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SUMMARY

Particle swarm optimization is a population-based stochastic optimization technique that is easy to imple-
ment and has been successfully applied in many areas. However, its performance often deteriorates
as the dimensionality of the problem increases. Recently, parallel strategies based on multiple swarms
(multi-swarm) have been investigated as an alternative to overcome this problem. In this paper, we evaluate
the impact of the topology on multi-swarm systems, considering that swarms are independent, and interact by
means of particle migration. We focus on asynchronous communication, that is, only when an improvement
occurs on the best particle that the solution migrates among swarms. The goal is to check how different com-
munication strategies affect the parallel execution of the optimization tasks. Several different topologies and
communication strategies have been evaluated, including broadcast and gossip on fully connected networks,
unidirectional and bidirectional rings, hypercubes, and a dynamic topology. Extensive experimental results
were obtained and are reported using several traditional benchmark functions. We evaluated the impact of
the topologies in terms of the number of iterations and the communication overhead. With the results, a
ranking of the different topologies is presented. The impact of the number of swarms on the optimization
process is also evaluated. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Since Particle Swarm Optimization (PSO) was first introduced [1], many applications have been
developed using this stochastic metaheuristic optimization technique [2—4]. PSO is based on the
simulation of social behavior observed in animals and insects, and it is considered to be a simple
and efficient technique [5]. In comparison with Evolutionary Algorithms (EAs), PSO is an algorithm
that quickly finds good results; however, its performance degrades as the problem size increases [6].
The computational cost increases for solving problems with high dimensionality.

The high computational cost for solving complex optimization problems has motivated the
development of parallel strategies to speed up the solutions. Several factors have contributed to
reinforce the relevance of parallel optimization algorithms, including evidences of higher efficiency
and larger diversity maintenance [7]. In current systems, there is an increasing availability of
processors and memory; several technologies have made it cheap and feasible to deploy parallel
solutions on a variety of platforms.
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Multi-swarm algorithms are parallel and distributed optimization techniques whose individuals
are co-evolving swarms, which are independent and interact by means of particle migration poli-
cies. ElI-Abd and Kamel [8] proposed a taxonomy for cooperative PSO algorithms. The authors
bring together a comprehensive survey of several cooperative PSO models, identifying the basic
design decisions that differentiate these models. A classification scheme is introduced to the differ-
ent cooperative strategies based on the approach used by the multiple swarms to share information.
Four aspects are considered: which information is shared, when information is shared, zow informa-
tion is shared, and finally what is done with the shared information. Observing the several possible
combinations, there is a variety of work based on multiple swarms; however, most of them address
problems with up to 30 dimensions, the cooperation is synchronous, that is, based on a fixed number
of iterations, and the impact of the topology interconnecting the swarms is ignored.

This work evaluates the impact of the topology on multi-swarm optimization. Swarms use
asynchronous information sharing. The cooperation consists in running multiple swarms on
independent processors, which are interconnected and communicate with each other using different
strategies. We evaluate how efficiently these different strategies allow asynchronous multi-swarm
optimization solutions to explore the search space and obtain better solutions faster. The following
topologies/communication strategies were adopted for the swarms to share the social component:
broadcast, unidirectional ring, bidirectional ring, gossip to one-neighbor, gossip to log(N)-
neighbors, and the hypercube. We also employ a dynamic topology to interconnect the swarms,
which is based on the Frankenstein algorithm [9] and starts as a fully connected broadcast network to
a bidirectional ring as the optimization process evolves. To the best of our knowledge, this topology
has never been used before to run multi-swarm optimization. The rationality behind this dynamic
topology is that, during the first iterations, the swarms are given the opportunity to find and exchange
good quality solutions among themselves, and later, the connectivity is decreased to enhance the
independent exploration of the search space by each individual swarm.

Extensive experimental results were obtained and are reported using several traditional
benchmark functions. Problems with up to 100 dimensions were first solved using centralized
optimization to obtain reference results. The functions are then solved with multiple swarms
connected by different topologies. The results are statistically analyzed. For each topology, the con-
vergence property is maintained at least for one instance. We also evaluated the number of messages
employed by each different alternative. On the basis of the results, we rank the different topologies.
The impact of the number of swarms on the optimization process is also evaluated.

The remainder of this paper is organized as follows. Section 2 presents an overview of PSO and
points to related work in Multi-Swarm PSO (MSPSO). Section 3 describes our proposed strategy
for the execution of multi-swarms on several different topologies using asynchronous communi-
cation. Section 4 presents our empirical evaluation, with a detailed description of the simulation
environment, the benchmark functions, parameter settings and results. Finally, Section 5 concludes
the paper and presents future research directions.

2. PARTICLE SWARM AND MULTI-SWARM OPTIMIZATION

Particle swarm optimization is a population-based stochastic optimization technique developed by
Eberhart and Kennedy in 1995 [1], inspired by the social behavior of groups of animals, like flocks
of birds and schools of fish. PSO shares many similarities with evolutionary computation techniques
such as Genetic Algorithms (GA). The system is initialized with a population of random solutions
and searches for optima by updating generations. However, unlike GA, PSO has no evolution opera-
tors such as crossover and mutation. In the algorithm, each individual is called a particle and behaves
like a bird (or fish) in the flock (school) searching for food or fleeing from a predator. Each particle
has a position and a velocity used to explore the search space of the problem. A position is linked
to the solution of the problem and represents a potential solution. To achieve its goal, a particle
learns from its own experiences (information or individual component) and also learns from the
group (information or social component). The best solution found by the particle itself is called
pbest (personal best) and the best solution found by the group is called gbest (global value).
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: for each particle i do
initialize x;, v;;
end;
: while the maximum number of iterations or the minimum error is not attained do
for each particle i do
compute current fitness value f(x;);
if f(z;) is better than f(pbest;) then
pbest; + x;;
end;
end;
gbest; + bestO f(pbest;), i=1 to N;
for each particle i do
compute the velocity v; according to equation (1);
update position x; according to equation (2);
end;
: end.
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Figure 1. The classical particle swarm optimization algorithm.

