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a b s t r a c t

IP traceback is used to determine the source and path traversed by a packet received from

the Internet. In this work we first show that the Source Path Isolation Engine (SPIE), a clas-

sical log-based IP traceback system, can return misleading attack graphs in some particular

situations, which may even make it impossible to determine the real attacker. We show that

by unmasking the TTL field SPIE returns a correct attack graph that precisely identifies the

route traversed by a given packet allowing the correct identification of the attacker. Never-

theless, an unmasked TTL poses new challenges in order to preserve the confidentiality of

the communication among the system’s components. We solve this problem presenting two

distributed algorithms for searching across the network overlay formed by the packet log

bases. Two other extensions to SPIE are proposed that improve the efficiency of source

discovery: separate logs are kept for each router interface improving the distributed search

procedure; an efficient dynamic log paging strategy is employed, which is based on the

actual capacity factor instead of the fixed time interval originally employed by SPIE. The

system was implemented and experimental results are presented.

ª 2010 Elsevier Ltd. All rights reserved.
1. Introduction an attack packet is isolated, the next step is to determine its
Several attacks are reported daily in the Internet and several

tools are widely available for attackers to disable network

services either by exploiting software or hardware imple-

mentation bugs, or simply by flooding the network with

legitimate requests. Denial of Service (DoS) attacks are

frequently reported (SecurityStats.com, 2009), in which the

network and/or a server is overwhelmed with heavy traffic.

Other types of attacks, however, can be orchestrated using

a significantly smaller amount of packets. There are attacks

that can disable a network service with just a single packet

(Microsoft Corporation, 2008). After an attack is detected and
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source. Unfortunately, it is not possible to reliably determine

the source of a received IP packet, as the protocol does not

provide authentication of the packet based on the source

address field, which can be easily faked (IP Spoofing).

Furthermore the Internet routing infrastructure also does not

keep information about forwarded packets.

IP traceback was proposed in order to allow the discovery

of the source of a packet received from an IP network (Belenky

and Ansari, 2003; Gao and Ansari, 2005). Several approaches

for IP traceback have been proposed, two of which have been

considered the most important: Probabilistic Packet Marking

(PPM), and log-based traceback. In PPM (Dean et al., 2002;
.
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Goodrich, 2002, 2008; Savage et al., 2000; Yaar et al., 2005; Gao

and Ansari, 2007; Belenky and Ansari, 2007; Wong et al., 2008),

routers mark packets chosen with a predefined probability

with path information, typically employing header fields that

are seldom used. This approach presents several challenges,

such as the complexity of path reconstruction and the

convergence of the traceback operation.

In log-based traceback (Keeni, 2009; Hazeyama and

Kadobayashi, 2003; Sung et al., 2008) packet logs are kept

throughout the network, ideally one per segment. The SPIE

architecture (Source Path Isolation Engine) (Snoeren et al., 2001,

2002) is a log-based traceback that allows the path of a packet to

be traced. The logs are not kept by the routers themselves, but

by a packet monitor that listens to a router interface. The set of

packet monitors form an overlay network that allows the

source of individual IP packets to be determined. Hybrid

approaches that are at the same time log-based and employ

PPM have also been presented (Cong and Sarac, 2005).

The general goal of log-based traceback is to build an attack

graph, given an IP packet, its approximate time of receipt and

its destination, which is usually called the victim. The attack

graph consists of vertices that represent nodes (routers and

hosts) that have processed the packet, and the links through

which the packet was transmitted. False positives are the nodes

of the attack graph that have not really processed the packet.

False positives can occur, for example, if a router is subverted

by an attacker.

Several problems arise when defining a traceback archi-

tecture. The packets can be modified during the routing

process; some possible transformations are described in RFC

1812 (Baker, 1995) such as packet fragmentation, options

processing, ICMP (Internet Control Message Protocol) packet

processing and packet duplication. Privacy issues are also

important in the project of a traceback architecture. The

packet’s content should be properly protected. Furthermore,

as a traceback architecture possibly requires the cooperation

of several autonomous system (AS) it is desirable that even the

packet metadata should be protected.

