diagnose the event in the first testing round after itis O(N?).

occurred. Considering graph(S), shown in figure 5, in
the first testing round after the event, all sons of nmde
diagnose the event.

Proof: Considering a system with nodes, the worst case
of the number of tests required in a testing round is the
sum of the worst case of the number of tests for each one

In the second testing round, all nodes with diagnosticof the N nodes. In the worst case, the number of tests
distance equal to 2 diagnose the event, either by gettingequired by one node is when this node needs to test all of

diagnostic information from nodes with diagnostic
distance equal to 1 to nodeor by directly testing noda,

if all nodes with diagnostic distance equal to 1 to nade
are faulty. InT,(S) illustrated in figure 5, the nodes that

are sons of diagnose the event either by getting informa- fault-free node i

tion from other sons & or by directly testing noda
Assume that fault-free nodé with diagnostic
distanced to nodea diagnose the event at nodein at
mostd testing rounds.
Now consider nodgwith diagnostic distance+1 to

other N-1 nodes in the system; one example is the
situation whereN-1 nodes are faulty. In this case the
fault-free node executé$-1 tests.

Considering this case, in which there is only one
and N-1 faulty nodes, and also
considering that none of them have crashed, and none of
them produces the same output to a given task, the fault-
free node sends tests to itself and each of the other faulty
nodes. However each of the faulty nodes assumes itself to
be fault-free, thus each executésl tests. In conclusion,

nodea. By the definition of diagnostic distance, any node the number of tests for all nodesNg (N-1) =N>—N, that

with diagnostic distancd+1 to nodea is a son of a node
with diagnostic distancd to nodea. So nodg is son of
some nodd. By the definition of testing round, a node
must test all its sons in each testing round, so noests
nodei in all testing rounds, then noglean take at most
one testing round to get new information from nade
Asnodei diagnosesiodea’s eventin atmostd testing
rounds, and nodetakes at most one testing round to ge
new diagnostic information from nodenodej can take at
mostd+1 testing rounds to diagnose the nalieevent.
Therefore, if nodg has diagnostic distanag+1 to
nodea, j diagnoses an event that happened at apdeat

mostd+1 testing rounds. Thus, if the diagnostic distance
between two nodes isone of these nodes may take up to

x testing rounds to diagnose an event at the other node.

Thus, the maximum latency occurs when nodes with
the largest distance in the system obtain information abou
each other. According to the definition of the hypercube’s
[16] the largest diagnostic distance between two nodes i

log:N. Therefore the algorithm’s maximum latency is
log:N testing rounds. a

d+1

logN

Figure 5: Graph T4(S).

is O(N?). o

Theorem 3. A system runningHi-Dif is (N-1)-diagno-
sable.

Proof: Initially, consider a system with only one fault-free
node andN-1 faulty nodes. By definition, the fault-free
node tests all nodes, sending tests in pairs to itself and

each other node, identifying the state of all nodes as

faulty.

Now, consider a system with more than one fault-
free node. Each of these fault-free nodes executes tests
until it finds another fault-free node. When the testeatd
a fault-free node, it obtains diagnostic information from
this tested fault-free node. By getting diagnostic inferma
tion from the tested fault-free node and, considering the
information obtained by its own tests, the tester achieves
the complete and correct diagnosis of the system.

However, if a situation such as shown in figure 6

happens, i.e. if node could obtain diagnostic information

about nodec from nodeb and at the same time nobe
obtains diagnostic information about natléom nodea,
then both, nodea and nodeb, would not achieve the
complete diagnosis of the system.

Figure 6: Nodes a and b exchange information
about node c.

This situation never happens because if nade
receives information about node from node b, the
diagnostic distance between nodesndc must be larger
than the diagnostic distance between nobleand c;
analogously for nodé to receive diagnostic information
about node from nodesa, the diagnostic distance between
nodesb andc must be larger than the distance between
nodesa andc.

In conclusion, even if there is only one fault-free 2400

mei~_ e up to 32 faulty nodes

node, this node is capable of correctly achieving the =~ up to 64 faulty nodes
complete diagnosis of the system, so the algorithm is 2300 .
(N-1)-diagnosable. m 2204

2200

5. Simulation Results

2100

Average Number of Tests

In this section 1,200 experiments obtained by

2000

simulatingHi-Dif in systems with 128 nodes aeported. Prob30% Prob60% Probo0%

Initially 600 experiments were executed in which up to 32 Fault Probability

nodes — randomly chosen — can be faulty. After that, other Figure 8: Average number of tests in a system in which
600 experiments were executed in which up to 64 nodes — up to 32 of 128 nodes are faulty.

also randomly chosen — can be faulty. In all experiments
the fault type (crash or data modification) was randomly
chosen.