The pseudo-code of the classical PSO algorithm is shown in Figure 1. In the Figure, the ith
solution (particle) is represented by x; and its velocity is represented by v;. Initially the algorithm
sets random values for each particle and its velocity, within the limits defined for each function.
Next, the algorithm runs a loop that computes the fitness for each particle. The value of the best solu-
tion is stored in local variable pbest (in the code, pbest;). The best global fitness is then computed
by checking all pbest values and is stored in variable gbest (global best). After finding pbest and
gbest, each particle updates its velocity and position according to Equations (1) and (2) as follows.

v; = wv; + cirand()(pbest; — x;) + corand() (gbest; — x;) (1)

Xi = X; +v; (2)

In these equations, ¢; and ¢; are constants that define the learning factor and rand() is a random
number between 0 and 1. v; is the particle velocity; pbest;, the best value found by particle i itself;
x; corresponds to the position of the particle being manipulated and gbest is the best solution found
by the group. w denotes the weight of inertia (tendency to maintain the same particle velocity) in
the updated velocity. To prevent an excessive speed, the velocity is limited to a maximum (which
is function-dependent, and is called vmax). If the speed exceeds this value, it is truncated back
to vmax. At the end of a number of iterations or some other stop criterion, the best solution is
presented as a result.

A swarm consists of a set of particles moving in an n-dimensional search space. As noted by
Equation (1), its velocity is conditioned by the best solution found by the particle and the best posi-
tion achieved by its neighbors. The definition of the best solution in a neighborhood depends on
the neighborhood topology implemented. Each topology determines how the particles exchange the
social component. Kennedy [10] considers four topologies: ring, star, complete graph and arbitrary.

Several other topologies exist and have been investigated, such as the tree network topology intro-
duced by Janson and Middendorf [11]. In this topology, all particles are arranged in a tree. A particle
is influenced by its own best position so far (pbest) and by the best position of the particle that is its
parent in the tree.

In [9], de Oca et al. present a dynamic topology, called Frankenstein. This topology starts as fully
connected and, as the optimization process evolves, the connectivity decreases until it becomes a
ring. The authors argue that using a highly connected topology during the first iterations gives to the
algorithm the opportunity to find good quality solutions early in a run. As the topology connectivity
decreases, the risk to get trapped in a local optimum is reduced, hence, the exploration is enhanced.
Assuming that the swarm is composed of n particles, the topology is scheduled to be modified at
each k iterations (with k > n). At every k/(n — 3) iterations m edges are removed; these edges
follow arithmetic regression pattern of the form n —2,n — 3,...,2. m nodes are then removed one
edge per node. The edge to be removed is chosen randomly from the edges that do not belong to the
exterior ring, which is predefined.
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Parallel optimization with multiple swarms

Recent advances in computer and network technologies have led to the development of a variety of
parallel optimization algorithms [7]. Population-based Algorithms are specially suited to work in
parallel, and several parallel EAs have been proposed [12].

Parallel algorithms are usually classified as either coarse or fine grained. This classification relies
on the computation/communication ratio. If the ratio is high (roughly speaking: the algorithm
presents more computation than communication), we say the algorithm is coarse-grained. Other-
wise, if the ratio is low (more communication than computation), then we say it is a fine-grained
parallel EA. Coarse-grained EAs are also known as distributed EAs or island EAs, and an example
of fine-grained EAs are the cellular GAs [13].

Multi-swarm optimization consists of the division of the population of particles into subpopula-
tions collectively called multi-swarms, and represent a model of cooperative optimization. The same
classification used for EAs can be used for multi-swarm algorithms. The first work that proposed
the use of multiple swarms in a cooperative model of optimization based on PSO was proposed
by Van der Bergh and Engelbrecht [14]. In that work, two algorithms were proposed: Cooperative
Particle Swarm Optimizer (CPSO-Sk and CPSO-Hk). The first algorithm splits the solution vector
into k swarms (smaller vectors), and each swarm is optimized independently. At each iteration, the
solution vector is rebuilt taking into consideration the best particle of each swarm. To update each
particle, the best particle of each swarm by itself and the best particles of all swarms are consid-
ered. The second algorithm is a hybrid implementation that combines the standard PSO algorithm
with the CPSO-Sk algorithm. The purpose is to combine the best features of both algorithms in
one solution. The idea is to create a cycle where some particles of an algorithm are replaced by
the best particles of the other algorithm. As a drawback, both CPSO algorithms are dependent
on the type of function being optimized, as noted by Li and Yao [15, 16]. Because swarms are
strongly correlated, as each swarm contains a part of the solution vector, functions that cannot
be separated result in degraded performance for both algorithms. Another issue to note is the
computational cost, as both local and global best particles are constantly evaluated; the cost is
substantially high.

Another work involving multi-swarms was presented by Liang and Suganthan [17] in which the
authors present the Dynamic Multi-Swarm-PSO algorithm. Dynamic Multi-Swarm-PSO is based
on classical PSO, which is run locally at each system node, which also employs its neighborhood
in the search for the solution. The topology that connects swarms, called ‘neighborhood’, presents
the following two important features: (i) it is based on small- sized swarms; and (ii) swarms are ran-
domly regrouped periodically. After a predefined number of iterations, the population is regrouped
randomly, and the search is restarted using a new configuration of small swarms. The authors report
that a small number of particles per swarm can achieve better results for simple problems, whereas
for complex problems, employing a small neighborhood of larger swarms yields better results. In
this configuration, the convergence speed decreases and the diversity increases. Evaluation results
were reported for benchmark functions, and the authors concluded that the best results are obtained
in a configuration with 30 particles, three particles per swarm, which are randomly regrouped every
five iterations. Results are given for problems with up to 10 dimensions.