In this paper we present an approach for improving the

precision and efficiency of SPIE. The proposed approach allows

SPIE to return an attack graph that precisely identifies the route

traversed by a given packet allowing the correct identification

of the attacker. We show that without the extensions SPIE can

return misleading attack graphs in some particular situations,

which may even make it impossible to determine the real

attacker. We show that by unmasking the TTL field SPIE returns

a correct attack graph that precisely identifies the route

traversed by a given packet allowing the correct identification

of the attacker. Nevertheless, an unmasked TTL poses new

challenges in order to preserve the confidentiality of the

communication among the system’s components. We present

two new traceback algorithms which guarantee that commu-

nication among the system’s components preserves the

confidentiality of the packet’s information.

Two other features are proposed to improve the efficiency

of the traceback process: separate logs are kept for each router

interface improving the distributed search procedure, having

a strong impact on the cost of the traceback operation, as the

number of requests is reduced to the minimum. Finally, an

efficient dynamic log paging strategy is proposed, which is
based on the actual capacity factor instead of the fixed time

interval originally employed by SPIE.

The traceback system was implemented and experimental

results are presented. Three metrics are evaluated: the preci-

sion of the obtained attack graph, that allows the correct

determination of not only the packet source but also the entire

route traversed by the packet; the cost of the traceback opera-

tion, measured by the number of requests in the network, and

the time-frame from which a received packet can still be traced.

The contributions of this paper can be thus summarized as:

� We show that SPIE can return misleading attack graphs in

some particular situations, which may even make it

impossible to determine the real attacker.

� We show a simple solution to the problem (unmasking the

TTL field) which nevertheless poses new challenges in order

to preserve the confidentiality of the communication among

the system’s components.

� Two new traceback algorithms are proposed which guar-

antee that communication among the system’s components

preserves the confidentiality of the packet’s information.

� We show that keeping separate logs for each router inter-

face reduces the number of requests to a minimum.

� A dynamic and efficient approach for paging logs to

secondary memory is proposed based on the log’s actual

capacity factor, instead of a fixed time interval.

The rest of the paper is organized as follows. Section 2

presents related work. Section 3 gives an overview of SPIE.

In section 4 we describe the situation that causes SPIE to

return incorrect attack graphs; the solution to the problem is

given in section 5. Section 6 is devoted to the extensions

proposed to improve SPIE’s efficiency. The implementation as

well as experimental results are presented in section 7.

Conclusions follow in section 7.
2. Related work

The earlier approaches for tracing packets in the Internet

aimed at determining the route of a packet stream rather than

of a single packet. In Burch (2000) some networks are

systematically flooded with packets. In this way it is possible

to observe variations on the received packet stream and infer

the traversed route. In other early efforts, the routers provide

partial information about the route traversed to the end-

hosts, employing a subset of the packets of a given flow. The

end host can then reconstruct the packet path after receiving

a large enough amount of packets.

Those early approaches required large amounts of packets

in order to infer the traversed route. Those proposals cannot

be applied to discover the source of attacks conducted with

a smaller amount of packets. Later, other approaches for

tracing back individual IP packets were developed.

A strategy based on the Internet Control Message Protocol

(ICMP) has been proposed (Wu et al., 2001), in which a new

ICMP message is defined that is sent randomly by routers

along a path traversed by a given packet, either to the desti-

nation or origin of that packet. The communication overhead

of this approach has been considered an important issue.
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Another IP traceback technique is Probabilistic Packet

Marking (PPM) (Dean et al., 2002; Goodrich, 2002, 2008; Savage

et al., 2000; Yaar et al., 2005; Gao and Ansari, 2007; Belenky and

Ansari, 2007; Wong et al., 2008). PPM routers mark packets

chosen with a predefined probability with path information,

typically employing fields that are seldom used. This

approach presents several challenges, such as the complexity

of path reconstruction and the convergence of the traceback

operation.

