

Distributed Integrity Checking for Systems with Replicated Data

Roverli Pereira Ziwich, Elias Procópio Duarte Jr.
Federal University of Paraná, Dept. Informatics

P.O.Box 19018 – 81531-990, Curitiba, PR Brazil
{roverli,elias}@inf.ufpr.br

Luiz Carlos Pessoa Albini
Unicenp, Dept. Informatics

R. Prof. Parigot de Souza, 5300, Curitiba, PR Brazil
albini@unicenp.br

Abstract

 This work presents a new comparison-based
diagnosis model and a new algorithm, called Hi-Dif ,
based on this model. The algorithm is used for checking
the integrity of systems with replicated data, for instance,
detecting unauthorized Web page modifications. Fault-
free nodes running Hi-Dif send a task to two other nodes
and the task results are compared. If the comparison
produces a match, the two nodes are classified in the same
set. On the other hand, if the comparison results in a
mismatch, the two nodes are classified in different sets,
according to their task results. One of the sets always
contains all fault-free nodes. One fundamental difference
of the proposed model to previously published models is
that the new model allows the task outputs of two faulty
nodes to be equal to each other. Considering a system of
N nodes, we prove that the algorithm has latency equal to
log2N testing rounds in the worst case; that the maximum
number of tests required is O(N2); and, that the algorithm
is (N–1)-diagnosable. Experimental results obtained by
simulation and by the execution of a tool implemented
applied to the Web are presented.

1. Introduction

 The number of Internet users has been estimated to
be close to 600 million persons. The dependability of the
network has become increasingly important for millions of
organizations and individuals. On the other hand, attacks
and acts of vandalism, such as non-authorized mod-
ifications of Web pages, are becoming very common [1].
 According to [2], a service specialized on recording
site invasions, in 2001 about 22,400 sites were invaded
and had their contents updated by unauthorized persons or
processes. In 2003, this figure grew to over 137,000 sites.
Therefore, there is an pressing need for efficient
monitoring systems, that are able to check the integrity of
data made available through the network. In this work
integrity is defined as the property that data is only
modified by authorized entities.
 The main purpose of a monitoring system is to dis-
cover which units of the system are faulty. The monitoring
system must be fault tolerant, i.e. capable of working
correctly even in the presence of faulty units. This work

uses distributed [3] comparison-based [4] system-level
diagnosis to check the integrity of data replicated across a
network, such as the Internet. An example of the practical
application of this work is the diagnosis of vandalism on
replicated Web servers, also called Web clusters [5].
 A large number of tools and systems that deal with
the detection of modifications in Web sites have been
published [6, 7, 8, 9, 10]. Many of these tools even allow
specific parts of a given Web page to be monitored. Most
tools execute comparisons to determine that the contents
have been modified, keeping a local copy or a checksum
of the data to be checked. An example is WebMon [6].
Other tools work as a service within the Web, such as
URL-minder [7].
 The new system-level diagnosis model proposed in
this work is distributed, i.e. there is no centralized
component responsible for monitoring. In fact, the units,
which keep the replicated data, monitor each other
according to a comparison-based distributed system-level
diagnosis model. Each fault-free node of the system runs
an algorithm, Hi-Dif , which is also introduced in this
paper. Units running Hi-Dif perform tests over other units
in a distributed and hierarchical fashion. A test consists of
sending a task to a pair of nodes. After receiving the two
outputs for a task, the tester compares the two outputs and
classifies the nodes in sets according to the result of the
task. One of these sets contains the fault-free nodes of the
system. Formal proofs for the latency, maximum number
of tests and diagnosability of the algorithm are also
presented. Experimental results obtained from the
execution of a tool applied to the Web, and also results
obtained through simulations are presented.
 The rest of the paper is organized as follows. Section
2 presents a survey of comparison-based system-level
diagnosis. Section 3 describes the new system-level
diagnosis model. Section 4 includes the specification and
formal proofs of Hi-Dif . Section 5 presents simulation
results. Section 6 presents a tool for checking the integrity
of Web clusters. Section 7 concludes the paper.

