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Abstract

This work presents an algorithm for computing the maximum flow and minimum cut of

undirected graphs, based on the well-known algorithm presented by Ford and Fulkerson for

directed graphs. The new algorithm is equivalent to just applying Ford and Fulkerson algorithm

to the directed graph obtained from original graph but with two directed arcs for each edge in

the graph, one in each way. We present a proof of correctness and experimental results.

Keywords: Graph Theory, Maximum Flow, Minimum Cut

1 Introduction

This work presents an algorithm for computing the maximum flow of undirected graphs. This
algorithm differs from those applied to directed graphs (or digraphs), since in undirected graphs
an edge can be used in both ways, and if it’s used in a way, it cannot be used in the other way.
One of the applications of the new algorithm is the computation routes between two hosts in a
computer network, as presented by [6].

The algorithm is based in the same concept used by Ford and Fulkerson in [4], which is
based on the computation of flow augmenting paths. These paths take an existing flow and
construct a new flow that is greater than the original flow.

The new algorithm is equivalent to just applying Ford and Fulkerson algorithm to the
directed graph obtained from original graph but with two directed arcs for each edge in the
graph, one in each way, as shown in figure 1. This figure contains an example of undirected
graph (A) and its corresponding directed graph (B).

The reason that the original algorithm by Ford and Fulkerson can be applied is that, con-
sidering the two arcs between a given pair of vertices, when an arc is used in a flow, the other
arc cannot be used, otherwise it would not satisfy the skew simmetry, which is described in
section 2.
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Figure 1: Example of an undirected graph and its corresponding directed graph.

As the proposed algorithm is based on Ford and Fulkerson’s algorithm, we make a brief
description of that algorithm in section 2. In section 3 we present the new algorithm consid-
ering undirected edge-weighted graphs. In section 4 we present the proof of correctness of the
proposed algorithms. In section 5, we briefly describe a Java implementation of the algorithm,
and finally section 6 contains our conclusions.

2 A Brief Description of Ford & Fulkerson Algorithm

One of the most well known algorithms for computing the maximum flow of a digraph is the
algorithm presented by Ford and Fulkerson [4]. This algorithm uses flow-augmenting paths to
increase existing flows in the digraph, so that in each iteration the flow is greater. We give a
brief description of the problem and the algorithm below.

2.1 Algorithm Specification

Definition: Given a connected digraph G = (V, E), and a pair of nodes s, t ∈ V , called
respectivelly source and sink, let c : E → R

∗
+ be the capacity of the edges in G. A flow in G is

a function f : V × V → R such that:

∀u, v ∈ V, f(u, v) ≤ c(u, v) (1)

∀u, v ∈ V, f(u, v) = −f(v, u) (2)

∀u ∈ V − {s, t},
∑

v∈V

f(u, v) = 0 (3)

In other words, equation 1, known as the capacity constraint property, indicates that the
resources used by a flow in an edge cannot be greater than the capacity of that edge. Equation
2, known as the skew simmetry property, says that the net flow from node u to node v is the
negative of the net flow in the reverse direction. Thus, the net flow from a node to itself is 0,
since for all nodes, f(u, u) = −f(u, u) implies that f(u, u) = 0. Equation 3, known as the flow
conservation property, says that the sum of all flows that enter in a node (negative flows) plus
the sum of all flows that leave that node (positive flows) is 0.

Definition: Given a connected digraph G = (V, E). Let f be a flow in G. The value of the
flow f is defined as:

|f | =
∑

v∈V

f(s, v) =
∑

v∈V

f(v, t)

2



for each edge (u, v) ∈ E do

f [u, v]← 0

f [v, u]← 0

while there exists a path p from s to t with no cycles in the residual network Gf do

∆← min{cf (u, v) : (u, v) ∈ p}

for each edge (u, v) in p do

f [u, v]← f [u, v] + ∆

f [v, u]← −f [u, v]

Figure 2: The algorithm proposed by Ford and Fulkerson.

The value of a flow is the total flow that leaves s and, as proved in [2], is equal to the total
flow that enters t.

Definition: Given a connected digraph G = (V, E), and considering a pair of nodes u, v ∈
V . Let f be a flow in G. The residual capacity of the pair (u, v), or cf(u, v), is given by:

cf (u, v) = c(u, v)− f(u, v)

The residual capacity is used by the algorithm to determine how much flow can pass through
a pair of nodes. It is used basically in the definition of the so called residual network, given
below.