Log-based traceback (Keeni, 2009) was proposed to allow

individual packets to be traced. SPIE (Source Path Isolation

Engine) (Snoeren et al., 2001, 2002) is an architecture that

employs packet logs which are kept throughout the network,

ideally one per network segment. A packet monitor listens to

a router interface and maintains a log of processed packets.

Logs are implemented with Bloom filters. The set of packet

monitors form an overlay network that allows the source of

individual IP packets to be searched.

Other IP traceback approaches have been developed which

are based on SPIE. In Sung et al. (2008) only a small percentage

of packets is sampled and logged in a Bloom filter. In

Hazeyama and Kadobayashi (2003) layer-2 information and

addresses are used in order to identify the last hop: the host

from which the attack was launched. Finally, (Cong and Sarac,

2005) a hybrid approach that is at the same time log-based and

employs probabilistic packet marking is presented, that

allows logs to be roughly reduced to a half of their SPIE

counterparts. In Hilgenstieler et al. (2007) we describe precise

and efficient IP traceback in the context of the architecture

described in Keeni (2009).

In Matsumoto et al. (2008) the Adaptive Bloom Filters (ABF)

have been presented that feature counter bits, which are

particularly efficient when the network traffic is variable,

leading to a collision rate that changes dynamically and

unpredictably. The number of hash functions employed by an

ABF changes dynamically, and the number of hash functions

used to decode the membership of each key element can be

used to infer its multiplicity on a given filter. An ABF requires

the same amount of space of a classical Bloom filter.

Recently a novel approach for IP traceback which employs

swarm intelligence was proposed (Lai et al., 2008). This

approach is similar to some of the earlier traceback efforts in

that it employs flow level information to identify the origin of

the attack packets. Another recent approach was presented in

Castelucio et al. (2009) which consists of a network overlay for

traceback on the level of autonomous systems. This approach

uses the Border Gateway Protocol (BGP) update-message

community attribute that enables information to be passed

across autonomous systems that are not necessarily involved

in the overlay network. The authors argue that the proposed

system can be implemented in an incremental fashion.
3. An overview of the source path isolation
engine

Log-based IP packet traceback employs packet logs that are

stored throughout the network, possibly one per segment. In

the SPIE architecture (Snoeren et al., 2001, 2002) logs are kept

for recently processed packets. As the amount of storage is
limited, newer records overwrite older ones when necessary.

If a traceback operation was requested for a given packet, e.g.

by an IDS (Intrusion Detection System), the request is

executed by running a distributed search throughout the

network logs in order to discover the routers that processed

the packet, and eventually its source.

In order to log packets processed by backbone routers,

massive storage space is required, even for relatively slow links

and for short time frames. Storing packets from several sources

also involves privacy issues. SPIE uses Bloom (1970) filters to

solve both these problems, and stores information obtained

from a packet hash. A packet hash should uniquely identify an

IP packet. The hash also preserves confidentiality when

a search is executed across several autonomous domains. In

order to compute the hash of a given IP packet, SPIE only uses

the invariant portion of the packet plus 8 bytes from the

payload. Results presented in Snoeren et al. (2001) show that 28

bytes (20 bytes from the header and 8 from the payload) are

enough to identify almost all non-identical packets. Fields that

change as the packet is transmitted across the network are

masked prior to the hash calculation.

A Bloom filter is a data structure used to store a set of

elements allowing a fast membership-test operation. SPIE’s

Bloom filter employs k distinct hashes for each packet using

independent hash functions. The size of each hash result is n

bits. An array of 2n is initialized with zeros and all entries

which correspond to the computed hash results are set to one.

In other words: if hash( packet) ¼ y, then Bloom[y] ¼ 1. A given

array can be employed for a limited period of time after which

a new fresh array is started. The set of all arrays represents the

traffic processed in a given interval of time.