2. Comparison-Based Diagnosis

 The main objective of system-level diagnosis is to
identify which units of the system are faulty and which are
fault-free [3]. Several models for system-level diagnosis

can be found in the literature. Models for comparison-
based system-level diagnosis were initially proposed by
Malek [11], and by Chwa and Hakimi [12]. These models
assume that, in a system of N units, the comparison of the
outputs produced by any pair of units is possible. These
models also assume the existence of a central observer
which collects and maintains information about the tasks
outputs. This central observer also performs the diagnosis
of the system based on comparison results, thus determin-
ing which are the faulty units of the system. The central
observer is a trustful unit which cannot suffer any event.
The difference between these two models is that in [12]
two faulty units can produce the same output for a task, so
that the comparison of these outputs results in a match.
 The MM model, proposed by Maeng and Malek [13],
is an extension of the model proposed by Malek [11]. This
model assumes that the comparison results are sent to a
central observer which performs the complete diagnosis of
the system, but it allows the comparison of task outputs to
be made by the units themselves. The only restriction is
that the unit which performs the comparison must be
different from the two units which perform the task.
Sengupta and Dahbura in [14] present a generalization of
the MM model, called MM*. This model allows the com-
parison unit to be one of the units that perform the task.
 Blough and Brown in [15] present a comparison-
based system-level diagnosis model based on reliable
broadcast. In this model a task is assigned as input to a
pair of different nodes. These two nodes execute the task
and broadcasts their outputs to all nodes of the system,
including themselves. The output comparisons are made
by each fault-free node.
 In [16] Wang proposes a comparison-based system-
level diagnosis for both hypercubes and enhanced hyper-
cubes. Araki and Shibata in [17] present the diagnosability
of butterfly networks with comparison-based system-level
diagnosis. Also considering comparison-based system-
level diagnosis, Fan in [18] evaluates the diagnosability of
crossed cubes, a variation of hypercubes, but with smaller
diameter.
 The Generalized Distributed Comparison-Based
System-Level diagnosis model is presented by Albini and
Duarte in [4]. This is the first hierarchical comparison-
based diagnosis model that is not limited to crash faults.
Fault-free nodes test other nodes of the system to identify
their state. This model has the following assumption:
when a fault-free node compares the outputs produced by
two faulty nodes, the result always show a difference.

3. A General Comparison-Based Diagnosis
Model

 In this work we present a new general hierarchical
comparison-based adaptive distributed system-level
diagnosis model. We assume that the diagnosable system
S consists of N nodes and is fully connected. The system
is represented by graph G=(V, E), where V is a set of

vertices and E is a set of edges. Each vertex in the graph
corresponds to a node of the system and the edges
correspond to the communication links. In this model
links do not become faulty. Nodes of the system can be
either faulty or fault-free. A node becomes faulty by either
crashing or by replying arbitrarily to a given query. A
change of the state of a node is called an event.
 Fault-free nodes test other nodes and based on test
results, tested nodes are classified in sets. A test is
performed by sending a task to two nodes. Task outputs
are then compared; if the comparison produces a match,
the two nodes are classified in the same set. On the other
hand, if the comparison results in a mismatch, the two
nodes are classified in different sets, according to their
task results. One of the sets always contains all fault-free
nodes. If nodes are classified in more than one set, then
there are faulty nodes in the system.
 The new model allows the identification of crashed
nodes, and also allows the identification of nodes that have
not crashed but do not reply the correct, expected data.
 The following assumptions are made about the
system: 1) a fault-free node comparing outputs produced
by two fault-free nodes always produces a match; 2) a
fault-free node comparing outputs produced by a faulty
node and a fault-free node always produces a mismatch;
and, 3) the time interval required for a fault-free node to
produce an output for a task is bounded.
 One key difference of the proposed model to
previously published models is that the new model allows
the comparison performed by a fault-free node of the task
outputs of two faulty nodes to be equal to each other.
 A multi-graph, M(S), is defined to represent the way
tests are executed in the system. M(S) is a directed
multi-graph defined over graph G, when all nodes of the
system are fault-free. The vertices of M(S) are the nodes
of system S. Each edge of M(S) represents that a node is
sending a task to another node.
 As an example consider figure 1, where node 0 sends
a task to itself and to node 1, and sends another task to
itself and to node 2. In this example the edges are (0, 0)1,
(0, 1)0, (0, 0)2 and (0, 2)0, and all edges are from node 0 to
the other nodes or to node 0 itself. Edge (0, 1)0 indicates
that node 0 sent a task to node 1 and the output of this task
will be compared with the output returned by node 0,
therefore the edge (0, 0)1 must also be in the multi-graph.