Definition: Given a connected digraph G = (V, E). Let f be a flow in G. The residual
network of G induced by f is graph Gf = (V, Ef ), where:

Ef = {(u, v) ∈ V × V : cf(u, v) > 0}

The residual network is an auxiliar graph used by the algorithm descripted below.
Problem: Given a connected digraph G = (V, E), where V is a set of nodes and E is a set

of edges between these nodes (E ⊆ V × V ), a capacity c : E → R
∗
+ and two nodes s and t, find

a maximum flow (a flow whose value is maximal) from source s to sink t in G. Let f be this
flow1.

Initially, the algorithm presented in figure 2 creates an initial flow that is empty, i.e., there
is no flow between any pair of nodes. Next, a randomly chosen path is obtained from the
residual network. Since the residual network contains edges only where the residual capacity is
positive, the path obtained will be composed by nodes that can increase the flow. In this path,
the minimum residual capacity of all pairs corresponds to the amount that can be increased
in all node pairs so that the capacity is not overrun. Finally, the flow amount in the edges is
increased, and the algorithm searches a new path in the residual network. When no path is
found, than the flow cannot be increased, so it is the maximum flow.
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Figure 3: Example execution of the algorithm by Ford and Fulkerson.

4



s t

a

b

c g

d

f

e

5/12

7

6

9/9

5/5

2

4
15

5/7
5/6

5/12

8

10/10

3

9/94/8

10/11
13

4

s t

a

b

c g

d

f

e

5

7

6

9

5

2

4

55

7

8

3

94

1

13

4
7

15

2

10

5

10

1

4

(I) (J)

s t

a

b

c g

d

f

e

5/12

1/7

6

9/9

4/5

2

4
15

5/7
5/6

5/12

8

10/10

1/3

9/94/8

11/11
1/13

4

s t

a

b

c g

d

f

e

5
6

6

9

4

3

4

55

7

8

2

94

12

4
7

15

2

10

5

11

1

4

1

1

1

(K) (L)

s t

a

b

c g

d

f

e

5/12

3/7

6

9/9

2/5

2

4
15

5/7
5/6

5/12

8

10/10

3/3

9/96/8

11/11
1/13

4

s t

a

b

c g

d

f

e

5
4

6

9

2

3

4

55

7

8

96

12

4
7

15

2

10

5

11

1

2

3

3

3

(M) (N)

Figure 3: (cont.) Example execution of the algorithm by Ford and Fulkerson.
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Figure 4: Feasible maximum flows for graph shown in figure 3.

2.2 Example Execution

An example showing the execution of this algorithm is shown in figure 3. This figure contains
a sequence of graphs that represent the obtained flow step by step. In these graphs, the labels
of the arcs contain, in this order, the flow used in that arc and its capacity. When only one
number is found, than there is no flow passing through the arc.

The initial graph is presented in (A), and its corresponding residual network is the graph
shown in (B). The first augmenting path found is the path (s, a, b, f, d, g, t), also shown in (B).
In this path, the smallest capacity is the capacity of arc (a, b), which is equal to 5. So, the flow
used in pairs (s, a), (a, b), (b, f), (f, d), (d, g) and (g, t) increases in 5 units, as shown in (C),
and in the new residual network in (D). Next the same procedure is repeated for path (s, c, g, t).
The result is shown in (E), and the new residual network in (F).

In the residual network, shown in (F), path (s, c, d, f, t) is found. In this case, the flow used
between pair (d, f), equal to -5 (by the skew simmetry), is increased in 5 units, becoming equal
to 0. So, the new flow formed by this augmenting path does not use pair (f, d), that had been
used before. The new flow is presented in (G), and the corresponding residual network is shown
in (H).

The same process runs with path (s, b, f, t), resulting in the flow shown in (I). Its corre-
sponding residual network is shown in (J). Next, path (s, c, b, a, e, t) is considered, resulting in
the flow in (K). Note that, in this case, the flow of the pair (c, b) is +1, and, by skew sim-
metry, the flow of the pair (b, c) is -1. Consequently, the residual capacity cf(c, b) is equal to

1We use brackets when we treat an identifier – such as f – as a mutable field, and we use parenthesis when

we treat it as a function.
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13− (+1) = 12, and the residual capacity cf(b, c) is equal to 2− (−1) = 3. These results in the
residual network shown in (L).

