
Computer Communications 110 (2017) 35–47

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

Improving the performance and reproducibility of experiments on

large-scale testb e ds with k -cores

Thiago Garrett ∗, Luis C.E. Bona , Elias P. Duarte Jr.

Department of Informatics, Federal University of Parana, P.O. Box 19018, Curitiba, PR 81531-980, Brazil

a r t i c l e i n f o

Article history:

Received 17 January 2017

Revised 19 May 2017

Accepted 28 May 2017

Available online 31 May 2017

Keywords:

Testbed node selection

Experiment reproducibility

k -core

PlanetLab

a b s t r a c t

Large-scale testbeds provide realistic environments for the experimentation and evaluation of new proto-

cols and distributed applications. In order to be successful, these experiments must be executed on sets

of nodes that present a reasonable level of stability, and it is important to ensure their reproducibility.

In this work we describe strategies to select sets of testbed nodes based on monitoring information. The

system is modeled as a stability graph in which the vertices correspond to testbed nodes and there is an

edge between two vertices if their communication is classified as stable. We investigate the performance

of different topologies embedded in the stability graph to run experiments on PlanetLab. Results show

that the k -core outperforms the other strategies in terms of their impact on the performance and repro-

ducibility of the experiments. A k -core is a maximal subgraph of G in which all vertices have degree at

least k . The average execution time of distributed applications executed on a k -core was up to 59% lower,

and the variation on the results obtained was reduced by up to 29% when compared to other alternatives.

© 2017 Elsevier B.V. All rights reserved.

1

p

t

G

c

t

t

e

i

t

e

i

p

p

c

i

o

n

a

b

n

r

t

s

p

b

t

t

t

c

d

p

a

o

n

k

a

m

v

e

h

0

. Introduction

In order to evaluate new network protocols and distributed ap-

lications, experiments must be executed under realistic condi-

ions. Large-scale testbeds such as PlanetLab [1] , OneLab [2] , and

eni [3] allow the evaluation of new proposals under real-world

onditions. However, testbeds are often too unstable, to the point

hat it is sometimes difficult even to select a set of testbed nodes

hat are able to communicate with each other during the whole

xperiment execution [4] . Depending on how unstable the testbed

s, it may not be possible to run distributed applications or to ob-

ain meaningful results. Furthermore, it is highly unlikely that an

xperiment executed on a set of testbed nodes selected randomly

s reproducible [5] .

Network testbeds (actually most network environments)

resent a spectrum of synchrony [6] : while a subset of the system

resents perfectly predictable temporal behavior, other subsets are

ompletely unpredictable. This range of behavior can be observed

n time and space, i.e. a single part of the system may change its

bservable behavior along the time. At a given time, a large set of

odes all of which can communicate with each other according to

 predictable pattern might not even exist.
∗ Corresponding author.

E-mail addresses: tgarrett@inf.ufpr.br , thgarrett@gmail.com (T. Garrett),

ona@inf.ufpr.br (L.C.E. Bona), elias@inf.ufpr.br (E.P. Duarte Jr.).

e

t

n

d

i

ttp://dx.doi.org/10.1016/j.comcom.2017.05.016

140-3664/© 2017 Elsevier B.V. All rights reserved.
In this work we describe strategies to select sets of testbed

odes to run reproducible experiments that produce meaningful

esults. At the heart of these strategies, end-to-end interactions be-

ween pairs of nodes are monitored, with round-trip-times mea-

ured at the application level. The communication between all

airs of nodes is monitored. Monitoring data is used to build a sta-

ility graph that represents the system from the points of view of

he different testbed nodes, which correspond to the graph ver-

ices. If there is an edge between two vertices of a stability graph,

hey can communicate in a stable way—according to a pre-defined

riterium, i.e. there is a high level of synchrony or temporal pre-

ictability between those nodes. Based on the stability graph it is

ossible to find sets of nodes that can be considered to be stable as

 group. A node selection strategy returns a subset of the vertices

f the stability graph. Five node selection strategies were defined,

amely: stable clique, minimum degree, highest minimum degree,

 -core and maximum k -core, described next.