(0,1)0

(0,0)1

(0,2)0

(0,0)2

Figure 1: Example of a multi-graph M(S).

4. The Algorithm

 In this section a hierarchical comparison-based
adaptive distributed diagnosis algorithm, called Hi-Dif , is
presented. The algorithm is based on the diagnosis model

presented in the previous section. This new algorithm
allows distributed integrity checking for systems with
replicated data. This new algorithm also allows the
identification of nodes that have the same replicated data.

4.1 Description of Hi-Dif

 The algorithm employs a testing strategy represented
by a graph, called tested fault-free graph, T(S). This graph
is a directed graph defined on M(S). T(S) is a hypercube
when all nodes in the system are fault-free and when the
number of nodes is a power of two. Figure 2(a) shows
T(S) for a system with 8 nodes.
 The diagnostic distance between node i and node j is
defined as the shortest distance between node i and node j
in T(S). For example, in figure 2(a) the diagnostic distance
between node 1 and node 3 is 2.
 The tested fault-free graph of node i, Ti(S), is a
directed graph defined on T(S) and shows how the
diagnostic information flows in the system. There is an
edge in Ti(S) from node a to node b if there is an edge in
T(S) from node a to node b and the diagnostic distance
between node i and node a is shorter than the diagnostic
distance between node i and node b. Figure 2(b) shows
T0(S) for a system of 8 nodes. Nodes with diagnostic
distance 1 to node i are called sons of node i. In figure
2(b) the sons of node 0 are nodes 1, 2 and 4.

(a) (b)

Figure 2: (a) T(S) for a system with 8 nodes.
(b) T0(S) for a system with 8 nodes.

 A testing round is defined as the time interval in
which all fault-free nodes obtain diagnostic information
about all nodes of the system. An assumption is made that
after node i tests node j in a given testing round, another
event cannot occur at node j in the same testing round.
This assumption is necessary to guarantee the correct
diagnostic information propagation.
 The testing strategy groups nodes in clusters [19]. A
function called ci,s,p defines the list of nodes about which
node i can obtain diagnostic information through a given
node p, with diagnostic distance equal or less than s in
Ti(S). In Hi-Dif s is always equal to log2N, i.e. each cluster
has always N/2 nodes. Figure 3 depicts the cluster division
for a system of 8 nodes in T0(S). The clusters are:
(a) c0,3,1: nodes {1, 3, 5, 7}, (b) c0,3,2: nodes {2, 3, 6, 7}
and (c) c0,3,4: nodes {4, 5, 6, 7}.

(b)(a) (c)

Figure 3: Cluster division for a system of 8 nodes in T0(S).

 In comparison with previously published diagnostic
models, the new model has a key difference: there is no
more an assumption that specifies that the comparison of
the outputs produced by two faulty nodes never results in
a match. In order to implement the removal of this
assumption in Hi-Dif , every node considers itself as fault-
free. Furthermore, the testing strategy consists of sending
tasks in pairs, and the tester always sends the task to itself
and to another node, and compares the two task outputs.
 If the comparison of these tasks outputs from node i
and from node j produces a match, and node i is the tester
it will obtain diagnostic information from node j.
 Because of this reason, the algorithm has a new
assumption about the external observer that is the user of
the algorithm, and is who computes the diagnosis of the
system. The observer is able to determine correctly if a
given node is fault-free, so that it obtains diagnostic
information from that node. In this way, this observer will
never choose a faulty node from which it will obtain
diagnostic information.
 Besides determining if nodes have crashed or not,
the algorithm also classifies all nodes that have returned
task outputs in sets. These sets are constructed in a way
that allows the easy identification of which nodes are
returning the same output for the task. One application of
this feature is to find corrupted nodes, i.e. nodes that are
up and running but have had their contents modified.
 In order to achieve the afore mentioned classification,
the algorithm classifies nodes in sets with a sequential
numeric identifier, as follows: set 0 contains nodes that
have crashed; set 1 contains nodes with the correct data,
i.e. nodes that are returning the same task output that the
tester does; and the other sets that have identifiers greater
than 1, contain nodes returning a different task outputs. If
any two nodes return task outputs that are equal to each
other but are different to the output of the tester, than
those two nodes are classified in a set that is neither set 0
nor set 1. The algorithm is fully specified below.