An approach that takes advantage of some dynamic aspects of certain optimization problems is
proposed by Geng and Zhu [3], which divides the population into three swarms of particles. The
first swarm runs the standard PSO, the second swarm runs a variation of the original PSO in which
it is possible that a particle deviates from the local optimum, thus not necessarily going to the best
position. In the third swarm, each particle ‘flies’ freely, without following the best particle. The best
particle is evaluated at each iteration. A fully connected topology is used and alternative topologies
are not considered. In [2], the Cooperative Co-evolutionary PSO algorithm, it is proposed that it
incorporates a mutation operator and exposes an alternative method for the selection of particles
of each swarm that will be the next leader (gbest). This method is based on a random choice, in
which there is a probability of an individual with poor fitness to be chosen. This assumption is
intended to increase the chance of escaping from local optima. The algorithm is evaluated for only
two benchmark functions.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
DOI: 10.1002/cpe



ASYNCHRONOUS MULTI-SWARM PARTICLE OPTIMIZATION

Another work addressing dynamic aspects of optimization problems is presented by Xiangwei
and Hong [4]. The authors note that PSO does not perform well for functions where the global
optimum is modified over time. This limitation depends on the behavior of the function to be
optimized. To avoid this limitation, the authors propose Different Topology Multi-Swarm PSO.
Two swarms are created—G-Swarm and L-Swarm—of which the first is fully connected, and the
second consists of isolated particles. The G-swarm’s best particle (gbest) influences the entire
swarm, whereas in the L-swarm, each particle is influenced only by its best position (pbest)
found so far. After a predefined period, the best particles are exchanged between the two swarms.
A mutation operator is applied to the particles to avoid stagnation. The aim is to combine the
fast convergence of the G-swarm with the preservation of diversity of L-swarm for solving
dynamic problems. The authors evaluate the algorithm with several benchmark functions and
report good results. The work only addresses problems with 10 dimensions and does not eval-
uate the performance of the algorithm when the particles are exchanged at predefined periodic
time intervals.

Vanneschi et al. [18] introduce four algorithms for solving optimization problems, each algorithm
with 10 swarms and 10 particles per swarm. One is a hybrid algorithm, combining PSO and
GA, that periodically applies a set of mutation and crossover operators. The second algorithm is
a variation of the first one, and includes a repulsive component, in which particles are attracted
by the best positions of their own swarms and move away from the best positions of other par-
ticles. A third algorithm, more closely related to the contribution of the current work, called
MSPSO uses a set of swarms, each of which solves problems independently. This set is con-
nected using a ring topology and at every 10 iterations, an interaction occurs between two swarms:
a swarm sends 20% of its best particles to the neighbor swarm. The swarm that receives the
particles replaces 20% of its worst particles with the incoming particles. A fourth algorithm
presented by the authors is a variation of the previous algorithm, which includes a repulsive
component. The algorithms are evaluated using different benchmark functions, ranging from sim-
ple functions to those considered more complex. Results presented are good for some functions
and not so good for others. The authors propose new benchmark functions with intermediate
complexity. It should be noted that the work only deals with problems with 20 dimensions, a
single topology (in this case, the ring topology) is adopted, and there is no evaluation of the
impact of the variation of the time interval used to exchange particles on the performance of
the algorithms.

El-Abd and Kamel [8] proposed a taxonomy to identify and classify the optimization strategies
on the basis of CPSO. According to the authors, to create a cooperative solution on the basis of PSO,
various aspects have to be considered to obtain a better performance. These aspects were specified
in the form of the following four questions:

(1) Which information to exchange? In multi-swarm optimization, the most common information
exchanged is the gbest, or information about the best particles and the leaders. However,
the gbest of each swarm can represent different information. For example, the CPSO [14]
relies on splitting the space (solution vector) into sub-spaces (smaller vectors) where each
subspace is optimized using a different swarm. The overall solution vector is built using
the solutions found by the best particle of each swarm. This approach was originally intro-
duced using GA [19]. On the other hand, the “Island model” is a group of parallel opti-
mization processes, which occasionally send individuals to one another to help spread newly
discovered fit areas of the space. All gbest represent the same kind of information. This
approach has been widely applied to parallel GA [12]. However, in GA usually the number
of individuals that migrates from one island to another is greater than one. Figure 2 depicts
these models.

(2) When to exchange the information? Basically, there are two communication strategies: syn-
chronous and asynchronous. The synchronous strategy dictates that information is exchanged
periodically at iterations scheduled at fixed time intervals. Asynchronous communication is
triggered by the occurrence of an event, such as the stagnation of results or after a specified
number of iterations.
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Figure 2. Two approaches for sharing information: (a) Co-evolutionary Model; and (b) Island Model.

(3) How to share the information? Communication occurs both between neighbors within a swarm
and between particles of different swarms;

(4) What to do with the exchanged information? Several actions are possible, such as to upgrade
speeds, replace particles or reset swarms.

Despite the intensive research activity and the large number of strategies that have been proposed
for multi-swarm optimization, there are several open questions. For instance, to the best of our
knowledge, this work is the first to use complex functions to evaluate several different topologies
for solving multi-swarm optimization based on asynchronous communication, as described in the
next section.

3. ASYNCHRONOUS MULTI-SWARM PARTICLE OPTIMIZATION

In this section, we describe our strategy for executing multiple swarms on several different topolo-
gies using asynchronous communication. Particles are organized in swarms (subpopulations) each
of which have a fully connected topology. The purpose of adopting this strategy is to allow each
population to independently perform the optimization process in an attempt to speed up this process,
and also to prevent the convergence to suboptimal solutions [20]. By adopting multiple processors
to run the swarms independently, the optimization process can be executed in parallel, which may
represent the only feasible strategy for optimizing functions with high dimensionality.

Using the taxonomy introduced in [8], our system model can be defined as follows:

(1) The information exchanged is the best particle of each swarm.

(2) The communication strategy is asynchronous. The best particle of each swarm is sent only
when there is an improvement in the gbest;

(3) The information is shared on different topologies and communication strategies, including:
broadcast, unidirectional ring, bidirectional ring, gossip to one-neighbor, gossip to log(N)-
neighbors, the hypercube and the Frankenstein dynamic topology.

(4) Updating the gbest: The gbest received from another swarm is evaluated taking into account the
current value kept for gbest at the swarm itself. If the received value represents an improvement,
then it becomes the current gbest.