In order to determine whether a given packet was pro-

cessed or not, k hash functions are computed, and all the

corresponding array bits are checked. If the packet was seen

and processed, then all bits must be set to 1. If one or more bits

are 0 then the packet was not processed. However, if all the

bits are set, there is still a probability that the packet was not

processed, this situation is called a false positive. The false

positive rate can be controlled (Fan et al., 2000), depending on

k and the capacity factor, defined as c ¼ m/n, where m is the

array length and n is the number of inserted elements. Fig. 1

shows a Bloom filter using k hash functions.

The SPIE architecture for IP Packet Traceback is shown in

Fig. 2. The three basic components of this architecture execute

the set of tasks involved in determining the origin and route

traversed by a packet. These components are described below.

� DGA (Data Generation Agent) – This component computes and

stores the hash value of the router’s outgoing packets. The

data is stored locally on the DGA for a fixed time interval

whose length depends on storage space constraints. The

DGA can be implemented in software or as a separate hard-

ware element connected to the router through an auxiliary

interface (Sanchez et al., 2001).

� SCAR (SPIE Collection and Reduction Agent) – This component

is responsible for searching. It maintains information about

a set of DGAs in a network region. After an application

generates a traceback request for a given packet, SCAR will

receive a request from the STM (described below) and will

then forward the request to all DGAs within its region. The



Fig. 1 – Bloom filter example.
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DGAs send their filters to be evaluated by the SCAR. If the

packet search succeeds, a partial attack graph is returned to

the STM.

� STM (SPIE Traceback Manager) – This component is the front-

end to the traceback mechanism and manages the system

as whole. When a request is received, it is authenticated and

validated and then dispatched to the selected SCARS. The

STM then receives the resulting attack graphs from which it

builds the complete attack graph which is returned.

The traceback procedure is described as follows. The STM

receives as input the packet to be traced, the IP address of the

host which is the packet’s destination, called the victim, and

the approximate time of receipt. The packet must have been

sent recently enough as logs are periodically overwritten by

the DGAs. The victim’s address is used by the STM as a start-

ing point for the search.

The STM, after checking the authenticity and integrity of

the request, sends a request to all SCARs in its domain, which

obtain from their respective DGAs the traffic data for analysis.
Fig. 2 – The SPIE architecture.
Time is critical, as the query must be processed before the

desired log entries are removed from the DGAs.

The STM query starts at the SCAR responsible for the vic-

tim’s network region. The SCAR then responds with a partial

attack graph. The attack graph can complete in the SCAR

region in case the source is identified within that region; or

alternatively it can contain nodes at the border of this region.

In that case, the STM sends a request to the SCAR that

manages the network which contains that node. This process

continues until there are no more possibilities of extending

the attack graph, which occurs when a packet source is

identified or when SPIE has searched across its complete

network region. Finally, the STM builds the complete attack

graph based on the partial graphs it received, and returns this

graph to the client.

As mentioned above, IP packets can suffer valid trans-

formations when they traverse the network. SPIE is capable of

tracing those packets even after those transformations: before

computing the hash of a packet, SPIE masks frequently changed

IP headers. This operation hides most common trans-

formations, but forces SPIE to explicitly manage the following

transformations: fragmentation, NAT (Network Address Trans-

lation), ICMP message (Internet Control Message Protocol ), IP in IP

tunneling (Simpson, 1995) and IPsec (IP Security) (Kent and

Atkinson, 1998).

If the original packet has to be reconstructed, additional

resources are necessary. In this case SPIE keeps, together with

the digest tables stored by the DGA, a packet transformation

table, called TLT (Transform Lookup Table). The TLT is kept for

the same time interval as the DGA’s log entry. Each entry on

the TLT consists of three fields. The first contains the resulting

hash digest for the referred packet. The second field specifies

the transformation type (three bits are enough to identify the

transformations described above). The last field contains

other packet information, which depends on the trans-

formation used. Fig. 3 shows an example TLT entry.

Each SCAR builds a partial graph, which is a subgraph of

the desired graph using the topology information of its

particular network region. After collecting all DGAs’ traffic

tables, the SCAR simulates the Reverse Path Flooding Algo-

rithm using locally stored tables.