The stable clique strategy returns a clique of the stability graph,

 subset of the vertices that induces a complete subgraph. The

inimum degree strategy receives as input a lower bound on the

ertices degrees, and returns a subset of vertices that has degree

qual or higher to that bound. The highest minimum degree strat-

gy receives as input the number of vertices to return, and finds

he highest degree that allows that constraint to be met, i.e. all

odes returned have degree greater than or equal to that highest

egree. The k -core strategy finds the k -core of the stability graph,

.e. a subgraph in which all vertices have degree at least k , in other

http://dx.doi.org/10.1016/j.comcom.2017.05.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2017.05.016&domain=pdf
mailto:tgarrett@inf.ufpr.br
mailto:thgarrett@gmail.com
mailto:bona@inf.ufpr.br
mailto:elias@inf.ufpr.br
http://dx.doi.org/10.1016/j.comcom.2017.05.016

36 T. Garrett et al. / Computer Communications 110 (2017) 35–47

l

d

a

i

r

s

n

r

t

a

m

h

p

c

f

u

t

L

a

i

g

w

C

m

n

m

t

n

p

t

t

a

c

t

T

d

d

t

a

i

[

u

r

S

r

t

t

S

c

C

l

t

u

t

u

f

f

1 http://sword.cs.williams.edu/ .
words, a subset of nodes which can communicate in a stable fash-

ion with at least k other nodes in the same subset. The maximum

k -core strategy receives as input the number of vertices to return

and searches for the highest possible value of k such that the cor-

responding k -core has at least the desired number of vertices.

We employed the global research testbed, PlanetLab [1] to eval-

uate the proposed node selection strategies. PlanetLab is a highly

unstable environment [7] . Although there are tools for monitoring

and selecting PlanetLab nodes [8–13] , most employ criteria on the

stability of the nodes themselves, e.g. node CPU load or available

memory. To the best of our knowledge no other strategy is able to

select a set of nodes based on their ability to communicate among

themselves in a stable way.

We describe several experiments conducted in PlanetLab in or-

der to evaluate the proposed strategies and their impact on the

performance and reproducibility of the experiments. Three groups

of experiments were conducted. In the first group, we evaluated

the five different node selection strategies. The maximum k -core

strategy presented the best results.

In the second group of experiments, we compared the quality

of nodes selected by the maximum k -core strategy with the qual-

ity of nodes selected with another PlanetLab tool, SWORD, when

executing a MapReduce application. The average execution time of

a distributed application executed on nodes selected by the max-

imum k -core strategy was up to 50% lower than the average exe-

cution time of the same application executed on nodes selected by

SWORD.

In the third group of experiments, we evaluated the impact of

selecting PlanetLab k -cores on the reproducibility of the experi-

ments. We employed different types of distributed applications,

featuring either network-intensive or CPU-intensive. These appli-

cations were executed a large number of times for a period of

40 days, on both k -cores and on nodes selected by an alterna-

tive strategy. We then evaluated the precision of the results ob-

tained by each set of nodes. The k -cores presented not only signif-

icantly lower average execution times but, most important, up to

29% smaller coefficients of variation, for all types of applications.

In other words, our strategy was able to improve the reproducibil-

ity of the experiments by improving the precision of the results.

Furthermore, our strategies were also able to select sets of nodes

that remained stable for longer periods of time.

The rest of this paper is organized as follows. Section 2 de-

scribes related work. Section 3 specifies the monitoring strategy,

the construction of stability graphs and the five strategies for node

selection. Section 4 presents the three groups of experiments and

is followed by the conclusion in Section 5 .

2. Related work

This section starts with an overview of distributed systems

models that assume the existence of a set of stable nodes within

a large possibly unstable distributed system. Next, we present re-

lated testbed monitoring tools including those that select testbed

nodes to run experiments. Then we describe works which have a

focus on the reproducibility of experiments. This is followed by

a few representative works on running experiments in large-scale

testbeds. Then we conclude this section with other works about

the k -core topology.