The particle population is distributed into several swarms. Each swarm executes independently
the optimization process. One gbest is computed per swarm, and this gbest has influence only on
the position of the particles of this swarm. This information is then exchanged between the different
swarms. For all topologies/communication strategies to share information, the procedure adopted in
this paper is as follows:

1. When a swarm improves its gbest, one or more neighbors are chosen (depending on the
topology employed) as destinations to send the gbest and fitness;

2. The destination swarm compares the received information with its own gbest/fitness;

3. If the received gbest is better, the swarm takes it as the global gbest itself, otherwise the
information is ignored.
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(@)

Figure 3. Topologies: (a) unidirectional ring; (b) bidirectional ring; (c) fully connected; and (d) hypercube.

The main goal of this work is to investigate the impact of the topology on multi-swarm perfor-
mance. The following topologies/communication strategies were adopted for the swarms to share
the social component (gbest):

1. Broadcast: By using broadcast, the social component is sent from a swarm to all other swarms,
based on a fully connected topology;

2. Unidirectional ring: With the ring topology, the social component is sent from swarm i to its
successor in the ring;

3. Bidirectional ring: Also with a ring topology, the social component is sent to both the
predecessor or successor swarms of 7;

4. Gossip to one-neighbor: Gossip (also called epidemic) protocols are widely used strategies for
information dissemination in computer networks [21]. New information is sent to randomly
chosen destinations; the number of such destinations is called the fanout. This strategy is based
on a fully connected topology, and the fanout is equal to 1;

5. Gossip to log(N)-neighbors: Similar to the previous method, on the basis of a fully connected
topology, in this case the fanout is log(/N), that is, log(N) swarms are chosen randomly to
receive the social component.

6. Hypercube: In the hypercube topology, each swarm is connected to log(/N) other swarms,
such that a swarm is adjacent to another if their identifiers differ in only one bit. The social
component is sent from a given swarm to its log(/N) neighbor swarms.

7. Dynamic: This is the time-varying topology proposed by de Oca et al. [9]. Initially, all swarms
are fully connected. The connectivity decreases over time and, in the end, each swarm sends
its social component to its predecessor and successor neighbors. A swarm sends its social
component to all its neighbors.

Figure 3 illustrates four of the topologies: unidirectional ring, bidirectional ring, fully connected
and hypercube; vertices represent swarms and edges represent the relationships between the swarms.
To the best of our knowledge, the hypercube and the dynamic topologies have never been used
before as topologies to connect multi-swarms in PSO.

As Figure 3 depicts, in each topology, eight independent swarms were connected. It is important
to note that three different approaches were used to exchange the social component in the fully
connected topology: broadcast, gossip to one-neighbor and gossip to log(/N )-neighbors.

4. EMPIRICAL EVALUATION

In this section, we describe the experimental results of the performance evaluation of multi-swarm
optimization on several topologies.

A set of six benchmark functions were considered in a multidimensional search space. These
functions, which are widely used [22], are the following:

(1) Fp: Shifted Sphere Function

D
Fi(x) =)z} + [ biasy,

i=1

3)

Z=X—0, X=[X;,X2,...,Xp]
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D = 100 dimensions. o = [01, 02, . ..,0p]: the shifted global optimum.

Properties: unimodal, shifted, separable, scalable.

x € [-100, 100]?,
Global optimum: x* = o, Fi(x*) = f_bias; = —450

(2) F,: Schwefel’s Problem 2.21

F(x) = ma§{| zi ,1<i <D} + f_biasy,
=

“4)
Z=X—0, X=[X;,X2,...,XD]
D = 100 dimensions. o = [01, 02, . ..,0p]: the shifted global optimum.
Properties: unimodal, shifted, non-separable, scalable.
x € [—100, 100]?,
Global optimum: x* = 0, F»(x*) = f_bias, = —450
(3) F3: Shifted Rosenbrocks’s Function
D—1
F3(x) =Y (100 (z7 = zit1)* + (zi — 1)?) + f_biass, )
i=1
Z=X—0, X=[X;,X2,...,XD]
D = 100 dimensions. o = [01, 02, . ..,0p]: the shifted global optimum.

Properties: multi-modal, shifted, non-separable, scalable, having a very narrow valley from
local optimum to global optimum.

x € [-100, 100]?,
Global optimum: x* = o, F3(x™) = f_biasz = 390

(4) F4: Shifted Rastrigin’s Function

D
Fi(x) = Z (le —10cos(27z;) + 10) + f _biass, ©)
i=1
Z=X—0, X = [x;,X2,...,XD]
D = 100 dimensions. o = [01, 02, . ..,0p]: the shifted global optimum.
Properties: multi-modal, shifted, separable, scalable, local optima’s number is huge.
x €[-5,5]P,
Global optimum: x* = o, F4(x*) = f_biasqy = —330
(5) Fs: Shifted Griewank’s Function
D 22 D .
Fs(x) = L _TJcos( =2 )+ 1+ f_biass,
00=3 g5 11 (5) +1+ 7 biess o)
Z=X—0, X=[x;,X2,...,Xp]
D = 100 dimensions. o = [01, 03, . ..,0p]: the shifted global optimum.
Properties: multi-modal, shifted, non-separable, scalable.
x € [—600, 600]7,
Global optimum: x* = o, F5(x*) = f_biass = —180
Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
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(6) Fg: Shifted Ackley’s Function

Fe(x) =—20exp | —0.2

D D
1 1
D E zl.z —exp <_D E cos(2nz,-)) + 20+ e 4+ f_biasg,

i=1 i=1

Z=X—0, X=[X;,X2,...,XD]
3
D = 100 dimensions. o = [01, 02, . ..,0p]: the shifted global optimum.
Properties: multi-modal, shifted, separable, scalable.

x € [-32,32]P,
Global optimum: x* = o0, Fs(x™) = f_bias¢ = —140

Each of the functions mentioned were evaluated using seven different topologies/communication
strategies: broadcast, dynamic, hypercube, gossip to log(N )-neighbors, bidirectional ring, unidirec-
tional ring, gossip to one-neighbor. A centralized environment running the standard PSO was first
executed to obtain a reference (baseline) results. Next, we executed each optimization function using
8, 16 and 32 swarms on the different topologies. We report results on the number of iterations and the
communication overhead in terms of the number of messages employed. On the basis of the results
obtained, we rank the different topologies using the Success Performance evaluation criterium [23].
Finally we also evaluated the impact of the number of swarms on the optimization process.