In order to query the DGA, the SCAR computes the hash of

the specified packet and then searches the local log for

a matching entry. If there is a positive match, the DGA is

considered to have processed that packet. This node is then

added to the attack graph and the process continues at each of

its neighbors, with the exception of those already visited.

However, if there is no positive match, it may be necessary to

repeat the query considering log entries already discarded,

created in a previous interval. Depending on network latency,

an SCAR may need to query multiple tables of each DGA. Once

the hash value is found, the time of receipt is considered to be
Fig. 3 – A TLT entry has enough information to reconstruct

an original packet.



Fig. 5 – An example of a real path traversed and the

incorrect attack graph returned by SPIE.
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the most recent possible. This guarantees that the packet

must have been processed previously by adjacent routers.

Fig. 4 shows an example execution of the algorithm for victim

V and attacker A. The traversed path of the packet is A, R07,

R02, R01, V.

If the packet was not found after the search was executed

on all tables available, the search is concluded in this

network region but continues on other nodes. A list of all

visited nodes is maintained to guarantee the algorithm

termination.

The final attack graph that results from the execution of

the process described above is a connected graph containing

the set of nodes which are believed to have been traversed by

the packet towards the victim. Assuming correct router

operation, this graph should contain the nodes from the real

attack graph. Due to hash collision, however, the graph can

contain false positives, i.e. nodes which have not processed

the packet. Furthermore as we show below, even if the nodes

have really processed the packet it is possible that they appear

in the wrong order in the attack graph returned by SPIE.
4. Incorrect attack graphs returned by SPIE

In this section we show that the attack graph returned by SPIE

may contain what we call false edges, which correspond to

links that have not been traversed by the packets. Fig. 5 shows

an example. The arrows represent the attack path traversed

by the packet that triggered the traceback process. Solid lines

represent the links connecting nodes in the real network

topology. The edges of the returned attack graph are repre-

sented by dotted lines. Initially the victim (node V) queries

neighbor R1 and includes link R1–V in the attack graph. Note

that this link was not traversed by the packet. Then, link

R2–R1 is included which was traversed. From R2, a new

mistake occurs and link R3–R2 is included in the attack graph,

and it was not traversed by the packet. Note that link R1–R3
Fig. 4 – Example attack graph. Dotted lines represent the

attack path. Dashed lines represent SPIE requests.
which was traversed by the packet is not included in the

attack graph. Finally, the link to the real attacker (A–R3) is

included. Despite the fact that in this example the attacker

was found, we show below an example in which the attacker

cannot be unambiguously determined.

SPIE can add a false edge to the attack graph whenever two

neighbors of a given node have processed the packet. Using

SPIE it turns out to be impossible to determine from which

neighbor the packet came. In other words, let G ¼ (V, E ) be the

attack graph, and T ¼ (V0, E0) the real network topology.

Whenever u, v, w ˛ V and (u, v), (u, w) ˛ E0, SPIE can add either

(u, v) or (u, w) to E. In this case we call (u, v) a false edge, and the

corresponding attack graph V is incorrect.

Fig. 6 shows an example of an incorrect attack graph that

leads to the incorrect determination of the packet source. In

part a, the attacker (A) sends through a router (R), a packet to

the victim (V). Any of the three attack graphs labeled b, c, and

d can be returned by SPIE, depending on the implementation

of the search algorithm. Special attention is required when

examining attack graph c: in this case it is impossible to

determine the origin of the attack.

In next section we present a solution to this problem. This

solution allows routers to be sorted in the order they processed

the traceback packet.
a b c d

Fig. 6 – Example of a real attack and three graphs that can

be returned by SPIE.
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5. Extensions to SPIE

A traceback architecture can be evaluated using three metrics.

The first metric is the precision, which reflects how close the

attack graph returned is in comparison with the real attack

route. The second metric is the number of queries employed

by the traceback operation, which should be as small as

possible. The third metric is the size of logs employed. In this

and the next sections we describe three extensions to SPIE

architecture that improve the precision of returned attack

graphs featuring the exact reverse path the packet has

traversed. The extensions also improve the efficiency of the

traceback process, both in terms of the number of traceback

queries required, and by adjusting the log size with a dynamic

mechanism which assumes a variable link usage.