Finally, path (s, b, a, e, t) is taken, resulting in the flow shown in (M), whose residual network
is shown in (N). This residual network contains no path between s and t, so that the flow shown
in (M) is the maximum flow.

The maximum flow is not always unique. Some graphs can contain more than one flow
that has a maximal value. As an example, for the graph shown in figure 3(A), all flows shown
in figure 4 are feasible maximum flows, among other possible for that graph. The result will
depend on the augmenting paths used, since there are, in many cases, more than one possible
augmenting path for each step of the algorithm.

3 Finding the Maximum Flow of Undirected Graphs

The main concept behind the algorithm is to obtain individual augmenting paths that can be
used to increment an existing flow. Augmenting paths are paths from the source to the sink
of the flow that increase the existing flow. Using edges not used in the flow, or edges partially
used, we can obtain paths that increase the flow. But we can also decrease the used capacity
for a used edge, so that it can be re-used in another augmenting path.

Consider as an example the graph shown in figure 5. In order to simplify the example, only
a portion of the graph is represented. The dashed edges can contain more nodes not visible in
the figure. There is a path between nodes s and a, and between nodes s and b. There is also a
path between nodes a and t, and between nodes b and t. On the other hand, there is only an
edge between nodes a and b.

Consider initially an empty flow between s and t. We can use the path formed by the path
between s and a, the edge between a and b and the path between b and t. This way, we will
obtain an augmenting path, since none of the edges in the path is already used in the flow. The
flow is then formed uniquely by this path.

Next, we consider the path formed by the path between s and b, the edge between b and
a and the path between a and t. The edge between b and a has been already used but in the
other direction (from a to b). In the algorithm, this edge is marked as unused, since we can
find a flow that combines both paths. In the example, the resulting flow will be composed by
the path between s and a, the path between a and t, the path between s and b and the path
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between b and t. The edge between a and b can then be used again by the algorithm to compose
a new flow augmenting path, considering the nodes and edges not shown in figure.

In other words, consider, as an example, that node s is a water producer and node t is a
water consumer. The other nodes of the graph, say a and b, are the connection points, and the
edges are the connections. Suppose that initially s sends water to a, who sends it to b, who
finally sends it to t. But someone deduces that s can also start sending water to b, and then a

stops to send water to b and starts sending to t. With this modification, the volume of water
that is sent increases, as water is flowing from s to t both through a and b. The connection
between a and b can be used again by another path.

3.1 Algorithm Specification

These definitions are similar to the corresponding definitions shown in section 2 for digraphs,
but are adapted to undirected graphs.

Definition: Given a connected undirected graph G = (V, E), and a pair of nodes s, t ∈ V ,
called respectivelly source and sink, let c : E → R

∗
+ be the capacity of the edges in G. A flow

in G is a function f : V × V → R such that:

∀u, v ∈ V, f(u, v) ≤ c({u, v}) (4)

∀u, v ∈ V, f(u, v) = −f(v, u) (5)

∀u ∈ V − {s, t},
∑

v∈V

f(u, v) = 0 (6)

Definition: Given a connected undirected graph G = (V, E). Let f be a flow in G. The
value of the flow f is defined as:

|f | =
∑

v∈V

f(s, v) =
∑

v∈V

f(v, t)

Definition: Given a connected undirected graph G = (V, E), and considering a pair of
nodes u, v ∈ V . Let f be a flow in G. The residual capacity of the pair (u, v), or cf (u, v), is
given by:

cf(u, v) = c({u, v})− f(u, v)

Definition: Given a connected undirected graph G = (V, E). Let f be a flow in G. The
residual network of G induced by f is digraph Gf = (V, Ef ), where:

Ef = {(u, v) ∈ V × V : cf(u, v) > 0}

The residual network is always directed, either for directed or undirected graphs.
Problem: Given a connected undirected graph G = (V, E), where V is a set of nodes and

E is a set of edges between these nodes (E ⊆ {{u, v} : u, v ∈ V }), a capacity c : E → R
∗
+ and

two nodes s and t, find a maximum flow (a flow whose value is maximal) from source s to sink
t in G. Let f be this flow.