A few theoretic distributed system models have been proposed

that are related to our work. The Wormholes hybrid distributed

system model proposed by Veríssimo [6] is based on the fact that

networks often present a spectrum of synchrony, that varies from

components that present perfectly predictable behavior to those

that have a completely uncertain behavior. Wormholes correspond

to a subsystem—defined in time or space—that behaves in a pre-

dictable way. The existence of a subset of stable nodes within a
arge network is also considered in [14] . The authors describe the

evelopment of end-to-end dependable distributed applications

nd mobility-aware services in ubiquitous communication scenar-

os, assuming the use of off-the-shelf components (COTS) and un-

eliable wireless communication links. In the proposed strategy, a

et of stable nodes provides specialized timeliness and trustworthi-

ess services that can be used to construct more dependable and

esilient applications. The Partitioned Synchronous Distributed Sys-

em Model [15] is another hybrid model that assumes that there is

 timely subsystem which provides known upper bounds on com-

unication and computation times. In [16] the authors describe

ow to implement perfect failure detectors in this system. The im-

lementation assumes the existence of a timeliness oracle, that

lassifies processes and channels as timely or untimely.

The majority of testbed monitoring tools [8,11,12,17] provide in-

ormation about both the network and testbed nodes—such as CPU

sage, memory usage and network traffic, for example. Among

hese systems, CoMon [8] was specifically designed for Planet-

ab. CoMon is a monitoring system designed to collect information

bout PlanetLab nodes. All data collected by CoMon helps find-

ng “problematic” nodes and slices, or selecting nodes that match

iven restrictions. CoMon was launched in 2004, but the service

as shut down in 2012.

The monitoring strategy presented in this work differs from

oMon—and other testbed monitoring systems—with respect to the

onitored data. CoMon just monitors attributes related to a single

ode, while the monitoring strategy proposed in the present work

onitors the interaction between pairs of nodes.

Vivaldi [10] is a tool that claims to provide a scalable approach

o obtain the RTT (Round-Trip-Time) between pairs of PlanetLab

odes. After measuring the RTT for some pairs of nodes, Vivaldi

redicts the RTT for the other pairs. Vivaldi employs a fully dis-

ributed synthetic coordinate system that allows the RTT predic-

ion. The system assigns synthetic coordinates to each host, in such

 way that the distance between the coordinates of two hosts

orresponds to the RTT between them. Other strategies based on

he prediction of pairwise measurements can be found in [18,19] .

hey employ distributed structures and matrix factorization in or-

er to improve scalability and precision. The monitoring strategy

escribed in the present work is similar to Vivaldi as both employ

he RTT as the basic monitoring metric. But in Vivaldi the RTT is

n estimation that, even if it presents good precision, does not take

nto account faults and network problems.

Other tools allow testbed node selection [8,9,12,13] . SWORD

13] is one of such tools, available in PlanetLab. This tool allows

sers to describe the desired resources as well as requirements

elated to nodes themselves and their interactions. In this way,

WORD is a tool for selecting nodes which satisfy various crite-

ia specified by the user. Note that SWORD itself only performs

he node selection, it is not a monitoring system, and must ob-

ain node monitoring data from another system. Using that data

WORD is capable of selecting the best nodes that satisfy the user

riteria. The PlanetLab implementation of SWORD

1 uses data from

oMon. However, since CoMon is unavailable since 2012, it is no

onger possible to use SWORD to select PlanetLab nodes.