4.2 Specification of the Algorithm

 Algorithm Hi-Dif initially groups nodes in two sets:
the set with faulty nodes F, and the set with fault-free
nodes FF. These two sets are disjoint and the union of the
two sets is equal to V, i.e. F ∩ FF = ∅ e F ∪ FF = V. The
algorithm also employs a list of sets, called result-set-list,

to classify nodes in according to the tasks outputs. Each
node keeps these two sets F and FF and also keeps the list
result-set-list. By the end of a testing round every node
must be in exactly one of the sets F of FF, and must be in
exactly one set of the list result-set-list.
 When node i compares the task output produced by
itself with the output returned by another node p and this
comparison produces a match, node i identifies node p as
fault-free. Then, node i puts node p in set FF, removing it
from set F, if it is the case.
 The tester then puts node p in set 1 of result-set-list,
i.e. puts node p in the set of nodes with the correct repli-
cated data. When node i identifies a fault-free node, node i
obtains diagnostic information from this fault-free node.
Furthermore, as information is timestamped [19], node i
must test if the received information is newer than its own
information. The timestamps are implemented as event
counters that every node keeps for all system nodes. This
strategy allows the determination of the order in which
events occurred and guarantees that node i will always
keep and update only the most recent information about
the state of any other node. If the received information is
not new, node i simply rules the received information out.
 When node i sends a task to itself and to node p, but
node p doesn’t reply, node i identifies node p as faulty,
and puts node p in F, removing it from set FF if this is the
case. Furthermore, node i puts node p in set 0 of result-
set-list, i.e. puts node p in the set of crashed nodes of
result-set-list.
 When node i compares the tasks outputs produced by
itself and by another node p, and this comparison produces
a mismatch, node i identifies node p as faulty. Then, node
i puts node p in the set F removing it from set FF, if this is
the case. Furthermore, node i searches for a set in result-
set-list in which all nodes have returned the same output
returned by node p. If there is no such set, node i creates a
new set in result-set-list and puts node p in this set.
 Hi-Dif employs a hierarchical testing strategy, in
which node i initially tests all it owns sons in Ti(S), by
sending a task always to pairs of nodes: to itself and the
next son. Thus by comparing tasks results node i can
determine the state of all nodes. When node i finishes
testing its son’s and there are still nodes about which no
information about their state was obtained in the present
testing round, node i starts to test these nodes, and obtains
information from the ones that are fault-free.
 Initially, node i tests nodes with diagnostic distance
2, i.e. the sons of its sons; then, it tests nodes with
diagnostic distance 3, and so on. Figure 4(a) shows an
example of a system with 8 nodes where nodes 2 and 4 are
faulty. In this example, after node 0 tests all his sons, it
receives information about nodes 3, 5 and 7, but no
information about node 6. Node 0 then performs one more
test sending a pair of tasks to itself and to node 6. In figure
4(b) node 0 tests its sons, i.e. tests nodes 1, 2 and 4 and
find out that all are faulty and can’t obtain any information
about any other node. Then, initially node 0 tests node 3.
In the sequence, it tests nodes 5 and finally it tests node 6.

(a) (b)

Figure 4: (a) System of 8 nodes in which 2 and 4 are faulty.
(b): System of 8 nodes in which 1, 2 and 4 are faulty.

 So, at the end of each testing round, every fault-free
node i has put all other nodes in either set F or FF, i.e.
F ∪ FF = V. Furthermore every node is also in one of the
sets of result-set-list. A node in set 0 of result-set-list, is
necessarily also in set F. A node in set 1 of result-set-list,
is necessarily also in the FF. Each one node in the other
sets of result-set-list, are necessarily also in set F. The
algorithm in pseudo-code is given below.