The algorithm presented in figure 6 is similar to the algorithm by Ford and Fulkerson, but
considering undirected graphs, i.e., the order of nodes connected by an edge does not matter,
as well as the associated capacity.
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for each edge {u, v} ∈ E do

f [u, v]← 0

f [v, u]← 0

while there exists a path p from s to t with no cycles in the residual network Gf do

∆← min{cf (u, v) : (u, v) ∈ p}

for each edge (u, v) in p do

f [u, v]← f [u, v] + ∆

f [v, u]← −f [u, v]

Figure 6: The proposed algorithm.

3.2 Example Execution

An example showing the execution of this algorithm in shown in figure 7. In this figure, the
representation of the flow is the same used in directed graphs, but there is also a half head
showing the direction of the flow.

The execution is based on the original graph shown in (A). The residual network of the
original graph is shown in (B). The first path that is found is path (s, b, d, c, g, f, t), also shown
in (B). In this path, the minimum capacity is the capacity of edge (b, d), that is equal to 3.
The use of the path as an augmenting path results in the flow shown in (C). The corresponding
residual network is shown in (D).

The next augmenting path considered is path (s, c, d, f, e, t), also shown in (D). The mini-
mum capacity in this case is equal to 6, from edge (d, f). The new flow is shown in (E). Note
the edge (c, d), that had been already used in previous path, but in the other direction. In this
node, 3 units are removed from the direction (d→ c), so that the node is not more used in the
flow. The remaining 3 units are than used in the direction (c → d), and the node is now used
in a new direction. The new residual network is shown in (F).

The execution proceeds with path (s, b, f, d, c, g, t), resulting in the flow shown in (G) and
in the residual network shown in (H). Note that, in this step, the process for node (c, d) is
repeated in the other direction. In the sequence, the path (s, b, a, e, f, g, t) is taken, resulting
in the flow shown in (I) and in the residual network shown in (J). Next, the path (s, c, d, f, t)
is considered, resulting in the flow shown in (K) and in the residual network shown in (L). The
next path that is considered is path (s, c, d, g, f, t), and the new flow is shown in (M), with the
residual network shown in (N). In the sequence, path (s, b, f, t) is considered, resulting in flow
shown in (O), whose residual network is shown in (P). Finally, The path (s, a, f, t) is the last
path found, resulting in the final flow shown in (Q). As shown in the residual network in (R),
there is no feasible augmenting path, so the found flow is a maximum flow.

4 Proofs

To show that this algorithm constructs a maximum flow from s to t, we must show that:
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Figure 7: Example execution of the algorithm proposed by this paper.
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Figure 7: (cont.) Example execution of the algorithm proposed by this paper.
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Figure 7: (cont.) Example execution of the algorithm proposed by this paper.

1. The algorithm constructs a flow;

2. This flow is a maximum flow;

3. The algorithm terminates after a finite number of steps.

The proofs of each one of these items will be discussed in this section.

4.1 The Algorithm Constructs a Flow

As presented in section 3.1, a flow must satisfy some properties. The proof consists in demon-
strating each one of the properties in the resulting flow. In each iteration of the algorithm, the
result is a flow, so the final result is also a flow. In the following, we call fi the flow in step i.

Capacity constraint property: For nodes that compound the augmenting path, we have
fi(u, v) = fi−1(u, v)+∆. But ∆ is the minimum value of all residual capacities in the augmenting
path. So, ∆ ≤ cfi−1

(u, v) = c({u, v}) − fi−1(u, v). Applying this property to the equation
above, we have fi(u, v) ≤ fi−1(u, v) + c({u, v})− fi−1(u, v), and fi(u, v) ≤ c({u, v}), satisfying
the capacity constraint.

For nodes in the opposite direction, we have fi(u, v) = −fi(v, u) = −
(

fi−1(v, u) + ∆
)

=
fi−1(u, v)−∆. As ∆ > 0 (by the definition of residual network), fi(u, v) < fi−1(u, v) ≤ c({u, v}),
satisfying the capacity constraint.

For the other nodes, the flow is not modified, so fi(u, v) = fi−1(u, v) ≤ c({u, v}), satisfying
the capacity constraint.

