
A Publish/Subscribe System Using Causal
Broadcast Over Dynamically Built Spanning Trees

João Paulo de Araujo∗, Luciana Arantes†, Elias P. Duarte Jr.‡, Luiz A. Rodrigues§ and Pierre Sens¶
∗†¶Sorbonne Universités, UPMC Univ Paris 06, CNRS, INRIA, LIP6 – Paris, France

‡Federal University of Paraná – Curitiba, Brazil
§Western Paraná State University – Cascavel, Brazil

Email: ∗joao.araujo@lip6.fr, †luciana.arantes@lip6.fr, ‡elias@inf.ufpr.br, §luiz.rodrigues@unioeste.br, ¶pierre.sens@lip6.fr

Abstract—In this paper we present VCube-PS, a topic-based
Publish/Subscribe system built on the top of a virtual hypercube-
like topology. Membership information and published messages
to subscribers (members) of a topic group are broadcast over
dynamically built spanning trees rooted at the message’s source.
For a given topic, delivery of published messages respects causal
order. Performance results of experiments conducted on the
PeerSim simulator confirm the efficiency of VCube-PS in terms of
scalability, latency, number, and size of messages when compared
to a single rooted, not dynamically, tree built approach.

I. INTRODUCTION

Publish/Subscribe (Pub/Sub) systems consist of distributed

nodes in which one or more publishers produce messages

(events) that are consumed by subscribers. Communication

between publishers and subscribers is conducted on an overlay

infrastructure, which is generally composed by a set of nodes

that organize themselves for ensuring the delivery of pub-

lished messages to all (preferably only) interested subscribers.

Therefore, publishers and subscribers exchange information

asynchronously, without interacting directly [1], [2].

There basically exist two models of Pub/Sub systems: topic-
based [3], [4], [5], [6] and content-based [7], [8]. In the

first one, subscribers share a common knowledge on a set of

available topics and every published message is labeled with

one of these topics. A subscriber can register its interest in

one or more topics, and then it receives all published messages

related to these topics. In the content-based model, events are

structured in multiple attributes, and subscribers express their

interests by specifying constraints over the values of these

attributes [9].

The advantage of the topic-based model is that

events/messages can be statically grouped into topics,

the diffusion of messages to subscribers is usually based

on multicast groups, and the interface offered to the user is

simple. Even if it offers limited expressiveness for subscribers

[1], the topic-based approach is widely used by applications

such as chat message systems, Twitter, mobile devices

notification frameworks (e.g. Google Cloud Messaging), and

many others. On the other hand, the content-based model

provides more flexibility to subscribers for defining their

event interests, but at the expense of more complex user

interfaces and the need for filtering.

In this work, we are interested in topic-based Pub/Sub

systems and, particularly, in offering an efficient support

for publishers to send messages to subscribers, guaranteeing

causal order among published messages, low latency, and load

balancing.

In our proposed system, called VCube-PS, a user (node)

can subscribe or unsubscribe to a topic t. After becoming a

subscriber of t and, therefore, member of the t’s group, a node

publishes a message m associated to the topic t. Message m
is sent to all subscribers of t using a broadcast protocol on top

of a spanning tree, composed just by the subscribers, whose

root is the publisher of m. This tree is dynamically built on

top of a virtual hypercube-like topology, called VCube [10],

that presents several logarithmic properties. Moreover, the tree

construction itself has no overhead, since it is built using

information nodes already have. We consider that nodes do

not fail but can dynamically join to (make new subscription)

or leave from (cancel subscription) one or more topic groups.

VCube-PS also ensures causal ordering among published

messages related to the same topic: if a node publishes

a message after it delivers another message, then no node

delivers the latter after the former. We note that in Pub/Sub

systems the guarantee of published messages respecting causal

order is an important and useful feature. For instance, in a

discussion group, a question published on a group should

never be delivered to any subscriber after an answer published

in the same group, since question and answer are causally

related. For sake of scalability, VCube-PS uses the causal
barrier principle for implementing the causal order [11] where

a message carries information about only those messages on

which it directly depends.

Many Pub/Sub systems in the literature are based on broad-

cast trees [3], [4], [12]. However, they usually employ only one

single generated tree, whose maintenance is sometimes costly

when the membership of the system changes. Nodes which

are not subscribers may take part in the tree as forwarders

such as in Scribe Pub/Sub system [3], increasing the latency

of message delivery, and the broadcast of a new publication

is carried out by a single root node which, consequently,

can become a bottleneck. In VCube-PS there is no single

root node, as each node that publishes a message becomes

the root of the corresponding spanning tree, providing load

2017 29th International Symposium on Computer Architecture and High Performance Computing

978-1-5090-1233-6/17 $31.00 © 2017 IEEE

DOI 10.1109/SBAC-PAD.2017.28

161

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on December 21,2021 at 22:04:06 UTC from IEEE Xplore. Restrictions apply.

balancing. Furthermore, a spanning tree is composed only

by the subscribers of the same topic and does not include

forwarder nodes. A third point to emphasize is that very few

Pub/Sub systems in the literature (to the best of our knowledge,

just JEDI [7]) provide causal ordering of published messages.

Experiments were conducted on the PeerSim simulator [13]

and comparative results confirm the advantages of using per-

publisher dynamically built spanning trees for load balancing,

latency, number and size of messages, as well as the causal

barrier approach for implementing causal ordering.

The rest of the paper is organized as follows. Section II

introduces VCube. Section III presents the extensions and

functions added to VCube in order to manage topics, order

messages, and gives a description of VCube-PS’s algorithms.