Algorithm Hi-Dif running at node i:

F = EMPTY; FF = EMPTY;
REPEAT FOREVER
 Initialize(result-set-list);
 TO_TEST = {ALL NODES};

 REPEAT
 p = next_node_to_test in TO_TEST;
 send_task(i, p);
 TO_TEST = TO_TEST – {p};

 IF (result(p) == ∅) THEN
 FF = FF – {p}; F = F + {p};
 result-set-list[set 0] = result-set-list[set 0] + {p};
 ELSE IF (result(i) == result(p)) THEN
 F = F – {p}; FF = FF + {p};
 result-set-list[set 1] =
 result-set-list[set 1] + {p};
 OBTAIN diagnosis information of p’s cluster;
 COMPARE timestamps of cluster’s nodes;
 UPDATE local information if necessary;
 TO_TEST = TO_TEST – {nodes with info updated};
 ELSE IF(result(i) != result(p)) THEN
 FF = FF – {p}; F = F + {p}; id_set = NULL;

 FOR (x starting in 2;
 x <= result-set-list.id_biggest_set
 AND id_set == NULL) DO
 IF (result(a node from result-set-list[set x])
 == result(p)) THEN
 id_set = x;
 END_IF
 END_FOR

 IF (id_set != NULL) THEN
 result-set-list[set id_set] =
 result-set-list[set id_set] + {p};
 ELSE
 id_new_set = result-set-list.create_new_set;
 result-set-list[set id_new_set] = {p};
 END_IF
 END_IF
 UNTIL (the state of all nodes is obtained)
END_REPEAT_FOREVER

4.3 Proofs

 In this section we present the formal proofs for the
latency, the maximum number of tests and the
diagnosability of the algorithm.

Theorem 1: All fault-free nodes running the algorithm
Hi-Dif require, at most, log2N testing rounds to achieve
the complete diagnosis of the system.

Proof: Consider a new event at node a. By the definition
of testing round, all nodes that are sons of node a,
diagnose the event in the first testing round after it
occurred. Considering graph Ta(S), shown in figure 5, in
the first testing round after the event, all sons of node a
diagnose the event.
 In the second testing round, all nodes with diagnostic
distance equal to 2 diagnose the event, either by getting
diagnostic information from nodes with diagnostic
distance equal to 1 to node a, or by directly testing node a,
if all nodes with diagnostic distance equal to 1 to node a
are faulty. In Ta(S) illustrated in figure 5, the nodes that
are sons of a diagnose the event either by getting informa-
tion from other sons of a or by directly testing node a.
 Assume that fault-free node i with diagnostic
distance d to node a diagnose the event at node a in at
most d testing rounds.
 Now consider node j with diagnostic distance d+1 to
node a. By the definition of diagnostic distance, any node
with diagnostic distance d+1 to node a is a son of a node
with diagnostic distance d to node a. So node j is son of
some node i. By the definition of testing round, a node
must test all its sons in each testing round, so node j tests
node i in all testing rounds, then node j can take at most
one testing round to get new information from node i.
 As node i diagnoses node a’s event in at most d testing
rounds, and node j takes at most one testing round to get
new diagnostic information from node i, node j can take at
most d+1 testing rounds to diagnose the node a’s event.
 Therefore, if node j has diagnostic distance d+1 to
node a, j diagnoses an event that happened at node a, in at
most d+1 testing rounds. Thus, if the diagnostic distance
between two nodes is x one of these nodes may take up to
x testing rounds to diagnose an event at the other node.
 Thus, the maximum latency occurs when nodes with
the largest distance in the system obtain information about
each other. According to the definition of the hypercube’s
[16] the largest diagnostic distance between two nodes is
log2N. Therefore the algorithm’s maximum latency is
log2N testing rounds. □

Figure 5: Graph Ta(S).