In the multi-swarm experiments, each swarm starts by locally executing one PSO iteration in order
to try to refine the results. If a swarm improves its best result, then a communication event is trig-
gered. According to the topology, the swarm sends its result to other swarms. A swarm that receives
the information compares the received results with its own results. If the received result is better,
then the received particle becomes the gbest of the swarm. Otherwise, the information is ignored.
Note that this strategy for sharing the social component among swarms is classified as asynchronous
communication. The communication is triggered by an event (in this case, the improvement of the
results) rather than by a fixed number of iterations. The simulation completes when the result for
each function presents a minimum error or when a maximum number (1,000,000) of iterations is
reached. To evaluate the impact of the number of swarms, the number of iterations was fixed at
60,000 as the only stopping criterium.

To obtain experimental results and evaluate multi-swarm optimization on several topologies,
we implemented a simulator using SiMulation Programming Language (SMPL) [24]. SMPL is a
discrete-event simulation toolkit developed on top the traditional C programming language. The
methodology and parameters employed on the simulation are presented next.

Simulation: methodology and parameters

As mentioned earlier, a baseline reference was first obtained by running the classical centralized
PSO. To obtain the reference values, each function used 1000 particles, each particle consisting of
100 randomly initialized values in the scope of each function. The values used for the parameters are
those traditionally employed [25]. The inertia weight (w) was initialized at 0.9 and was gradually
reduced down to 0.4. This was done because by reducing the inertia weight, the result tends to be
improved. Constants ¢l and c2 were set to 2, values commonly employed in the literature.

Each particle has its corresponding values within the limits of each dimension. For functions F1,
F5 and F6, each run was executed until the best result reached an error of less than 0.001 in relation
to the global optimum of each function. For other functions, the stop criterion has an error of less
than 0.1.

All functions were executed 30 times, and the best result and the total number of messages
transmitted for each run were stored. Note that the lower the number of iterations and messages
exchanged, the better the execution is. If, at the end of 1,000,000 iterations the round does not reach
the minimum error, we consider that the execution did not converge to the global optimum. This is
also recorded.
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In the distributed simulation, the same parameters were used, with the exception of the number of
particles associated with each swarm. A total of 1000 particles were distributed among the swarms.
Eight, 16 and 32 swarms were used; the number of particles per swarm was 125 (eight swarms), 62
or 63 (16 swarms) and 31 or 32 (32 swarms). This configuration allowed a fair comparison with the
reference baseline results.

When reaching a minimum error is the criterion to stop the execution, it is fairly common to
observe executions that do not converge. To evaluate the impact of the number of swarms (hence-
forth also called ‘islands’) on the optimization performance, we fixed the number of iterations at
60,000 and varied the number of islands.

The parameters used in the dynamic topology were as follows. The topology starts as a fully
connected (complete) graph and after 30,000 iterations it is transformed into a ring topology (with
n edges). The total number of edges that have to be eliminated is n(n3)/2. Every [30000/(n — 3)]
iterations, m edges are removed, where m follows an arithmetic regression pattern of the form
n—2n-3,...,2.n=8,n=16and n = 32 for §, 16 and 32 swarms, respectively.

An additional feature incorporated into the distributed simulation was the exchange of the gbest.
Unlike the reference executions that share memory addresses in a tightly coupled system, an explicit
mechanism was needed for the communication among the swarms. According to the topology,
each swarm chooses one or more neighbors to send its gbest as described in Section 3. The
gbest exchange is triggered when it improves. This asynchronous communication strategy avoids
unnecessary communications in comparison with the synchronous model (exchanges information
periodically at every fixed number of iterations).

For each topology, 30 runs were executed. In the next section, results are presented and discussed.

Results

The results shown in Table I correspond to the number of iterations required to reach results with
the expected error. The table presents results for all functions and all topologies and communication
strategies used. Table II presents the number of messages employed by the multi-swarm strategies.
The presented results are the mean and the standard deviation computed on samples obtained from
30 executions for each function. To compare the results, the Friedman test was applied with signifi-
cance level of 5%. The R toolkit for statistical computing was employed [26]. When the test shows
a significant statistical difference, the best averages are highlighted in bold.

Table I. Results for each function for different topologies.

Topology F1 F2 F3 F4 F5 F6
Reference Average 29032.63 24 did not 2 did not 3 did not 4 did not 53154.23
Std. dev. 736.30 converge converge converge converge 1902.11
Broadcast Average 35243.47 4 did not 171623.07  110530.30  41369.17  64558.27
Std. dev. 913.26 converge 14002.91 7410.34 1187.07 2199.58
Dynamic Average 45856.90 155003.90 175149.43 122454.50 3 did not 73823.73
Std. dev. 1146.91 12067.70 15072.77 10316.42  converge 2309.50
Hypercube Average 41748.60 165302.60  171973.73  115777.20 5 did not 66448.17
Std. dev. 1160.68 13754.06 14531.19 8356.63 converge 1819.39
Gossip Average 60653.67 164329.17 16970543  113740.40 5 did not 65535.33
Log(N) Std. Dev. 34729.88 10640.63 17661.80 8166.78 converge 1932.66
Bidirec. Average 49326.90 157296.03 182138.73 3 did not 3 did not 70804.30
Ring Std. dev. 1015.87 9972.80 12178.46 converge converge 2387.16
Unidirec. Average 51695.77  156820.80  185368.70 4 did not 4didnot  74129.33
Ring Std. dev. 2270.94 10579.48 11114.19 converge converge 3121.07
Gossip 1 Average 47358.03  157424.77  168320.30 1 did not 4 did not 69404.40
Std. Dev. 957.82 10777.95 15718.40 converge converge 1551.86

Note: When the test shows a significant statistical difference, the best averages are highlighted in bold.
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Table II. Communication overhead.