Section IV presents evaluation results obtained from experi-

ments conducted on PeerSim simulator. Section V discusses

related work and, finally, Section VI concludes the paper.

II. VCUBE

In VCube [10], a node i (also called pi) groups the other n−1
nodes in d = log2 n clusters forming a d-VCube, each cluster

s (s > 0) has size 2s−1. The ordered list of nodes in each

cluster s is denoted by function ci,s below, where ⊕ is the

bitwise exclusive or operator (xor).

ci,s = i⊕ 2s−1 ‖ ci⊕2s−1,k | k = 1, .., s− 1

VCube is a distributed fault diagnosis system and it defines

as the neighbors of a node i the first faulty-free node of

each cluster s. Periodically, i tests the first node in the ci,s
to check whether it is correct or faulty. Fig. 1 shows node

p0’s hierarchical cluster-based logical organization of n = 8
nodes connected by a 3-VCube topology as well as a table

which contains the composition of all ci,s of the 3-VCube.

Let’s consider node p0 and that there are no failures. The

clusters of p0 are shown in the same figure. Each cluster c0,1,

c0,2, and c0,3 is tested once, i.e., p0 only performs tests on

nodes 1, 2, 4 which will then inform p0 about the state of the

other nodes of their respective cluster.

s c0,s c1,s c2,s c3,s c4,s c5,s c6,s c7,s

1 1 0 3 2 5 4 7 6

2 2 3 3 2 0 1 1 0 6 7 7 6 4 5 5 4

3 4 5 6 7 5 4 7 6 6 7 4 5 7 6 5 4 0 1 2 3 1 0 3 2 2 3 0 1 3 2 1 0

Fig. 1. VCube hierarchical organization.

III. VCUBE-PS: PUBLISH/SUBSCRIBE SYSTEM

We consider a distributed system composed of a finite set

of Π = {p0, .., pn−1} nodes (users) with n = 2d processes,

d > 0. Each node has a unique id and nodes communicate only

by message passing. Each single node executes one task and a

user of the Pub/Sub system corresponds to a node. Therefore,

the terms node, user, and process are interchangeable in this

work.

Nodes communicate by sending and receiving messages.

The network is fully connected: each pair of nodes is con-

nected by a bidirectional point-to-point channel and there is no

network partitioning. Nodes do not fail and links are reliable.

Thus, messages exchanged between any two processes are

never lost, corrupted or duplicated. Each message is uniquely

identified by the source id (s), the topic (t), and sequence

number (c) given by the logical clock of the source. The

system is asynchronous, i.e., relative processor speeds and

message transmission delays are unbounded.

VCube has been extended to satisfy VCube-PS’s needs.

Thus, similarly to VCube, VCube-PS, organizes its nodes in a

logical hypercube-like topology. However, as we consider that

nodes do not fail, VCube-PS exploits VCube’s organization

but not its failure detection functionality. Even though it is

possible to draw the analogy in which a node that has not

subscribed to a topic t is considered to be faulty in relation to

t. Therefore, in VCube-PS, the first node of each cluster s in

ci,s in relation to topic t should also be a subscriber of t.
The following functions are provided to node i of VCube-PS

by the virtual topology:

• FF NEIGHBORi(t, s): if t = ‘ ∗ ’, no topic is considered

and the function returns the first node in ci,s; otherwise it

returns the first node in ci,s which is also a member of

group t. If there is no such a node, the function returns ⊥
(no neighbor).

• NEIGHBORHOODi(t, h): returns a set that contains all nodes

virtually connected to i according to FF NEIGHBORi(t, s),
for s = 1, .., h and topic t. The parameter h can range

from 1 to log2 n. For h = log2 n the function returns

all neighbors of i, if t = ‘ ∗ ’, no matter the topic;

otherwise all neighbors of i that are subscribers of t. For

any other value of h < log2 n, the function returns only

a subset of the first neighbors, i.e., those first neighbors

whose respective cluster number s is smaller or equal to h
(s ≤ h). For instance, in Fig. 1, if t = ‘ ∗ ’, NEIGHBOR-

HOOD0(∗, 3) = {1, 2, 4}, NEIGHBORHOOD0(∗, 2) = {1, 2},
and NEIGHBORHOOD4(∗, 2) = {5, 6}. On the other hand,

if only nodes 0, 3, and 4 have joined topic t1, NEIGHBOR-

HOOD0(t1, 3) = {3, 4} and NEIGHBORHOOD4(t1, 2) = ⊥.

• CLUSTERi(j): The function returns the index s of the cluster

of node i that contains node j, (1 ≤ s ≤ log2 n). For

instance, in Fig. 1, CLUSTER0(1) = 1, CLUSTER0(2) =
CLUSTER0(3) = 2, and CLUSTER0(4) = CLUSTER0(5) =
CLUSTER0(6) = CLUSTER0(7) = 3.

Causal and Per-source FIFO Reception Orders: For each

topic, VCube-PS respects causal order of published messages,

162

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on December 21,2021 at 22:04:06 UTC from IEEE Xplore. Restrictions apply.

implementing, thus, a causal broadcast.

Causal Order: if a process publishes a message m′ after

it has delivered another message m, then no process in the

system will deliver m after m′.
Note that if a process i never delivers m′ (e.g., i leaves the

system before delivering m′) or delivers m′ but never delivers

m (e.g., i was not in the system when m was published), the

causal order of published messages is not violated.

In order to implement the causal order of published mes-

sages, we apply causal barriers [11]. The advantage of the

causal barrier approach is that it does not control causality

based on nodes’ identifiers (per node vector) but by using

direct dependencies of messages which renders the algorithm

more scalable and suitable for dealing with the dynamics of

nodes (subscriptions and unsubscriptions).