5.1. Improving the traceback precision

In order to avoid the inclusion of false edges in the attack

graphs, a deceptively simple strategy can be used. This solu-

tion is based on the variation of the TTL field which, if left

unmasked, will allow routers to be sorted in the order they

processed the traceback packet. However, computing the

hash with an unmasked TTL represents a new challenge: the

search procedure which was based on a single hash computed

for each packet cannot be used anymore. Furthermore, new

search algorithms are needed because packet data has to be

kept confidential as the search is processed.

Routers that processed the packet appear in the correct

order because the TTL is decremented before the packet leaves

each router. As shown in Fig. 7 we compute the hash using the

invariant part of the IP Header plus the TTL (Time-to-Live) field

and the first 8 bytes of the payload (28 bytes total). Other fields

that change as the packet is processed are masked. Results

presented in Snoeren et al. (2001, 2002) show that 28 bytes

(20 bytes from the IP header plus 8 bytes from the payload) are

enough to identify almost all non-identical packets. We will see

later that this brings two advantages: (1) traceback is more

efficient than SPIE’s, as fewer queries are required; (2) traceback

is more precise, it is possible to determine the complete route

traversed by the packet, and to unambiguously determine its

source.
Fig. 7 – An IP packet; grey fields are masked.
Nevertheless, as the TTL field is also used as input to the

hash function, the search algorithm must also consider the

variation of this field: initially the first query is sent with

the TTL of the received packet, then it is incremented in each

subsequent query. Thus unmasking the TTL field when

computing the hash of a processed packet solves the false

edge problem, but raises a new problem regarding the confi-

dentiality of the traceback.

Tracing back packets in the Internet presents several

issues not all of which are purely technical. The traceback

operation generally requires cooperation among different

autonomous systems belonging to distinct administrative

domains. An autonomous system may wish not to expose any

part of the packet being traced, even if it is just a few bytes of

the packet metadata. In this case a solution is to send queries

only with packet hashes. This represents a challenge, if SPIE is

to employ a visible TTL field.

We present two different solutions to this problem. In the

first solution the search procedure is executed in a centralized

way by the STM; in the second approach each SCAR recursively

issues queries to its neighbors. In the first approach the STM

queries the first SCAR with the packet hash with the TTL

incremented by one. The SCAR, after querying its DGAs, replies

with the neighbors which effectively processed the packet and

the STM then queries those neighbors with the new hash

computed from the original packet with its TTL incremented as

appropriate. The procedure is repeated until there are no

SCARs left to be queried. Fig. 8 illustrates this algorithm. Solid

lines represent the node’s adjacent links and the dotted lines

represent the components’ requests and replies. As a router

may decrement the TTL field by more than 1, consecutive

queries may be required with incremented TTL values until

a positive reply is received or the maximum value is reached.

The second approach consists of a recursive search

executed in a distributed way by the SCARs themselves. The

STM sends the query to the first SCAR, which in turn sends

queries to its neighbors. Eventually there will be no more

neighbors left to be queried and the last SCAR will reply the

received request. Each SCAR then returns the attack graph to

its predecessor. At last, the STM receives the complete attack

graph. In this case, as each query must be executed with

a different hash because of the TTL increment, each query

must be composed by a list of all necessary hashes to the

forthcoming requests. In each recursion step, one of the hashes

is removed from the list. The disadvantage of this approach, in
Fig. 8 – Iterative traceback algorithm.
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comparison with the iterative algorithm presented above, is the

increase of the request message size. Fig. 9 illustrates an

example execution of this algorithm.

5.2. Improving the traceback efficiency

In this section we present two extensions to SPIE that improve

the efficiency of the traceback process. Initially we present

a dynamic approach for determining the moment to store

a log in secondary memory. Then we discuss the benefits of

employing one filter per routing interface, instead of one per

router.