Topology F1 F2 F3 F4 F5 F6

Broadcast Average  32596.00 4 did not 1052594.50  2949667.00  39646.50  103207.50
Std. Dev. 1334.85 converge 209003.29  3958764.01 1613.43 8002.25

Dynamic Average  21301.37  194183.13 432354.90 89871.00 5 did not 42089.87

Std. Dev. 596.22 38595.75 97950.53 14560.72  converge 3002.75
Hypercube = Average  17106.13  345904.40 613873.33  1273676.13 5 did not 44785.73

Std. Dev. 555.48 69597.62 141762.07  1677997.76  converge 3251.96
Gossip Average  15716.67  331350.00 577488.13  1205075.20 5 did not 42109.20
Log(N) Std. Dev. 439.14 53906.51 156441.61  1588557.85  converge 3120.67
Bidirec. Average 8087.27  117656.33 296907.07 3 did not 3 did not 17559.23
Ring Std. Dev. 256.34 18527.19 59810.58 converge converge 1790.63
Unidirec. Average 9518.47  136610.80 339162.37 4 did not 4 did not 21027.30
Ring Std. Dev. 280.36 25730.57 56223.00 converge converge 2928.17

Gossip 1 Average 6965.20  114750.97 227063.27 1 did not 4 did not 15582.77
Std. Dev. 267.03 21286.00 62592.10 converge converge 1159.16

Note: When the test shows a significant statistical difference, the best averages are highlighted in bold.

For the Sphere function (F1), the standard PSO provides the best results; however, there is no
statistical difference with the broadcast strategy. For Ackey’s function (F6), a similar behavior can
be observed, explained by the fact that both functions have their results strongly influenced by the
position of the best particle. For all other functions, the performance of standard PSO was lower than
expected because it failed to converge to the desired results within a limit of 1,000,000 iterations.
Consider, for instance, Schwefel’s Problem 2.21 (F2): for 30 runs, on 24 occasions, the standard
PSO failed to reach the expected results. This means that the standard PSO is more susceptible to
stagnate at local optima.

However, it is possible to observe that all models occasionally present convergence problems.
Griewank’s function (F5) is a function that easily leads the algorithms to local optima. There were
instances in all topologies (except the broadcast) that did not converge to the desired results. It is
important to highlight that the asynchronous communication mechanism helped the broadcast model
to converge in all rounds. As the social component was not changed at a fixed period, this mecha-
nism was more successful in avoiding local optima. The downside of the broadcast mechanism is
the high cost of communication, as a large number of messages is employed.

For Rosenbrock’s function (F3), a similar behavior was observed for the gossip to one-neighbor
strategy. This communication strategy not only employed the smallest number of messages but also
presented approximately the same number of iterations when compared with other methods. For
Rastrigin’s function (F4), the broadcast topology employed less iterations, although at a greater
communication cost than the dynamic topology. Figure 4 shows the amount of communication in
terms of the number of senders and messages sent for Schwefel’s Problem 2.21 (F2), on the dynamic
topology (left). The figure shows results of one execution. The horizontal x-axis represents the num-
ber of iterations (time) and the vertical y-axis represents the amount of communication performed.
As mentioned before, a communication occurs when a swarm improves its result and sends it to
other swarms.

In Figure 4 (left), we observe that less than 25% of the messages are transmitted during the first
half of the execution (77501 iterations). It is possible to see that as the connectivity decreased, the
number of messages exchanged also decreased, and there was also an improvement on the time
required to obtain the results.

To illustrate situations that did not converge, we show two runs on the dynamic topology. The
function chosen for this purpose was Shifted Griewank’s (F5). In Figure 4 (right), the black curve
represents executions that converged and the gray curve represents those that did not converge. We
observe that the algorithm must escape from local optima in the first few iterations. When the func-
tion gets stuck in a local optimum, the number of iterations does not help reduce the convergence
time. As shown by Figure 4 (right, gray line), there was no improvement of the results even when
the number of iterations soared to between 160,000 and 1,000,000 iterations.
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Figure 4. Communication overhead for (left) Schwefel’s 2.21 (F2) and (right) Griewank’s (F5) functions on
the dynamic topology.

A characteristic we observed on all topologies and all functions was that at the beginning of the
optimization, the gbest is easily improved and thus a large number of messages is exchanged among
the swarms. However, after the first iterations, these improvements on the gbest occur less frequently
and less messages are exchanged.

In the synchronous communication model, as communication always takes place at a fixed inter-
val, a swarm may share poor gbest values unnecessarily. The asynchronous communication model
does seem to improve the communication overhead, as swarms only send a message when there
is a real improvement on the gbest. Consider for instance the Sphere function (F1). In most of
multi-swarm approaches, one message is exchanged per iteration. In the gossip to one-neighbor
topology, an average of 47,358.03 iterations were needed to reach the desired result, and in average,
6965.20 message exchanges were performed. In other words, only one communication message was
exchanged for about 6.8 iterations.

We can conclude that a low connectivity exerted a positive influence on the results. For exam-
ple, consider Rosenbrock’s function (F3). Figure 5 depicts the box-and-whisker diagram (boxplot)
of results. As noted, besides helping save messages (right), the gossip to one-neighbor topology
showed the best results (left) of all topologies.

To evaluate the individual performance of each topology, we applied the evaluation criteria used
in [23]. To sort the topologies from best to worst, the Success Performance for each problem
was evaluated.

The success rate for each topology = mean(successful runs) * (#o}’z‘;j; ’C ()ets(lsl;ZerJns)' The expres-
sions are computed for each problem separately. Next, the Success Performance of each topology is
divided by the Success Performance of the best algorithm for each function. Thus, the best topology
for each function will have the value 1. As this value increases, it defines a ranking, from the best
to the worst topology. With the Success Performance, we can sort the topologies. Table III shows
this ranking.