SWORD is similar to the node selection strategies proposed in

his work, as both select testbed nodes. However, since SWORD

ses data from CoMon, node selection is based on data related to

he nodes themselves, not their interaction. Furthermore, the data

sed by SWORD corresponds to the last measurement obtained

rom nodes, while we consider data sampled during a whole time

rame. Although SWORD is not available anymore (because CoMon

http://sword.cs.williams.edu/

T. Garrett et al. / Computer Communications 110 (2017) 35–47 37

h

S

p

h

b

t

p

n

b

g

T

a

e

p

m

l

t

s

o

p

f

l

v

a

p

t

t

t

t

d

d

p

s

i

m

c

t

o

[

A

c

s

a

t

p

t

a

s

3

s

f

s

i

3

n

w

l

w

t

e

q

t

f

b

S

m

e

n

u

T

m

n

t

s

b

a

i

a

s

n

3

b

s

c

c

t

A

p

s

f

R

r

f

s

t

w

l

t

c

j

t

s

o

m

n

i

G

3

fi
as been shut down) we present experimental results comparing

WORD to our strategy in one set of experiments in Section 4 .

Another related node selection strategy is for choosing super-

eers in P2P networks [20] . The superpeer selection problem is

ard because in a P2P network a large number of superpeers must

e selected from a huge and dynamic network in which neither

he peer’s characteristics nor the network topology are known a

riori. A set of superpeers must be well-dispersed throughout the

etwork, and must fulfill additional requirements such as load

alance, resource requirements, adaptability to churn, and hetero-

eneity.

The reproducibility of PlanetLab experiments is discussed in [5] .

he authors argue that experimental results obtained in PlanetLab

re hard to reproduce, since the testbed is not a fully controlled

nvironment. They conclude that in the case of long-running ap-

lications, researchers should be able to identify network perfor-

ance patterns and understand the level of performance and re-

iability their application achieves. On the other hand, for short-

erm experiments, they suggest researchers should search for re-

ources on the network that fulfill their needs for the timeframe

f the execution. The node selection strategies proposed in the

resent work aim at selecting nodes capable of increasing the per-

ormance and reproducibility experiments, independent of being

ong or short-term experiments.

A framework for automated distributed experimentation, Wee-

il, is presented in [21] . Weevil focuses on controlling parameters

nd workload generation over multiple runs in order to obtain re-

eatable results. The authors state that controlling the experimen-

ation environment is necessary but obtaining such control over a

estbed such as PlanetLab is not an easy task.

A survey of experiment management tools for distributed sys-

ems is presented in [22] . These tools help researchers to con-

rol the workflow of their experiments, automating tasks such as

eployment, execution and gathering results. In [23] , the authors

escribe a methodology for conducting repeatable experiments in

ublic testbeds, while in [24] the authors present a measurement

tudy, performed in the PlanetLab testbed, which highlights some

ssues that researches must be aware of when conducting experi-

ents.

The k -core was first applied to networks in the social networks

ontext [25] . Several results have been published on the applica-

ion of k -cores on complex networks. The topological organization

f complex networks based on k -cores is presented in [26–28] . In

29] the authors present a model of the Internet structure, at the

utonomous System level, decomposing the Internet itself into k -

ores—called a k -shell decomposition. A similar k -core decompo-

ition of Internet nodes as infrastructure nodes on top of which

n overlay network is embedded is presented in [30] . The au-

hors show that their strategy achieves good results, improving TCP

erformance, for example. k -cores have also been used to iden-

ify good nodes to disseminate information [31,32] using epidemic

lgorithms—the idea is that nodes in k -cores can have a higher

preading influence.

. Selecting testbed nodes to run experiments

This section is organized as follows. The proposed monitoring

trategy is described in Section 3.1 . Then the stability graphs built

rom the monitoring data are defined in Section 3.2 and finally five

trategies for selecting nodes of the stability graphs are presented

n Section 3.3 .

.1. Monitoring pairwise interactions

Let G = (V, E) be a complete undirected graph representing a

etwork, in which V is the set of vertices corresponding to the net-
ork nodes, and E the set of edges corresponding to the network

inks. An edge (i, j), i, j ∈ V , means that node i can reach node j

ithout employing intermediate nodes. We consider communica-

ions at the application layer, thus every node can directly reach

very other node in the network and G is a complete graph.