Let m and m′ be two application messages published

for topic t. Message m immediately precedes message m′

(denoted m ≺im m′) if (1) the publishing of m causally

precedes the publishing of m′ and (2) there exists no message

m′′ such that the publishing of m causally precedes the

publishing of m′′, and the publishing of m′′ causally precedes

the publishing of m′. The causal barrier of m (cbm) consists

of the set of messages that are immediate predecessors of m.

Fig. 2 shows a distributed system with three nodes (p0, p1,

and p2) that have subscribed to the same topic t. Message

ms,t,c is the message published by s with sequence number

c for topic t. On the left side of the figure, we have a timing

diagram with the publishing and delivery of messages and

on the right the graph with message dependencies. We can

observe that the delivery of m1,t,1 is conditioned by the

delivery of m0,t,1 (m0,t,1 ≺im m1,t,1) since p1 delivered

m0,t,1 before publishing m1,t,1, (i.e., cbm1,t,1
= {m0,t,1}).

On the other hand, m1,t,2 directly depends on m2,t,1 and

m1,t,1 (i.e., cbm1,t,2 = {m2,t,1,m1,t,1}). Note that since m0,t,1

precedes m1,t,1 that precedes m1,t,2, m0,t,1 is an indirect

dependency of m1,t,2, not included, therefore, in cbm1,t,2
.

Fig. 2. Example of causal barrier.

Let’s now suppose, in the same figure, that p3 subscribes

to t after message m2,t,1 was published to the other nodes,

i.e., in this case, node p3 will never receive nor deliver m2,t,1.

Hence, after having delivered m1,t,1, p3 can deliver m1,t,2.

Since nodes can dynamically subscribe to or unsubscribe

from a topic in VCube-PS, our implementation of message

causal order must distinguish between the case in which a

message will be delivered (e.g., m1,t,1) from the one that it

will never be delivered (e.g., m2,t,1 by p3). To this end, VCube-
PS guarantees the following property on the FIFO order of

messages published on a given topic.

Per-source FIFO Reception Order: messages published by a

same publisher are received by subscribers in the same order as

they were produced. In other words, ms,t,c can be broadcast to

the current subscribers of t provided that the previous message

m′s,t,c−1 was received (not necessarily delivered) by all the

subscribers present in the system when m′ was broadcast. This

order allows a subscriber of t to know that it will never receive

some messages previously published, i.e., if m′s,t,c′ is the first

message that i receives from s on topic t after it joined t’s
group, i will never receive ms,t,c, if c < c′.

In VCube-PS, per-source FIFO reception order is ensured

by the acknowledgment of published messages: a source node

broadcasts a new message only after having received all the

acknowledgments for the previous message it had previously

broadcast. Note that the per-source FIFO reception order is

defined in regard to the reception of messages and not delivery,

as in the traditional FIFO order definition.

VCube-PS Algorithm Description: Due to lack of space, we

do not present the algorithms that manage topic membership

and disseminate published messages to subscribers of a given

topic. The latter can be found in Section III of [14]. In the

following, we give a description of the algorithms.

Application Functions: VCube-PS offers to the applica-

tion the functions SUBSCRIBE(t), UNSUBSCRIBE(t), and

PUBLISH(t,m) which allow a user (node) to subscribe to topic

t, unsubscribe from t, and publish a message to all subscribers

of t, respectively. A node can publish a message related to

a topic provided it is currently a subscriber of this topic.

Those functions will generate messages of type SUB, UNS,

and PUB respectively which will be sent to all nodes, in case

of subscription, or to all subscribers of t, otherwise. Every

message is uniquely identified by the source id, the topic, and

a sequence number (counter) in regard to this topic. In the case

of a message of type PUB, it also carries the identifiers of direct

causally related messages (causal barrier). After a function

is invoked, a distributed spanning tree dynamically built and

rooted at the caller is used to disseminate the corresponding

messages.

Producer/consumer approach: Since in Pub/sub systems the

publishing of a message must be decoupled from its delivery

by the subscribers, in VCube-PS, every message generated by

the execution of a function by i is inserted in a queue per topic

t. Then, a per topic task at i continuously removes the first

message m from this queue and starts its broadcast. The next

message is removed from the queue only when i is sure of

the reception of m by all current subscribers (per-source FIFO

reception order), i.e., reception of acknowledgement (message

of type ACK) from those nodes to whom i sent m.

Propagation of a message: For every message m taken from

the queue of node i associated to topic t, the corresponding

task starts the propagation of m by dynamically building a

163

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on December 21,2021 at 22:04:06 UTC from IEEE Xplore. Restrictions apply.

hierarchical spanning tree, rooted at i, composed by the nodes

which are either subscribers of t, in case of messages of

type UNS or PUB, or composed by all nodes, in case of

messages of type SUB. For this purpose, i calls function

NEIGHBORHOODi(t, h) which renders the set of the first

subscribers of t for each of the log2 n clusters of process i (in

the case of SUB messages, t = ‘∗ ’). These neighbors become

i’s children in the spanning tree and m is sent to them. Upon

the reception of m, by calling function CLUSTERj(i), every

i’s child j sends m to its s− 1 first neighbors of j in relation

to topic t and the cluster s of i to which j belongs, i.e., ci,s.

These neighbors then become j’s children, and the process

continues as described in the following example.