When we applied the Friedman test on the Success Performance results, it accused no differences
among the topologies. For example, the broadcast topology was the best for F1 (Sphere function)
and the worst for F2 (Schwefel’s 2.21 Problem). In other words: the best topology for a given func-
tion can also be the worst for another function. Thus, it is recommended to evaluate which topology
is the best for a specific function. From these experiments, we can reach the conclusion that the
execution of multiple swarms using several different topologies presented a positive effect on the
convergence of the optimization process. This strategy allowed an improved exploration of the state
space while restricting communication events that are only triggered by actual improvements.
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Table III. Ranking of topologies based on Success Performance.

Topology F1 F2 F3 F4 F5 F6
Broadcast Ist 7th 4th Ist Ist 2nd
Dynamic Sth 2nd 6th 5th 4th 7th
Hypercube 3th 6th 2th 2th 3th 3th
Gossip log(n) 2th Sth 3th 3th 2nd Ist
Bidirectional ring 6th 3th Sth 6th 5th 5th
Unidirectional ring 7th 4th 7th 7th 7th 6th
Gossip 1 4th Ist Ist 4th 6th 4th

The broadcast and gossip topologies presented the best results in terms of the convergence.
Another conclusion is that it is a good strategy to begin with a highly connected topology and later
decrease the connectivity, as improving the social component becomes a rarer event as the iterations
progress. However, when and how to decrease the connectivity still remains an open question, and
may depend on several factors, such as the function being optimized.

Influence of the number of islands

We also investigated the performance impact of changing the number of islands in the optimiza-
tion performance. We executed experiments as follows. Initially two functions were chosen to
be optimized: one considered ‘easy’ (Sphere function - F1) and another considered ‘difficult’
(Rosenbrock’s function - F3). Such functions were executed with 8, 16 and 32 swarms, and for
each function, 30 runs were executed on each topology. The best result and the cost in terms of
communication for each execution were stored after 60,000 iterations.

Table IV shows the mean and the standard deviation for each function and each topology with 8,
16, and 32 swarms.

To compare the results, the Kruskal-Wallis test was applied with significance level equal to 5%.
The R toolkit for statistical computing was employed [26]. For the instances that had a significant
statistical difference according to the test, the best averages are highlighted in bold. The results
for each topology were analyzed according to the number of swarms. The test showed that, for
both functions, the configuration with eight islands presented the best results. Thus, it is possible to
conclude that keeping a few swarms with many particles was a good strategy in most of cases.
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Table IV. Multi-warm performance with 8, 16 and 32 islands for Sphere and Rosenbrock’s functions.

Fl1 F3
Topology 8 Nodes 16 Nodes 32 Nodes 8 Nodes 16 Nodes 32 Nodes
Broadcast Average 0.000004  0.000004  0.000005 186.97 208.09 231.12
Std. Dev.  0.000001  0.000001 0.000001 99.938 166.75 239.77
Dynamic Average 0.000013  0.000053 0.000337 263.35 386.79 449.06
Std. Dev. ~ 0.000003  0.000011 0.000061 209.47 397.68 387.35
Hypercube Average 0.000002  0.000005 0.000015 163.93 334.40 323.04
Std. Dev. ~ 0.000009  0.000020  0.000052 212.36 282.14 254.82
Gossip Average 0.000063  0.000012  0.000005 189.83 297.76 284.83
Log(N) Std. Dev.  0.000013  0.000003 0.000001 55.25 386.98 297.25
Bidirectional Average 0.000024  0.000122  0.000908 307.45 360.17 237.50
Ring Std. Dev.  0.000005  0.000028  0.000146 333.66 396.21 197.69
Unidirectional Average 0.000036  0.000205 0.003033 253.84 360.61 398.19
Ring Std. Dev.  0.000008  0.000031 0.000422 227.78 405.52 353.20
Gossip 1 Average 0.000020 0.000072 0.000305 222.03 212.79 495.26
Std. Dev.  0.000006  0.000013 0.000072 175.21 222.35 432.73

Note: For the instances that had a significant statistical difference according to the test, the best averages are
highlighted in bold.

However, it is important to note that, just as there is no single topology that presents the best
results for all functions, there is not a single number of swarm that is suitable for all functions.

5. CONCLUSION

In this work, we investigated the impact of the topology in solving complex problems using asyn-
chronous MSPSO. Several different topologies/communication strategies were considered: fully
connected, broadcast, gossip with two different fanouts, unidirectional ring, bidirectional ring,
hypercube, and a dynamic topology. Six benchmark functions were evaluated, each with 100
dimensions. Extensive experimental results are presented.

From the observation of experimental results, it is possible to conclude that the parallel execu-
tion of multiple swarms has a positive effect on the convergence of the optimization process by
improving the search state exploration as separate populations are maintained. It can be observed
that for simple functions, a high connectivity generally improves the convergence. However, for
complex functions, a high connectivity may lead results to local optima. In some cases, topologies
with lower connectivity were faster and employed less communication. The dynamic topology that
starts with high connectivity, which is progressively reduced, proved to be a good strategy in several
cases. This is particularly so because of the adopted asynchronous communication strategy. In the
beginning, the gbest improved continually, generating a large number of messages. However, over
time, the number of messages is reduced as the gbest improves less frequently.

Considering the individual performance of each topology, a ranking was defined. When we
applied a statistical test on the results, it accused no differences among the topologies. That is,
the best topology for a given function can also be the worst for another function.

We also investigated the impact of varying the number of islands in the optimization performance.
Simple and complex functions were evaluated and for both types of functions, the configuration with
eight islands presented the best results. In other words, keeping a few swarms with many particles
proved to be a good strategy in most of the cases.

Future work includes expanding the evaluation to consider functions with different behaviors in
order to determine the best alternatives for each kind of problem. We also plan to focus on multi-
objective optimization problems. New metrics to evaluate the convergence and diversity can be used,
such as the spread, coverage, hypervolume, and generational distance, among others. Other types of
communication frameworks for running parallel and distributed optimization, such as peer-to-peer
networks, parallel computing platforms including multicore processors [7,12].