Skew simmetry property: In all cases in which the flow is updated, the flow in the reverse
direction is also updated, and always with the opposite value. Since the augmenting path has
no cycles, each pair is updated only once in each step, so the skew simmetry will always be
mantained.

Flow conservation property: The augmenting path can be defined as (a0, a1, a2, . . . an), with
a0 = s, an = t and aj ∈ V −{s, t} for each 1 ≤ j ≤ n−1. Consider ∆ as the minimum capacity
of this augmenting path. For each node of the path, except for the source and the sink, the
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sum of all incident flows of node aj is:

∑

v∈V

fi(aj , v) = fi(aj , aj+1) + fi(aj, aj−1) +
∑

v∈V −{aj+1,aj−1}

fi(aj, v)

=
(

fi−1(aj, aj+1) + ∆
)

+
(

fi−1(aj , aj−1)−∆
)

+
∑

v∈V −{aj+1,aj−1}

fi−1(aj , v)

= fi−1(aj , aj+1) + fi−1(aj , aj−1) +
∑

v∈V −{aj+1,aj−1}

fi−1(aj , v)

=
∑

v∈V

fi−1(aj, v)

= 0

resulting that the flow conservation property is preserved.

4.2 The Flow is a Maximum Flow

The following proof is based on a similar proof presented in [3].
Definition: Given a connected graph G = (V, E), directed or undirected, and a pair of

nodes s, t ∈ V . A (s − t) cut is a partition of V into S and T = V − S, such that s ∈ S and
t ∈ T . The capacity of the cut, represented as c(S, T ), is given by:

∑

u∈S

∑

v∈T

c(u, v)

Definition: A minimum cut is a cut whose capacity is minimal.
Consider a cut (S, T ) in graph G = (V, E). Any flow in this graph must be smaller than or

equal to the capacity of this cut, since every flow unit must cross the cut. Since this predication
is valid for all cuts and for all flows, we deduce that the value of the maximum flow is never
greater than the capacity of the minimum cut.

In order to demonstrate that the maximum-flow algorithm has indeed produced a maximum
flow, we need only produce a cut separating s from t whose capacity equals the value of the
terminal flow produced by the algorithm. This is done as follows.

The algorithm terminates when no augmenting path can be found. After the final applica-
tion of the algorithm, there is a set of nodes that is reachable from s in the resulting residual
network. Let R be this set of nodes, and let R′ be the set of the unreachable nodes. Clearly,
R′ = V − R, so pair (R, R′) is a cut.

Upon termination of the algorithm, each edge formed by a given node u ∈ R and a given
node v ∈ R′ carries a flow equal to its capacity, in the direction u→ v; otherwise the residual
capacity of the pair of nodes would be positive, and v would be reachable in the residual
network. Clearly, every flow unit must traverse an arc of this cut at least once. Since all these
edges carry the flow in the direction u → v, there is no flow unit being carried from R′ to R,
and no flow unit can traverse this cut more than once. Thus, the total flow from s to t equals
the capacity of this cut, because every edge from the source side to the sink side carries a flow
equal to its capacity.
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4.3 The Algorithm Terminates After a Finite Number of Steps

Let’s initially accept that all edge capacities are integers. In this case, in each step of the
algorithm, the flow is increased at least by one unit. Since the graph is a finite graph, the
maximum flow is also finite, so the algorithm will take no more steps than the maximum flow.
A similar idea can be used to prove that the algorithm is finite for rational numbers.

For irrational numbers, it’s proved that, in some cases, the algorithm will not finish. Further
documentation about this cases can be found in [4]. This work is restricted to cases where edge
capacities are rational.

5 Implementation

The algorithm has been implemented, specifically for undirected graphs with no capacity (i.e.,
unitary capacity). The implementation is used specifically to find the minimum cut, that
is a related concept, as presented in section 4.2. The implementation is developed in Java
language [8], using the library JDigraph, available in [7]. The algorithm is used as a part of the
implementation of a connectivity simulator, and the complete source code is available in [6].

6 Conclusion

In this paper we present an algorithm for computing the maximum flow of undirected graphs
based on augmenting paths. We also present the proof of correctness in terms of that the
algorithm construct a flow, this flow is a maximum flow and the algorithm terminates after a
finite number of steps.

Future work will use the proposed algorithm for applications related to edge connectivity
in computer networks, specifically problems related to network routing.
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