For instance, consider in Fig. 1 that either node p0 is not

a subscriber to t1 and wants to subscribe or it is already a

subscriber and wants to publish a message related to t1. All

other nodes are already subscribers. Node p0 sends a message

m related to t1 (SUB or PUB), becoming then the root of

the respective spanning tree. The message will be sent to

the log2 n = 3 children of p0: FF NEIGHBOR0(t1, 1) = 1,

FF NEIGHBOR0(t1, 2) = 2, and FF NEIGHBOR0(t1, 3) = 4.

Upon the reception of m, p1 does not forward it since its

CLUSTER1(0) = 1, while p2 (CLUSTER2(0) = 2) forwards it

to its child p3, the first subscriber of its cluster 1 (c2,1). When

p3 receives m, as its CLUSTER3(2) = 1, p3 does not forward

m to any node. However, in the case of p4 (CLUSTER4(0)
= 3), it forwards m to its children p5 ∈ c4,1 and p6 ∈ c4,2.

Finally, since CLUSTER6(4) = 2, p6 sends m to p7.

Let’s consider now a second example also using the same

Fig. 1 where only p0, p2, p4, p5, and p6 nodes are subscribers

of t2 and p2 publishes m′ related to t2. In this case, p2 sends

m′ to the first neighbors of its log2 n = 3 clusters that are

also subscribers of t2: FF NEIGHBOR2(t2, 1) = ⊥ (there is

no subscriber t2 in cluster c2,1), FF NEIGHBOR2(t2, 2) = 0,

and FF NEIGHBOR2(t2, 3) = 6 (p6 is the first subscriber t2 in

c2,3). Upon receiving m′, p0 does not forward it to p1 since the

latter is not a subscriber of t2. On the other hand, p6 verifies

that in cluster c6,2 = (4, 5), p4 is also a subscriber of t2, and

therefore sends m′ to p4 which then sends m′ to p5, the first

and only t2’s subscriber of cluster c4,1.

After forwarding a message m to a child j, node i waits

for an ACK message from j, which confirms the reception of

m by j. However, j will only send an ACK back to i after

receiving itself ACK messages from all its current children.

ACK messages will, thus, be propagated from the leaves to the

root, the source node of m. Eventually, the latter receives all

the ACK messages from its children and, in this case, the task

related to t removes the next message to be published from the

queue of the topic t, if one exists. These sequences of SUB,

UNS, or PUB and then ACK messages from/to the source ensure

the per-source FIFO reception order of published messages of

a topic. In the case of SUB messages, the ACK messages will

gather information about the membership of t and, therefore,

i becomes aware of current subscribers.

Reception and delivery of messages: When receiving a PUB
message m of topic t from s, if i is a subscriber of t and

has not already delivered m, i keeps m and then verifies,

based on direct causal dependencies, which received messages

can be delivered to the application. A message m can be

delivered to i only when every message m′ on which m
causally depends has been either already delivered by i or will

never be received by i since VCube-PS has not considered i as

a subscriber of t during the construction of the spanning tree

which broadcast m′. This determination of the first message

is possible thanks to the fact that, for the same source, the

publication of messages of the same topic respect per-source

FIFO order. In the case of a SUB (resp., UNS) message, i
includes (resp., removes) the identity of the source of the

message in (resp., from) its t group membership.

IV. EXPERIMENTAL RESULTS

In order to assess the performance of VCube-PS with differ-

ent configuration scenarios, we conducted experiments on top

of the event-driven PeerSim [13] simulator. In the majority of

scenarios, we compared VCube-PS with an approach denoted

SRPT (Single Root Per Topic), which is similar to Scribe [3],

where a single multicast tree per topic, composed by both

subscribers and non-subscribers (forwarders) is used to publish

all messages of a topic. SRPT maps each topic into a node

that acts as the root of the broadcast tree for the respective

topic. Forwarders receive and re-transmit published messages

but do not deliver them.

In the experiments, we consider that each message ex-

changed between two processes consumes tpc+tq+tt+tpp+td
units of time (u.t.). Apart from td which represents the time

necessary for a subscriber to satisfy all causal dependencies

before delivering a message to the application, all other

components are based on a packet-switched network delay

model [15]: tpc accounts for the processing time of a message

by a node, e.g., checksum verification and routing decisions;

tq is the time a message must wait in the queue before being

transmitted; tt is the time necessary to transmit all bits of the

message into the link, and tpp expresses how long it takes

for a message to transverse the link and reach the next hop.

Assuming that there is no broadcast facility available in the

system, if a message is sent to multiple destinations, a copy of

it is queued for each of the destinations. For our experiments,

the ratio between tpc and tpp has an impact on the threshold

value for starting to queue messages as well as how fast the

queue grows. Hence, based on [16], we set tpc = tt = 1 u.t.
and tpp = 100 u.t. (1/100 ratio). The time a message stays

queued (tq) is a function of the rate of incoming/outgoing

messages and can vary for each message. Likewise, when a

node i receives a message m, td will depend on how fast i
will receive all the preceding messages of m. If there is no

preceding message td = 0.

The number of nodes n used in the simulations varies from

8 up to 1024, in a power of two. Each experiment was executed

40 times and for the results that comprise average values we

also provide the standard deviation.

We consider the following metrics:

164

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on December 21,2021 at 22:04:06 UTC from IEEE Xplore. Restrictions apply.

• Latency: the time that a published message takes to be

delivered by all subscribers.

• Number of messages: overall number of PUB messages.

• Number of messages to be processed by a node: size of the

queue of each node.

• Size of PUB messages: characterizes the number of direct

causal dependencies that PUB messages hold.

• Number of false positives: number of messages received by

nodes that act as forwarders of messages of type PUB.