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
DOI: 10.1002/cpe



ASYNCHRONOUS MULTI-SWARM PARTICLE OPTIMIZATION

ACKNOWLEDGEMENTS

This work was partially supported by the Brazilian National Research Council (CNPq), projects
304013/2009-9 and 303761/2009-1, and Araucaria Foundation (Fundacdo Araucdria), project 14737.

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21

23.

24.

25.

26.

REFERENCES

. Kennedy J, Eberhart R. Particle swarm optimization. In Neural Networks, 1995. Proceedings., IEEE International

Conference on, Vol. 4. Institute of Electrical & Electronics Enginee: Perth, Australia, 1995; 1942-1948.

. Zheng X, Chen K, Lu D, Liu H. A proposal for a cooperative coevolutionary PSO. Information Technologies and

Applications in Education, 2007. ISITAE ’07. First IEEE International Symposium on, Kunming, China, 2007;
324 -329.

. Geng Z, Zhu Q. Multi-swarm PSO and its application in operational optimization of ethylene cracking fur-

nace. Intelligent Control and Automation, 2008. WCICA 2008. 7th World Congress on, Chongqing, China, 2008;
103 -106.

. Xiangwei Z, Hong L. A different topology multi-swarm PSO in dynamic environment. /T in Medicine Education,

2009. ITIME °09. IEEE International Symposium on, Vol. 1, Hong, L, Xiangwei, Z. (eds). Ji’'nan, China, 2009;
790 -795.

. Chakraborty P, Das S, Abraham A, Snasel V, Roy GG. On convergence of multi-objective particle swarm optimizers.

Evolutionary Computation (CEC), 2010 IEEE Congress on, Barcelona, Spain, 2010; 1-8.

. Li Y, Liang J, Hu J. A multi-swarm cooperative hybrid particle swarm optimizer. Natural Computation (ICNC),

2010 Sixth International Conference on, Vol. 5, Yue, S, Wei, H -L, Wang, L, Song, Y. (eds). Yantai, Shandong,
China, 2010; 2535-2539.

. de Vega FF, Canti-Paz E (eds). Parallel and Distributed Computational Intelligence, Vol. 269. Springer: Springer

Berlin / Heidelberg, 2010.

. El-Abd M, Kamel MS. A taxonomy of cooperative particle swarm optimizers. International Journal of Computa-

tional Intelligence Research 2008; 4:137-144.

. Montes de Oca M, Stutzle T, Birattari M, Dorigo M. Frankenstein’s PSO: a composite particle swarm optimization

algorithm. Evolutionary Computation, IEEE Transactions on 2009; 13:1120 —1132.

Kennedy J. Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance. Evo-
lutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on, Vol. 3, Washington DC, USA, 1999;
1931-1938.

Janson S, Middendorf M. A hierarchical particle swarm optimizer and its adaptive variant. Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions on 2005; 35:1272 —1282.

Tomassini M, Vanneschi L. Introduction: special issue on parallel and distributed evolutionary algorithms, part i.
Genetic Programming and Evolvable Machines 2009; 10:339-341.

Alba E, Troya JM. A survey of parallel distributed genetic algorithms. Complexity 1999; 4:31-52.

van den Bergh F, Engelbrecht AP. A cooperative approach to particle swarm optimization. Evolutionary Computa-
tion, IEEE Transactions on 2004; 8:225 -239.

Li X, Yao X. Tackling high dimensional nonseparable optimization problems by cooperatively coevolving particle
swarms. Evolutionary Computation, 2009. CEC °09. IEEE Congress on, Trondheim, Norway, 2009; 1546 —1553.
Li X, Yao X. Cooperatively coevolving particle swarms for large scale optimization. Evolutionary Computation,
IEEE Transactions on 2012; 16(2):210-224.

Liang J, Suganthan P. Dynamic multi-swarm particle swarm optimizer. Swarm Intelligence Symposium, 2005. SIS
2005. Proceedings 2005 IEEE, Pasadena, California, 2005; 124—129.

Vanneschi L, Codecasa D, Mauri G. A study of parallel and distributed particle swarm optimization methods. In
Proceeding of the 2nd Workshop on Bio-Inspired Algorithms for Distributed Systems. ACM: ACM New York, NY,
USA, 2010; 9-16.

Potter MA, Jong KAD. A cooperative coevolutionary approach to function optimization. In Parallel Problem Solving
from Nature. Springer-Verlag: Springer-Verlag, Berlin, 1994; 249-257.

Lvbjerg M, Rasmussen TK, Krink T. Hybrid particle swarm optimiser with breeding and subpopulations. In
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001. Morgan Kaufmann: San
Francisco, California, USA, 2001; 469-476.

. Renesse RV, Minsky Y, Hayden M. A gossip-style failure detection service, 1998; 55-70.
22.

Tang K, Yao X, Suganthan PN, MacNish C, Chen YP, Chen CM, Yang Z. Benchmark Functions for the
CEC’2008 Special Session and Competition on Large Scale Global Optimization, Nature Inspired Computation
and Applications Laboratory, 2007. (Available from: http://nical.ustc.edu.cn/cec08ss.php) [Accessed May 2011].
Suganthan PN, Hansen N, Liang JJ, Deb K, Chen YP, Auger A, Tiwari S. Problem definitions and evaluation cri-
teria for the CEC 2005 special session on real-parameter optimization Nanyang Technological University. Natural
Computing 2005; (May):1-50. http://vg.perso.eisti.fr/These/Papiers/Bibli2/CECO05.pdf.

MacDougall MH. Simulating Computer Systems: Techniques and Tools. MIT Press: Cambridge, Massachusetts,
1987.

Eberhart RC, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization. Evolutionary
Computation, 2000. Proceedings of the 2000 Congress on, Vol. 1, San Diego, CA, USA, 2000; 84-88.

R project for statistical computing, 2011. (Available from: http://www.r-project.org/) [Accessed December 2011].

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)

DOI: 10.1002/cpe