Theorem 2: The maximum number of tests required by
all fault-free nodes running in one testing round of Hi-Dif
is O(N2).
Proof: Considering a system with N nodes, the worst case
of the number of tests required in a testing round is the
sum of the worst case of the number of tests for each one
of the N nodes. In the worst case, the number of tests
required by one node is when this node needs to test all of
other N–1 nodes in the system; one example is the
situation where N–1 nodes are faulty. In this case the
fault-free node executes N–1 tests.
 Considering this case, in which there is only one
fault-free node i and N–1 faulty nodes, and also
considering that none of them have crashed, and none of
them produces the same output to a given task, the fault-
free node sends tests to itself and each of the other faulty
nodes. However each of the faulty nodes assumes itself to
be fault-free, thus each executes N–1 tests. In conclusion,
the number of tests for all nodes is N * (N–1) = N2–N, that
is O(N2). □

Theorem 3: A system running Hi-Dif is (N–1)-diagno-
sable.
Proof: Initially, consider a system with only one fault-free
node and N–1 faulty nodes. By definition, the fault-free
node tests all nodes, sending tests in pairs to itself and
each other node, identifying the state of all nodes as
faulty.
 Now, consider a system with more than one fault-
free node. Each of these fault-free nodes executes tests
until it finds another fault-free node. When the tester finds
a fault-free node, it obtains diagnostic information from
this tested fault-free node. By getting diagnostic informa-
tion from the tested fault-free node and, considering the
information obtained by its own tests, the tester achieves
the complete and correct diagnosis of the system.
 However, if a situation such as shown in figure 6
happens, i.e. if node a could obtain diagnostic information
about node c from node b and at the same time node b
obtains diagnostic information about node c from node a,
then both, node a and node b, would not achieve the
complete diagnosis of the system.

Figure 6: Nodes a and b exchange information

about node c.

 This situation never happens because if node a
receives information about node c from node b, the
diagnostic distance between nodes a and c must be larger
than the diagnostic distance between nodes b and c;
analogously for node b to receive diagnostic information
about node c from node a, the diagnostic distance between
nodes b and c must be larger than the distance between
nodes a and c.

 In conclusion, even if there is only one fault-free
node, this node is capable of correctly achieving the
complete diagnosis of the system, so the algorithm is
(N–1)-diagnosable. □

5. Simulation Results

 In this section 1,200 experiments obtained by
simulating Hi-Dif in systems with 128 nodes are reported.
Initially 600 experiments were executed in which up to 32
nodes – randomly chosen – can be faulty. After that, other
600 experiments were executed in which up to 64 nodes –
also randomly chosen – can be faulty. In all experiments
the fault type (crash or data modification) was randomly
chosen.
 The first 600 experiments considered the probability
of, at most, 32 nodes – randomly chosen – becoming
faulty. All nodes were initially fault-free. In order to
determine which nodes were be faulty, 200 experiments
were performed with a fault probability of 30%; 200
experiments were performed with a probability of 60%,
and the remaining 200 experiments considered a probabil-
ity of 90%. The other 600 experiments were analogously
performed but considering the probability of, at most, 64
nodes – also randomly chosen – becoming faulty.
 The latency was measured for all fault-free nodes to
identify all faulty nodes. The number of tests was counted
from the instant the faults occurred until the moment
where all fault-free nodes identified the change of the
status of all nodes that became faulty.
 Figure 7 shows the average latency for each of the 3
groups of 200 experiments for both probabilities of faulty
nodes. With up to 32 faulty nodes, it is possible to notice
that with a fault probability equal to 90%, the average
latency, i.e. the number of testing rounds for all nodes to
complete the diagnosis, was 3.94 rounds. With up to 64
faulty nodes and fault probability equal to 90%, the
average latency was 4.25 testing rounds.

4.22 4.09 3.94

4.96
4.58

4.25

0

1

2

3

4

5

6

7

Prob 30% Prob 60% Prob 90%

Fault Probability

A
ve

ra
g

e
L

at
en

cy

up to 32 faulty nodes
up to 64 faulty nodes

Figure 7: Average latency in a system in which

up to 32 of 128 nodes are faulty.