Scenario with one publisher: The aim of this experiment

is to evaluate the impact of the logarithmic properties of

VCube-PS. We consider that one publisher broadcasts only

one message. Hence, when a subscriber receives the message,

there is no delay for delivering it, since causal order of

published messages is not applied in this case. Fig. 3 depicts

the delivery latency when the number of nodes of the system

varies and either 100% or 25% of them are subscribers. The

set of subscribers is randomly chosen following a uniform

distribution and fixed at the beginning of each execution. We

should remark that when 100% of the nodes are subscribers,

SRPT has no forwarder and, therefore, the latency for both

Pub/Sub systems is always proportional to log2 N . The only

difference in this case is that SRPT has an additional hop as

the message to be published must be sent to the root of the

single tree.

 0

 100

 200

 300

 400

 500

 600

 700

8 16 32 64 128 256 512 1024

A
V
G

D
e
l
i
v
e
r
y

L
a
t
e
n
c
y

(
u
.
t
.
)

Number of nodes

VCube-PS - 25%
VCube-PS - 100%

SRPT - 25%
SRPT - 100%

Fig. 3. Average latency for the delivery of one message to each subscriber.

In the case of 1024 nodes with 25% of subscribers uniformly

distributed, the latency in VCube-PS is in average 420 units

of time which results in a reduction of 31% compared to the

latency presented by SRPT in the same scenario (620 u.t.)
The higher standard deviation observed for SRPT with 25% of

subscribers in scenarios with fewer nodes is due to the greater

number of forwarders that have an impact in the average of

the delivery time of all nodes. On the other hand, as the

number of nodes increases, the number of samples (delivery

time at each node) tends to a similar value as we average

all executions. Moreover, with 100% of subscribers in SRPT ,

the standard deviation may be higher than zero since there

exists a probability that the root node is the publisher itself

and, therefore, SRPT performs just like VCube-PS, with no

additional hop.
Forwarders induce an increase in the number of messages

propagated throughout the network. Fig. 4 depicts the average

 0
 25
 50
 75
 100
 125
 150
 175
 200
 225
 250
 275
 300
 325
 350
 375
 400
 425
 450
 475

8 16 32 64 128 256 512 1024

A
v
e
r
a
g
e

N
u
m
b
e
r

o
f

P
U
B

M
e
s
s
a
g
e
s

Number of nodes

VCube-PS
SRPT

Fig. 4. Average number of PUB messages with 25% of subscribers.

number of PUB messages for the two approaches with 25% of

the nodes as subscribers. In VCube-PS, this number is always

equal to the number of subscribers, since there is no forwarder

in the multicast tree. On the other hand, the forwarders in

SRPT are responsible for up to 2.7 times more messages (for

8 nodes) when compared to VCube-PS. As the number of

nodes increases, this difference is reduced, although VCube-
PS generates, in average, at least 43% fewer messages than

SRPT (1024 nodes).

Scenario with several publishers: In these experiments, all

nodes are subscribers of a single topic and the number of

publishers varies. Each publisher i sends one message at time

ti which is chosen by a uniform distribution between [0, 1000]
units of time. Fig. 5 shows in logarithmic scale the average

reception latency when the number of nodes of the system

varies and either 100% or 25% of them are publishers. Since

the ratio between the processing time (tpc) andthe propagation

time (tpp) has an impact on the load contention, we consider

the ratio 1/100 (Fig. 5(a)), which is used in all other evaluation

of this work, but also a propagation time which is ten times

greater, (tpp = 1000 u.t.), leading to a ratio 1/1000 (Fig. 5(b)).

We can observe in Fig. 5(a) the stability of VCube-PS
for both percentages of publishers, with a maximum increase

of 5.7% (1024 nodes and 100% of publishers). This result

corroborates that the use of one tree per publisher helps to

distribute the load, since each message traverses a different

path in the network. On the other hand, as SRPT imposes

a unique tree for disseminating messages to subscribers of a

topic, if several messages arrive at the root node of the tree

at the same time they will be queued before transmission,

increasing, thus, the reception latency. The numbers for SRPT
up to 128 nodes are in average one hop in time higher

compared to VCube-PS due to the additional hop used by

SRPT . The arrival rate of messages in this case is close to

the output rate, leading to no contention. Beyond this number

of nodes, the root receives more messages than it can process

and transmit per interval of time and starts to saturate.

Comparing Fig. 5(b) with Fig. 5(a), we observe a lower

increase in the average reception latency for SRPT in relation

to VCube-PS since a 1/1000 ratio induces a higher latency

in the reception of messages by a node, although its output

throughput remains the same. Fig. 5(b) shows an increase of

165

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on December 21,2021 at 22:04:06 UTC from IEEE Xplore. Restrictions apply.

 128

 256

 512

 1024

 2048

 4096

 8192

 16364

 8 16 32 64 128 256 512 1024

A
v
e
r
a
g
e

R
e
c
e
p
t
i
o
n

L
a
t
e
n
c
y

(
u
.
t
.
)

Number of nodes

VCube-PS - 25%
VCube-PS - 100%

SRPT - 25%
SRPT - 100%

(a) 1/100 ratio (tpp = 100).

 128

 256

 512

 1024

 2048

 4096

 8192

 16364

 8 16 32 64 128 256 512 1024

A
v
e
r
a
g
e

R
e
c
e
p
t
i
o
n

L
a
t
e
n
c
y

(
u
.
t
.
)

Number of nodes

VCube-PS - 25%
VCube-PS - 100%

SRPT - 25%
SRPT - 100%

(b) 1/1000 ratio (tpp = 1000).