The purpose of the proposed monitoring strategy is to ac-

uire data to build a subgraph S = (V, E ′) of G, E ′ ⊆E , i.e. data ob-

ained with the monitoring strategy is used for removing edges

rom E , resulting in subgraph S . The construction of this subgraph,

ased on a criterium applied to the monitoring data, is detailed in

ection 3.2 .

In the proposed monitoring strategy, each node executes a dae-

on responsible for periodically sampling the round trip time to

ach other node: ∀ i, j ∈ V , node i sends a message to each other

ode j and waits for a reply, computing the round trip time rtt i, j
sing the local clock. Tuple (i, j, rtt i, j , timestamp) is stored locally.

he timestamp corresponds to the local time instant at which the

easure was obtained. Clocks are assumed to be roughly synchro-

ized, for instance with the level of accuracy that is obtained with

he Network Time Protocol (NTP) [33] in the Internet.

Since the rtt i, j is computed at the application level, the mea-

urements obtained vary not only because of network conditions,

ut also due to multiple factors affecting the node itself. CPU us-

ge, number of processes on the scheduler queue, context switch-

ng and interrupt handling are examples of factors that may also

ffect rtt i, j in addition to the network.

All data collected by each node is periodically sent to a central

erver. This central server can then build stability graphs as defined

ext in subsection 3.2 .

.2. Building a stability graph

The central server uses monitoring data to build a so-called sta-

ility graph S for a time frame T = [t 0 , t 1] , i.e. S is a graph repre-

enting the system during the period of time indicated by T , ac-

ording to a stability criterium. For building S , it is necessary to

lassify each pairwise interaction as stable or unstable according to

hat criterium, as defined below.

Let (i, j) be a pair of nodes monitored as described above.

 threshold θ is defined as an upper bound for the rtt i, j sam-

les. Let R i, j = { (i, j, rtt i, j , timestamp) : t 0 ≤ timestamp ≤ t 1 } be the

et of tuples acquired by node i regarding node j during the time

rame T . Let R i, j,θ = { (i, j, rtt i, j , timestamp) : (i, j, rtt i, j , timestamp) ∈
 i, j , rtt i, j ≤ θ} be the set of tuples from R i, j such that each value

tt i, j ≤ θ . Let p be the frequency in which the rtt i, j samples should

all below θ , 0 ≤ p ≤ 1. Node i is said to consider node j to be

table within T if
| R i, j,θ |
| R i, j | ≥ p, i.e. at least a fraction p of the ob-

ained values must satisfy rtt i, j ≤ θ . In our PlanetLab experiments

e employed p = 0 . 9 , i.e. at least 90% of the RTT samples must be

ess than or equal to the threshold for a node to consider another

o be stable.

For building the stability graph S = (V, E ′) each pair of nodes is

hecked: an edge (i, j) ∈ E ′ if and only if node i considers node

 to be stable and node j also considers node i to be stable, i.e.

he classification must be symmetric. Just for the note, in [4] we

how that from extensive data obtained from monitoring hundreds

f PlanetLab nodes, around 10% of the pairs of nodes have asym-

etrical classification, i.e. node i considers node j to be stable but

ode j does not consider node i to be stable. From this definition,

t is possible to say that a stability graph S is the complete graph

 with the “unstable” edges removed.

.3. Selecting nodes

Node selection is performed based on the stability graph de-

ned above. In this subsection we describe five strategies to se-

38 T. Garrett et al. / Computer Communications 110 (2017) 35–47

V

H

t

n

s

g

r

m

d

n

a

i

M

m

k

m

n

n

c

4

P

l

d

s

e

b

n

t

u

w

i

T

s

d

s

n

s

c

i

e

c

m

S

S

t

t

r

P

a

d

4

b

P

c

i

h
lect a subset of nodes W ⊆V , which are “stable enough” to run dis-

tributed applications that require a “reasonable” level of stability.

Each node selection strategy receives as input different parameters

and returns W , the subset of selected nodes.