 Figure 8 shows the average number of tests
performed in each of the 200 experiments also for both
probabilities of faulty nodes. With up to 32 faulty nodes, it
is possible to notice that with a fault probability equal to
90%, the average of number of tests realized was 2,100
tests. With up to 64 faulty nodes and fault probability
equal to 90% the average was equal to 2,264 tests.

2100
2118

2133

2264
2286

2394

2000

2100

2200

2300

2400

Prob 30% Prob 60% Prob 90%

Fault Probability

A
ve

ra
g

e
N

u
m

b
er

 o
f

T
es

ts

up to 32 faulty nodes
up to 64 faulty nodes

Figure 8: Average number of tests in a system in which

up to 32 of 128 nodes are faulty.

 Comparing the two experiments, respectively with
up to 32 and 64 faulty nodes, the average latency stayed
between 4 and 5, but the average number of tests had a
steeper increase. This follows from the fact that the larger
the number of faulty nodes, more tests are executed by the
fault-free nodes.

6. Checking the Integrity of Web Clusters

 Experiments were also performed with a practical
tool that implements the algorithm to check the integrity
of nodes with replicated data across a Web cluster. The
tool was implemented with two components: a server and
a client. The server is the component responsible of
replying to tests and sending diagnostic information to
other system nodes. The client implements Hi-Dif . This
client is responsible for setting testing intervals, running
the tests, asking for diagnostic information and
completing diagnosis. These two components execute as
individual processes in the system, i.e. the tool isn’t
executed within the Web server.
 Figure 9 shows a group of 4 Web servers with
replicated data executing the implemented tool. In this
example, server 1 is faulty, server 2 has a modification in
his data that is supposed to be replicated, and servers 3
and 4 are fault-free. The tool that executes in all servers,
tests all of other configured servers to check the integrity
of the replicated data among all servers.

Internethttp IP www requests

HI-DIF
Tool

FAULTY

1

Web
Server

Replicated
Data

FAULT-FREE

3
Replicated

Data

HI-DIF
Tool

Web
Server

2 HI-DIF
Tool

Web
Server

Replicated
Data

FAULT-FREE

MODIFIED

FAULT-FREE

4 HI-DIF
Tool

Web
Server

Replicated
Data

Figure 9: A Web server cluster executing
the implemented tool.

 One experiment was performed in a system with 32
nodes in which 8 nodes became faulty by having their data
modified, simultaneously. The testing round was 10
seconds. The graph in figure 10 shows the number of
nodes and the moment that all 24 fault-free nodes
identified the 8 faulty nodes.
 In this graph, all nodes that identified all faults in the
first 10 seconds, appear in the first column, and so on. It is
possible to notice that in the first 10 seconds after the 8
faults happened, 2 nodes identified all 8 faults. It is also
possible to notice that most of the fault-free nodes
identified all faults in between 20 and 30 seconds. And
after at most 50 seconds all fault-free nodes had identified
all faulty nodes.

Moment and number of nodes that identifies all faults

2

9

18

23
24

0

4

8

12

16

20

24

10 20 30 40 50

Time after the faults (in secs)

N
u

m
b

er
 o

f
N

o
d

es

Figure 10: Experiment run in a system with 32 nodes

in which 8 nodes become faulty.

7. Conclusion

 This work introduced a new general model for
Hierarchical Adaptive Distributed Comparison-Based
System-Level Diagnosis, and also presented a new
diagnosis algorithm, Hi-Dif , which is based on the
presented model. Hi-Dif allows the distributed detection
of integrity violations in replicated data, available for
instance through Web servers. A key difference of this
model to previously published ones is that the comparison,
performed by a fault-free node, over outputs of faulty
units can match.
 A formal proof is presented showing that Hi-Dif has
a worst-case latency of log2N testing rounds for a system
of N units. The algorithm is also (N–1)-diagnosable and
the maximum number of tests required is O(N2).
Simulation experiments of the algorithm and experiments
performed with a tool that implements the algorithm
applied to Web clusters were also presented. Experimental
results confirm the maximum number of tests and the
latency of the algorithm.
 Future work includes applying the algorithm for
peer-to-peer networks.

References

[1] CERT Coordination Center, http://www.cert.org,

Accessed on 05/09/2004.
[2] ALDAS, Analytisches Labor Dr. Axel Schumann,

http://www.aldas.de, Accessed on 05/10/2003.