Fig. 5. Average reception latency with 25% and 100% of publishers (logarithmic scale).

TABLE I
AVERAGE SIZE OF THE QUEUE PER GROUP OF NODES.

of messages # of nodes (VCube-PS) # of nodes (SRPT)
0 0 512

(0, 2] 0 448

(2, 4] 0 60

(4, 8] 495 3

(8, 16] 510 0

(16, 32] 19 0

(32, 4096] 0 0

(4096, 8192] 0 1

only 37% for 256 nodes (100% of publishers).

Table I shows the distribution of messages among nodes. For

1024 nodes and a ratio of 1/100 where all nodes are publishers

and subscribers, the table groups nodes with similar average

size of queue (given by intervals).

We observe an uneven distribution of the load among the

nodes in SRPT when compared to VCube-PS: 98% of the

nodes in VCube-PS have an average load between (4, 16]
messages while, although 44% of the nodes in SRPT have in

average between (0, 2] messages in their buffers, 50% of the

nodes simply do not participate of the routing of any message.

Moreover, in SRPT , one node (the root of the tree) has an aver-

age load of 9240 (σ = 4617) messages, which is a bottleneck

that increases the overall reception latency and limits the load

of the other nodes to just a few messages. Besides that, since

each node publishes one message, in VCube-PS we have 1024

different trees which leads to an uniform distribution of sent

messages where any node transmits exactly 1024 messages.

On the other hand, in SRPT the relationship between the

number of nodes and the amount of messages they publish

is reduced exponentially.

Ordering of messages: In order to evaluate the size of

messages and the latency due to message ordering, we consider

that one node s, chosen randomly, publishes a first message

ms. Upon receiving it, each node k waits for a random time

(tw) before broadcasting message mk, similarly to a message

discussion group service. Additionally, a node k has to wait

at least p messages before broadcasting its own. To this end,

there are j ≥ 1 nodes that independently broadcast a message

each in the beginning of the experiment. Just after receiving

all these initial messages, any node can publish a message.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

P
e
r
c
e
n
t
a
g
e

o
f

m
e
s
s
a
g
e
s

Number of causal dependencies

Wait 1 message
Wait 10 messages

Fig. 6. Frequency distribution for the number of causal dependencies of a
message in a network running VCube-PS with 256 nodes.

Fig. 6 groups messages according to the size interval of their

causal barriers for VCube-PS. When it is necessary to wait

just one message before a node broadcasts its own message,

51.6% of the messages generated in the system have less than

5 preceding messages. More precisely, 19.9% of all messages

have just one causal dependency. On the other hand, if a node

has to wait for more messages, 10 in the case of Fig. 6, before

broadcasting its own, a larger number of nodes will have 10 or

more direct dependencies. In this case, 35.2% of the messages

have size 10 (10 direct dependencies) and 79.7% of them have

fewer than 15. However, in both cases, due to both the use of

causal barriers and multiple tree-roots used by VCube-PS, the

size of the dependency list of most of the messages keeps

close to the dependency threshold.

It is also worth to evaluate the additional delay imposed

by the causal barrier before delivering a message to the

application. If messages take too long to be delivered, this

delay may lead to a cascade effect that could make the

system unfeasible. In our simulations, when a node waits for

1 message before broadcasting its own, about 95.1% of the

messages are delivered in less than 10 u.t. after the message

is received (87.2% are delivered with no delay). Only 81

messages (out of 65280) have a delay higher than 50 u.t.,
with an upper limit of 150 units of time. Increasing the

number of the waiting messages to 10, 457 messages wait

166

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on December 21,2021 at 22:04:06 UTC from IEEE Xplore. Restrictions apply.

more than 50 u.t. to be delivered (maximum 187), although

the number of messages with no delay remains high (84.2%).

Scenario with several topics: In order to evaluate the popu-

larity of topics in Twitter, the authors in [17] carried out some

experiments that show that roughly 60% of the topics have

only one message published and 83% of them have no more

than 5. On the other hand, only 0.15% of the topics are related

to more than 1000 messages each. This behavior follows a

Zipf-like distribution with a coefficient of 0.825 according to

the data provided in the article.

 400

 420

 440

 460

 480

 500

 520

 540

 560

 580

 600

 620

 640

 660

 680

 700

27 28 29 210 211 212 213 214

A
v
e
r
a
g
e

R
e
c
e
p
t
i
o
n

L
a
t
e
n
c
y

(
u
.
t
.
)

Number of messages

VCube-PS - Uniform
VCube-PS - Zipf
SRPT - Uniform

SRPT - Zipf

Fig. 7. Average reception latency with 256 nodes and 128 topics for two
distribution of messages per topic.

Fig. 7 presents the average reception latency for 256 nodes

and 128 topics where the number of published messages

varies. The topic associated with each message is chosen

following one of the two distributions: uniform or Zipf with

a coefficient equals to 0.825. Each node publishes a new

message in average every 500 u.t. for a topic randomly chosen

until a maximum number of messages is reached. Therefore,

the messages are uniformly distributed among the publishers,

but not necessarily among the topics. The minimum difference

of around 100 u.t. is due to the additional hop used by SRPT
to send a message to the root of the topic. No matter the

distribution of messages among the topics, VCube-PS always

relies on the same root for a given node, while SRPT may

take advantage in the case of a uniform distribution. This is

the reason why the behavior of SRPT is the same as VCube-
PS’s for a uniform distribution of messages. However, when

the number of messages sent per node increases beyond a

threshold, VCube-PS increases latency due to contention at the

source of the messages, i.e., the root of the tree. On the other

hand, for the Zipf distribution, SRPT has an average reception

latency 30.6% higher compared to the uniform distribution (for

214 messages). For this same situation, VCube-PS increases the

latency, in average, only 9.2%. In a non-uniform distribution,

the higher the number of messages, the closer the behavior

becomes to that discussed previously with several publishers.