5.2.1. Using dynamic logs for improving the storage
management
In order to use storage space efficiently, the DGA employs

a new dynamic approach for paging the Bloom filters to

secondary memory. SPIE pages the Bloom filter using a fixed

pre-determined period of time. The DGA we propose, on the

other hand, receives as parameter the maximum allowed

capacity factor and the paging occurs only when this limit is

reached. The capacity factor is related to how much filled up

the Bloom filter is. Thus, the period in which a Bloom filter

remains in main memory is variable, it could be longer when

network traffic is low and shorter when more traffic is pro-

cessed. When the maximum capacity factor is reached, the

Bloom filter is paged to secondary memory together with

control data that specifies the time interval for the stored

information.

If the traffic on a given segment is highly variable, the

improvement in the efficiency can be dramatic, in comparison

with employing a fixed time interval. If the traffic is very high

during the fixed time interval, the number of false positives

increases, making the search process inefficient. On the other

hand, if the traffic is low, the Bloom filter may be prematurely

stored in secondary memory.

5.2.2. Keeping one bloom filter per network interface
Another extension we propose to SPIE improves the efficiency

of the traceback process. In previous approaches a Bloom filter

was kept for each router, and whenever the router returned

a positive result to a given query, that would be forwarded to

all its neighbors. In the proposed extension a Bloom filter is

kept for each router interface. This extension assumes

memory is cheap and that it is feasible to keep one Bloom filter

per segment connected to the router. Thus for each traced

packet the exact interface through which it was received can
Fig. 9 – Recursive traceback algorithm.
be identified, and thus only one query has to be sent to one

neighbor, plus false positives. Please note that even if more

than one neighbor has processed the packet, because of the

TTL field only one interface will return a positive result.

As for each query processed by a single DGA several Bloom

filters are consulted, the false positive rate as a whole is

higher. Analytically we can demonstrate that, for each router

with n interfaces and a Bloom filter with p false positives rate,

the probability of obtaining at least one false positive is equal

to 1 � (1 � p)n. For each false positive one more request will be

executed by the STM. This is still a very low rate.
6. Implementation and results

In this section an implementation of the proposed system is

described, as well as experimental results. The DGA was

implemented as a sniffer using the PCAP (Packet Capture)

library (tcpdump/libpcap, 2009). There is a thread for each

network interface that maintains a Bloom filter. When the DGA

receives a request it queries each Bloom filter, using shared

memory. A configuration file is used to set the DGA’s neighbors.

The DGA reply contains the address of the neighbor that pro-

cessed the packet; more than one address is returned in case

false positives occur. The SCAR’s parameters include the

nearest DGA address (IP address and port) and a binary file that

contains the packet and its time of receipt. The file format is the

same as used in the PCAP library, which can be generated by

the tcpdump tool.

Experimental results were obtained by running several

realistic test scenarios on the implemented system. We

compared the number of queries generated with other

approaches, discounting false positives. An evaluation was also

performed showing the relation of the number of interfaces,

the false positive rate of an individual Bloom filter, and the total

false positive rate taking into account the whole set of Bloom

filters employed.

The experiments were carried out on an Ethernet LAN on

which we simulated networks with Internet-like topologies

generated with the Waxman (1988) method, each network had

50 nodes. In the Waxman method, the probability that a pair

of nodes is connected by an edge varies according to their

distance. Random attacks were generated with paths of sizes

10, 15, 20, 25 and 30. Synthetic traffic was inserted in the

respective Bloom Filters. An attack path was simulated by

inserting the same packet in several Monitors in the network,

changing only the TTL field.

Two metrics were evaluated. The first metric was the

attack graph precision, in terms of the number of false edges.

The second metric was the number of queries generated by

the traceback algorithm. Measures were obtained for (1) SPIE

running the Reverse Path Flooding algorithm – in this case,

a list of visited nodes was kept to guarantee that the algorithm

completes; (2) SPIE with two of our extensions, namely

unmasking the TTL plus using our log search algorithms and

employing dynamic logs; (3) SPIE with the full extensions

proposed, including keeping one log per interface.