The first 600 experiments considered the probability
of, at most, 32 nodes — randomly chosen — becomin
faulty. All nodes were initially fault-free. In order to
determine which nodes were be faulty, 200 experiment
were performed with a fault probability of 30%; 200))
experiments were performed with a probability of 60%, 6- Checking the Integrity of Web Clusters
and the remaining 200 experiments considered a probabil-))]
ity of 90%. The other 600 experiments were analogously ~ Experiments were also performed with a practical
performed but Considering the probab"ity Of, at modt, 6 tool that Im'plemen'ts the algorlthm to check the Integrlty
nodes — also randomly chosen — becoming faulty. of nodes_W|th repllcated_ data across a Web cluster. The

The latency was measured for all fault-free nodes tot00l was implemented with two components: a server and
identify all faulty nodes. The number of tests was countec® client. The server is the component responsible of
from the instant the faults occurred until the momentreplying to tests and sending diagnostic information to
where all fault-free nodes identified the change of theOther system nodes. The client implemeltsDif. This
status of all nodes that became faulty. client is responsible for setting testing intervals, rogni

Figure 7 shows the average latency for each of the 3he tests, asking for diagnostic information and
groups of 200 experiments for both probabilities efitfa ~ completing diagnosis. These two components execute as
nodes. With up to 32 faulty nodes, it is possible dtice individual processes in the system, i.e. the tool isn't
that with a fault probability equal to 90%, the average €xecuted within the Web server. _
latency, i.e. the number of testing rounds for all nodes to ~_ Figure 9 shows a group of 4 Web servers with
complete the diagnosis, was 3.94 rounds. With up to 64¢eplicated data executing the implemented tool. In this
fauity nodes and fault probabiiity equai to 90%, the example, server 1is faulty, server 2 has a modification in

Comparing the two experiments, respectively with
up to 32 and 64 faulty nodes, the average latency stayed
between 4 and 5, but the average number of tests had a
teeper increase. This follows from the fact that the larger
he number of faulty nodes, more tests are executed by the
gault-free nodes.

average |atency was 4.25 testing rounds. his data that is Supposed to be replicatEd, and servers 3
and 4 are fault-free. The tool that executes in all servers,
L up o 32 fauly rodes tests all of other configured servers to check the integrity

6 —=s— up to 64 faulty nodes

of the replicated data among all servers.
® :-\4..58\4;25

4 %7 G0 T o2 HI-DIF 2 HI-DIF
] Tool Tool

FAULTY ¥ FAULT-FREE il

4 - 4 IODIFTED

Repiicated Rep/v &4
Web | _, Repieae web | _, F
Server Server

http IP www requests

Average Latency

o kB N w

Prob 30% Prob 60% Prob 90%
Fault Probability

Figure 7: Average latency in a system in which
up to 32 of 128 nodes are faulty.

Figure 8 shows the average number of tests 3 —| T 4 | —| or
\

performed in each of the 200 experiments also for both FAULTFREE i
probabilities of faulty nodes. With up to 32 faulty nedi¢ ! - 3

is possible to notice that with a fault probability equal Web | —, [“Dan | Web | _, @‘
90%, the average of number of tests realized was 2,100 Iﬂl L/ Iﬂl

tests. With up to 64 faulty nodes and fault probability Figure 9: A Web server cluster executing
equal to 90% the average was equal to 2,264 tests. the implemented tool.

Internet

FAULT-FREE

One experiment was performed in a system with 32[3]
nodes in which 8 nodes became faulty by having their data
modified, simultaneously. The testing round was 10
seconds. The graph in figure 10 shows the number o
nodes and the moment that all 24 fault-free node
identified the 8 faulty nodes.

In this graph, all nodes that identified all faultshe t
first 10 seconds, appear in the first column, and sit@. (5]
possible to notice that in the first 10 seconds after8the
faults happened, 2 nodes identified all 8 faults. &lg
possible to notice that most of the fault-free nodes|6]
identified all faults in between 20 and 30 seconds. And
after at most 50 seconds all fault-free nodes had identified

all faulty nodes.
[7]
Moment and number of nodes that identifies all faults

2 e 8]

23

4]

20 4

16

12

8 e

e
0 ‘ ‘ ‘ ‘ [10]

10 20 30 40 50
Time after the faults (in secs)
Figure 10: Experiment run in a system with 32 nodes
in which 8 nodes become faulty.

9]

Number of Nodes

7. Conclusion [11]

This work introduced a new general model for [12]
Hierarchical Adaptive Distributed Comparison-Based
System-Level Diagnosis, and also presented a new
diagnosis algorithm,Hi-Dif, which is based on the
presented modeHi-Dif allows the distributed detection [13]
of integrity violations in replicated data, available for
instance through Web servers. A key difference of this
model to previously published ones is that the comparison 14]
performed by a fault-free node, over outputs of faulty
units can match.