[3] A. Subbiah, and D. M. Blough, “Distributed Diagnosis in
Dynamic Fault Environments,” IEEE Trans. on Parallel
and Distributed Systems, Vol. 15, No. 5, pp. 453-467,
May 2004.

[4] L. C. P. Albini, and E. P. Duarte Jr., “Generalized
Distributed Comparison-Based System-Level Diagnosis,”
2nd IEEE Latin American Test Workshop, pp. 285-290,
Sep. 2001.

[5] D. Ingham, S. K. Shrivastava, and F. Panzieri,
“Constructing Dependable Web Services,” IEEE Internet
Computing, Vol. 4, No. 1, pp 25-33, Jan/Feb 2000.

[6] B. Tan, S. Foo, and S. C. Hui, “Monitoring Web
Information Using PBD Technique,” Proc. 2nd Intl.
Conference on Internet Computing (IC’2001), Las Vegas,
USA, pp. 666-672, Jun. 2001.

[7] Url Minder, http://www.netmind.com/URL-minder/URL-
minder.html. Accessed on 22/09/2003.

[8] B. Lu, S. C. Hui, and Y. Zhang, “Personalized Information
Monitoring Over the Web,” 1st Intl. Conference on
Information Technology & Applications (ICITA 2002),
Nov. 2002.

[9] V. Boyapati, K. Chevrier, A. Finkel, N. Glance, T. Pierce,
R. Stockton, and C. Whitmer, “ChangeDetectorTM: A Site-
Level Monitoring Tool for the WWW,” Intl. World Wide
Web Conference, USA, pp. 570-579, May 2002.

[10] S.-J. Lim, and Y.-K. Ng, “An Automated Change-
detection Algorithm for HTML documents Based on
Semantic Hierachies,” Proceedings of the 17th Intl.
Conference on Data Engineering (ICDE’01), Heidelberg,
Germany, pp. 303-312, Apr. 2001.

[11] M. Malek, “A Comparison Connection Assignment for
Diagnosis of Multiprocessor Systems,” Proc. 7th Intl.
Symp. Computer Architecture, pp. 31-36, 1980.

[12] K. Y. Chwa, and S. L. Hakimi, “Schemes for Fault-
Tolerant Computing: A Comparison of Modularly
Redundant and t-Diagnosable Systems,” Information and
Control, Vol. 49, pp. 212-238, 1981.

[13] J. Maeng, and M. Malek, “A Comparison Connection
Assignment for Self-Diagnosis of Multiprocessor
Systems,” Digest 11th Intl. Symp. Fault Tolerant
Computing, pp. 173-175, 1981.

[14] A. Sengupta, and A. T. Dahbura, “On Self-Diagnosable
Multiprocessor Systems: Diagnosis by Comparison
Approach,” IEEE Trans. on Computers, Vol. 41, No. 11,
pp. 1386-1396, 1992.

[15] D. M. Blough, and H. W. Brown, “The Broadcast
Comparison Model for On-Line Fault Diagnosis in
Multicomputer Systems: Theory and Implementation,”
IEEE Trans. on Computers, Vol. 48, pp. 470-493, 1999.

[16] D. Wang, “Diagnosability of Hipercubes and Enhanced
Hypercubes under the Comparison Diagnosis Model,”
IEEE Trans. on Computers, Vol. 48, No. 12, pp. 1369-
1374, 1999.

[17] T. Araki, and Y. Shibata, “Diagnosability of Butterfly
Networks under the Comparison Approach,” IEICE Trans.
Fundamentals, Vol. E85-A, No. 5, May 2002.

[18] J. Fan, “Diagnosability of Crossed Cubes,” IEEE Trans.
on Computers, Vol. 13, No. 10, pp. 1099-1104, Oct. 2002.

[19] E. P. Duarte Jr., A. Brawerman, and L. C. P. Albini, “An
Algorithm for Distributed Hierarquical Diagnosis of
Dynamic Fault and Repair Events,” Proc. IEEE Intl.
Conference on Parallel and Distributed Systems 2000, pp.
299-306, 2000.