Fig. 10 shows results in terms of the number of false positives

including false edges. It can be seen that SPIE returns attack

graphs with the largest number of false edges. Meanwhile the
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Fig. 10 – False edges returned by SPIE and SPIE with

extensions.

Table 1 – False positive rates for SPIE, and SPIE with
extensions, with and without one log per interface.

#Interfaces False positive
rate

#Queries 1
log/router

Queries 1
log/interface

1 0.00199 100 100

2 0.00398 200 100

3 0.00596 300 100

4 0.00794 400 101

5 0.00991 500 101

6 0.01188 600 101

7 0.01385 700 101

8 0.01581 800 102

9 0.01777 900 102

10 0.01972 1000 102

11 0.02167 1100 102

12 0.02362 1200 102

13 0.02556 1300 103

14 0.02750 1400 103

15 0.02944 1500 103

16 0.03137 1600 103

17 0.03330 1700 103

18 0.03522 1800 104

19 0.03714 1900 104

20 0.03906 2000 104
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attack graphs returned by SPIE with the proposed extensions do

not show any false edges.

Fig. 11 shows the number of queries employed in the

traceback. It can be seen that employing one Bloom filter per

node requires a larger number of queries, because all neighbors

of a node that has processed a given packet are also queried.

This problem is solved by having one Bloom filter per interface,

from which the neighbor that has actually processed the packet

can be directly determined. Thus, the number of queries is the

minimum possible, which is the total number of nodes in the

attack path. According to the results shown in Fig. 7 we observe

that the total number of queries is improved by at least 60% in

comparison with SPIE.

The false positive rate is computed for all Bloom filters at

a DGA (one per interface) that represent the traffic in a given

period of time. As each Bloom filter has a false positive rate p

that can be computed with its capacity factor c and the

number of hash functions employed k, the probability of at

least one false positive occurring at a DGA that has n inter-

faces is 1 � (1 � p)n.

Table 1 shows the false positive rate for a DGA with several

Bloom filters (one for each interface) with capacity factor 13
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Fig. 11 – Number of queries SPIE, and SPIE with extensions,

with and without one log per interface.
using 8 hash functions and varying the number of interfaces.

The false positive rate for a single Bloom filter is 0.199%.

However, if the node has, for instance, 10 interfaces the false

positive rate increases to 1.972%, and if it has 20 interfaces,

3.906%. The last two columns of Table 1 show the total number

of queries generated from this node by 100 traceback requests,

including the false positives and considering both an approach

with only one log per node and the proposed approach.

The impact of false positives is felt as an increase in the

number of queries issued: each false positive causes an extra

query. It is possible to conclude that despite the fact that the

proposed approach causes an increase in the number of false

positives, the total number of queries issued is still much

smaller than that of the previous approaches. If the router has

12 interfaces, for example, from a minimum of 100 requests

up to 102 requests would be generated; SPIE would generate

1200 requests in this case.
7. Conclusions

The ability to determine the path traversed by an IP packet is

increasingly important in the Internet. In this work we

described extensions that improve both the precision and

efficiency of the classical SPIE architecture for log-based IP

traceback. We showed that SPIE can return incorrect attack

graphs that contain edges not traversed by the packet and

which may even avoid the determination of the real attacker.

We solve this problem by unmasking the TTL field and

proposing new distributed log search strategies that keep the

traceback confidentiality as no sensitive packet information is

communicated. Two new traceback algorithms are proposed

which guarantee that communication among the system’s

components preserves the confidentiality of the packet’s

information. We show that keeping separate logs for each

router interface reduces the number of requests to a minimum.
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A dynamic and efficient approach for paging logs to secondary

memory is proposed based on the log’s actual capacity factor,

instead of a fixed time interval.

Future work includes adding the ability to handle tunneled

packets, and also adapting the proposed architecture for

hybrid networks.
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