The use of a tree rooted on the a message’s source makes

VCube-PS scalable in terms of publishers, while SRPT is

scalable in terms of topics. However, in a real scenario, like

the one presented by [17], even if a large number of topics

may exist, most of the messages are concentrated on a small

number of topics.

Scenario with dynamics of subscriptions: In these experi-

ments, we are interested in evaluating how VCube-PS adapts

itself to changes in the membership set of a topic.

When a node i leaves a given topic t, it can still receive

some messages addressed to t. It happens because not all other

subscribers of t received i′s unsubscription message yet. We

classify these messages as false-positives. However, this is a

temporary situation, since after a finite time interval other

subscribers will receive the unsubscription message from i.
In order to assess this behavior, we consider one publisher

that publishes several messages on topic t. Due to the Per-
source FIFO property, one message will be broadcast after

the reception of the ACKs from the previous one. For a given

number of nodes, 75% of the nodes are randomly chosen

as subscribers of a topic. Furthermore, at the same time the

publisher starts the broadcast of its first message, 12.5% or

25% of the subscribers leave and new ones join the topic. The

publisher sends 256 messages. Table II summarizes the results

for this scenario.

TABLE II
DYNAMICS OF SUBSCRIPTIONS.

Churn Nodes AVG false-positives (std dev) AVG deliveries (std dev)
12.5% 512 2433.1 (764.4) 97445.5 (655.7)

12.5% 1024 10525.7 (1207.1) 194506.8 (943.6)

25% 512 3475.9 (899.9) 96193.9 (1001.7)

25% 1024 14590.4 (1717.8) 191706.3 (1549.8)

The number of false-positives reaches at most 7.6% of the

total number of delivered messages (1024 nodes with 25% of

churn). In this case, 192 nodes leave the topic at the same

time. In the best case, all other subscribers are notified in up

to (log2 n ∗ tpp), but it is necessary to consider the queuing

of messages in other nodes of the spanning tree (including

unsubscriptions and new subscriptions). With 1024 nodes and

75% of them as subscribers, 196608 messages should be

delivered. However, when there is 25% of churn, in average

97.5% of these messages are delivered.

V. RELATED WORK

Numerous Pub/Sub systems in the literature, such as

Scribe [3], Bayeux [4], DYNATOPS [6], and Dynamoth [5],

are based on topics. Compared to content-based, topic-based

systems provide simpler and more efficient implementations.

They are usually deployed in contexts where efficient and fast

notifications are required.

Similarly to VCube-PS, many Pub/Sub systems use tree-

based overlays (e.g., Scribe [3], Bayeux [4], Marshmal-

low [12], DR-Tree [8], DYNATOPS [6]). The advantage

of using trees is the logarithmic guaranties on publication

delivery time and the number of messages employed. However,

different from VCube-PS, most solutions often employ one

single multicast tree (usually one per topic in topic-based

systems), statically constructed from the start or as nodes

join the system. Consequently, every publication should be

167

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on December 21,2021 at 22:04:06 UTC from IEEE Xplore. Restrictions apply.

broadcast from the root of this tree that might, then, become

a bottleneck. Moreover, many of these multicast trees include

unrelated intermediate hops and nodes that are not subscribers

which have to forward the message, presenting thus the

problem of false positives and the need of message filtering

(e.g. DR-Tree [8], Scribe [3]). Finally, their maintenance cost

is usually high, specially in presence of churn.

Several solutions (e.g. Scribe [3], DYNATOPS [6], etc.)

construct independent multicast trees on top of Distributed

Hash Table (DHT) overlays (e.g Pastry, CAN). They adopt

the rendezvous point approach, where a node, responsible for

the hashed key of a topic name, becomes the rendezvous point,

i.e., the root of the multicast related to the topic. Some DHT

overlay like PeerCube [18] and HOMED [19] are based on a

hypercube-like topology themselves.

Even if defining a coherent order for notifications in

Pub/Sub systems is fundamental, few of them support event

ordering [20], [7], [21], [22], specially total order. The authors

in [20] propose a top-basic Pub/Sub system where messages

published on different topics are either delivered in the same

order to all subscribers or tagged as out-of-order (weak total
order); while in [21], the task of ordering messages is dis-

tributed across sequencer nodes which totally order messages

for the same topic. Considering FIFO links, Zhang et al.

present in [22] a distributed total order protocol for a content-

based Pub/Sub system where a broker can determine if a

message can be delivered immediately or, by collaborating

with other brokers, that a consistent delivery order is required.

JEDI [7] is a Pub/Sub system that ensures causal order. The

latter is implemented by the use of a return value, a message

by which a receiver notifies an event delivery to the producer

of the event, unlike VCube-PS, which does not require these

extra messages since the causal dependencies of a message

are included in the message itself (causal barriers).

VI. CONCLUSION

This work presented VCube-PS, a distributed topic-based

Pub/Sub system. Spanning trees are dynamically built on the

top of a virtual hypercube-like topology and are used to

both propagate information about membership changes and

disseminate published messages to subscribers. While other

approaches use a node as the rendezvous point of the tree of

a topic, we configure a distributed spanning tree rooted on

the source of every message, without any extra cost due to

VCube. The trees contain only subscribers of the topic which

induce trees of shorter height when compared to a per-topic

single root tree and, therefore, lower latencies and smaller

number of messages. VCube-PS also provides causal ordering

of messages whose implementation uses the causal barrier

approach, adapted to cope with the dynamics of the system.