A formal proof is presented showing thitDif has
a worst-case latency ¢dg,N testing rounds for a system
of N units. The algorithm is alsd\{1)-diagnosable and
the maximum number of tests required G(N?).
Simulation experiments of the algorithm and experiments 16
performed with a tool that implements the algorithm[]
applied to Web clusters were also presented. Experimental
results confirm the maximum number of tests and the
latency of the algorithm.

Future work includes applying the algorithm for
peer-to-peenetworks.

(15]

(17]

(18]

References

[19]
CERT Coordination
Accessed on 05/09/2004.
ALDAS, Analytisches Labor Dr. Axel Schumann,
http://www.aldas.de, Accessed on 05/10/2003.

[1]
(2]

Center, http://www.cert.org,

A. Subbiah, and D. M. Blough, “Distributed Diaggsis in
Dynamic Fault EnvironmentsEEE Trans. on Parallel
and Distributed Systemd/ol. 15, No. 5, pp. 453-467,
May 2004.

L. C. P. Albini, and E. P. Duarte Jr., “Genaed
Distributed Comparison-Based System-Level Diagnosis
2nd IEEE Latin American Test Workshagp. 285-290,
Sep. 2001.

D. Ingham, S. K. Shrivastava, and F. Panzieri,
“Constructing Dependable Web ServicelgEE Internet
Computing Vol. 4, No. 1, pp 25-33, Jan/Feb 2000.

B. Tan, S. Foo, and S. C. Hui, “Monitoring Web
Information Using PBD Technique,Proc. 2nd Intl.
Conference on Internet Computing (IC’200LLas Vegas,
USA, pp. 666-672, Jun. 2001.

Url Minder, http://www.netmind.com/URL-mindéJRL-
minder.html. Accessed on 22/09/2003.

B. Lu, S. C. Hui, and Y. Zhang, “Personalidzetbrmation
Monitoring Over the Web,”1® Intl. Conference on
Information Technology & Applications (ICITA 2002)
Nov. 2002.

V. Boyapati, K. Chevrier, A. Finkel, N. Glancg. Pierce,
R. Stockton, and C. Whitmer, "ChangeDeteE‘fouA Site-
Level Monitoring Tool for the WWW,'Intl. World Wide
Web ConferengdJSA, pp. 570-579, May 2002.

S.-J. Lim, and Y.-K. Ng, “An Automated Change
detection Algorithm for HTML documents Based on
Semantic Hierachies,”Proceedings of the 17th Intl.
Conference on Data Engineering (ICDE'QHeidelberg,
Germany, pp. 303-312, Apr. 2001.

M. Malek, “A Comparison Connection Assignmeialr
Diagnosis of Multiprocessor SystemsProc. 7th Intl.
Symp. Computer Architectyngp. 31-36, 1980.

K. Y. Chwa, and S. L. Hakimi, “Schemes for Rau
Tolerant Computing: A Comparison of Modularly
Redundant and t-Diagnosable Systenisfdrmation and
Control, Vol. 49, pp. 212-238, 1981.

J. Maeng, and M. Malek, “A Comparison Conneati
Assignment for Self-Diagnosis of Multiprocessor
Systems,” Digest 11th Intl. Symp. Fault Tolerant
Computing pp. 173-175, 1981.

A. Sengupta, and A. T. Dahbura, “On Self-Diagable
Multiprocessor Systems: Diagnosis by Comparison
Approach,”|EEE Trans. on Computerd/ol. 41, No. 11,
pp. 1386-1396, 1992.

D. M. Blough, and H. W. Brown, “The Broadcast
Comparison Model for On-Line Fault Diagnosis in
Multicomputer Systems: Theory and Implementation,”
IEEE Trans. on Computer¥ol. 48, pp. 470-493, 1999.

D. Wang, “Diagnosability of Hipercubes and Hamced
Hypercubes under the Comparison Diagnosis Model,”
IEEE Trans. on Computer¥ol. 48, No. 12, pp. 1369-
1374,1999.

T. Araki, and Y. Shibata, “Diagnosability dutterfly
Networks under the Comparison ApproadiEICE Trans.
FundamentalsVol. E85-A, No. 5, May 2002.

J. Fan, “Diagnosability of Crossed CubekSEE Trans.
on ComputersVol. 13, No. 10, pp. 1099-1104, Oct. 2002.
E. P. Duarte Jr., A. Brawerman, and L. CARini, “An
Algorithm for Distributed Hierarquical Diagnosis of
Dynamic Fault and Repair EventsProc. IEEE Intl.
Conference on Parallel and Distributed Systems 2000
299-306, 2000.