Experimental results on PeerSim confirm the logarithmic

behavior of VCube-PS. Compared to an approach with one

single root per topic, our solution performs better when there

is a high publication rate per topic since it provides load

balancing of publication. Furthermore, VCube-PS does not

present permanent forwarders which induce false positives,

but, due to subscription dynamics, only temporary ones which

eventually do not take part in any spanning tree.

ACKNOWLEDGMENTS

This work was supported by a scholarship (PhD – GDE)

from CNPq (Brazil) and by Fundação Araucária/SETI (Brazil)

under the project 45112, grant 144/15.

REFERENCES

[1] R. Baldoni, L. Querzoni, and A. Virgillito, “Distributed event routing in
publish/subscribe communication systems: a survey,” Tech. Rep., 2005.

[2] C. Esposito, D. Cotroneo, and S. Russo, “On reliability in pub-
lish/subscribe services,” Comput. Netw., vol. 57, no. 5, pp. 1318–1343,
Apr. 2013.

[3] M. Castro, P. Druschel, A. M. Kermarrec, and A. I. T. Rowstron, “Scribe:
a large-scale and decentralized application-level multicast infrastruc-
ture,” IEEE J. Sel. Areas Com., vol. 20, no. 8, pp. 1489–1499, Oct
2002.

[4] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. D.
Kubiatowicz, “Bayeux: An architecture for scalable and fault-tolerant
wide-area data dissemination,” in NOSSDAV ’01, 2001, pp. 11–20.

[5] J. Gascon-Samson, F. Garcia, B. Kemme, and J. Kienzle, “Dynamoth:
A scalable pub/sub middleware for latency-constrained applications in
the cloud,” in ICDCS, 2015, pp. 486–496.

[6] Y. Zhao, K. Kim, and N. Venkatasubramanian, “Dynatops: A dynamic
topic-based publish/subscribe architecture,” in DEBS, 2013, pp. 75–86.

[7] G. Cugola, E. Di Nitto, and A. Fuggetta, “The jedi event-based infras-
tructure and its application to the development of the opss wfms,” IEEE
Trans. Softw. Eng., vol. 27, no. 9, pp. 827–850, Sep. 2001.

[8] S. Bianchi, P. Felber, and M. G. Potop-Butucaru, “Stabilizing distributed
r-trees for peer-to-peer content routing,” IEEE Trans. Parallel Distrib.
Syst., vol. 21, no. 8, pp. 1175–1187, 2010.

[9] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
many faces of publish/subscribe,” ACM Comput. Surv., vol. 35, no. 2,
pp. 114–131, Jun. 2003.

[10] E. P. Duarte, Jr., L. C. E. Bona, and V. K. Ruoso, “VCube: A provably
scalable distributed diagnosis algorithm,” in Work. on Latest Advances
in Scalable Algorithms for Large-Scale Systems, 2014, pp. 17–22.

[11] R. Prakash, M. Raynal, and M. Singhal, “An efficient causal ordering
algorithm for mobile computing environments,” in ICDCS, 1996, pp.
744–751.

[12] S. Gao, G. Li, and P. Zhao, “Marshmallow: A content-based publish-
subscribe system over structured p2p networks,” in 7th Int1l Conf.
Comput. Intellig. Security, Dec 2011, pp. 290–294.

[13] A. Montresor and M. Jelasity, “Peersim: A scalable p2p simulator,” in
2009 IEEE Ninth International Conference on Peer-to-Peer Computing,
Sept 2009, pp. 99–100.

[14] J. P. de Araujo, L. Arantes, E. P. Duarte Jr., L. A. Rodrigues, and
P. Sens, “A publish/subscribe system using causal broadcast over
dynamically built spanning trees,” 2017, preprint. [Online]. Available:
https://arxiv.org/abs/1706.08302

[15] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down
Approach (6th Edition), 6th ed. Pearson, 2012.

[16] R. Ramaswamy, N. Weng, and T. Wolf, “Characterizing network pro-
cessing delay,” in GLOBECOM, vol. 3, Nov 2004, pp. 1629–1634 Vol.3.

[17] C. Sanli and R. Lambiotte, “Local variation of hashtag spike trains and
popularity in twitter,” PLOS ONE, vol. 10, no. 7, pp. 1–18, 07 2015.

[18] E. Anceaume, R. Ludinard, A. Ravoaja, and F. Brasileiro, “Peercube:
A hypercube-based p2p overlay robust against collusion and churn,” in
SSS, 2008, pp. 15–24.

[19] Y. Choi, K. Park, and D. Park, “Homed: a peer-to-peer overlay architec-
ture for large-scale content-based publish/subscribe system,” in DEBS,
2004, pp. 20–25.

[20] R. Baldoni, S. Bonomi, M. Platania, and L. Querzoni, “Dynamic
message ordering for topic-based publish/subscribe systems,” in IPDPS,
2012, pp. 909–920.

[21] C. Lumezanu, N. Spring, and B. Bhattacharjee, “Decentralized message
ordering for publish/subscribe systems,” in Middleware, 2006.

[22] K. Zhang, V. Muthusamy, and H. Jacobsen, “Total order in content-based
publish/subscribe systems,” in ICDCS, 2012, pp. 335–344.

168

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on December 21,2021 at 22:04:06 UTC from IEEE Xplore. Restrictions apply.