Before defining each strategy we give our notations. S = (V, E ′)
is a stability graph. d S (v) is the degree of vertex v in S. δ(S) is the

minimum degree of all vertices of S , i.e. δ(S) = min ∀ i ∈ V d S (i) . S [U]

is the subgraph of S induced by the subset of nodes U ⊆V. W is the

set of selected nodes. The vertices of a graph are interchangeably

called nodes along the text.

In our early work [4] , we assumed that a clique in the stabil-

ity graph was the best approach to select testbed nodes. In other

words, there should be an edge between any two vertices of W

in the graph S [W], i.e. every pair of selected nodes classified each

other as stable according to our criterium during the time frame

considered when creating S . We believed that such hard restric-

tion would result in a high quality subset of nodes, i.e. a cohesive

set of nodes in terms of stability and efficiency. However, we em-

pirically found out that less strict structures could result in more

stable and/or predictable sets of nodes that can last over time [34] .

Moreover, a clique is an overly restricted structure which results in

small sets of nodes often not large enough to run real experiments.

Thus, we defined five node selection strategies: stable clique,

minimum degree, highest minimum degree, k -core and maximum

k -core. Each strategy is described below.

Stable clique

The stable clique strategy returns a clique of a stability graph. A

clique [35] is a subset of pairwise adjacent vertices, i.e. a subset of

vertices that induces a complete subgraph. The clique W returned

by this strategy may not be the largest clique on the stability graph

S , since finding such clique is a NP-hard problem [36] : it can be

impracticable to search for the maximum clique, specially consid-

ering that stability graphs can have a large amount of edges (i.e.

they are dense graphs), as we found out in [4] .

To address the processing time issue, we defined a strategy that

receives two input parameters: the minimum size of the clique and

the maximum processing time. A depth-first search algorithm is

used to find maximal cliques in stability graphs [37] . This algo-

rithm is executed either until a clique with size higher or equal

to the given minimum size is found or the processing time limit

is reached. If no such clique is found within the time limit, the

largest clique found is returned.

Minimum degree

The minimum degree strategy receives a single input parame-

ter, the minimum degree d min . It returns a set of nodes W = { i : i ∈
, d S (i) ≥ d min } , i.e. all nodes returned have degree at least d min in

the stability graph S . The rationale behind this strategy is that it

may suffice to find nodes that can communicate in a stable fash-

ion with a large number of other nodes. However, it is possible

that two nodes in a subset returned by this strategy are not able

to communicate with each other in a stable way.

Highest minimum degree

The highest minimum degree strategy receives a single input

parameter: the minimum number of nodes l to be selected. A bi-

nary search is executed on a stability graph S in order to find the

maximum minimum degree D min , such that selecting nodes with

the minimum degree strategy, described above, results in a sub-

set W , | W | ≥ l , i.e. this strategy selects a subset of nodes W with

a specified minimum size and with the highest possible minimum

degree for that size.

k-core

The k -core strategy finds a k -core W on a stability graph S . A

k -core is the largest subset of nodes W ⊆V that induces a subgraph
 = S[W] of the stability graph S that has minimum degree equal

o k , i.e. δ(H) = k . In other words, this strategy selects a set of

odes that have a minimum degree among themselves, i.e. each

elected node has a degree higher than or equal to k in the sub-

raph induced by the selected subset W . Therefore, the input pa-

ameter for this strategy is the minimum degree k . This strategy is

ore restrictive than the minimum degree and highest minimum

egree, since the degrees in those two other strategies may involve

odes not in the selected subset. We used the standard polynomial

lgorithm to find a k -core [25] : the k -core is the subgraph remain-

ng after repeatedly removing vertices of degree less than k .

aximum k-core

The maximum k -core strategy receives as input parameter the

inimum number of nodes l to be selected. This strategy returns a

 -core W with the highest value of k such that | W | ≥ l , i.e. it maxi-

izes k such that the corresponding k -core has at least the desired

umber of vertices. The value of k is found by repeatedly selecting

odes with the k -core strategy, increasing k , until the resulting k -

ore has size less than l : the previous k -core is then returned.

. Experimental results

In this section we describe experimental results conducted in

lanetLab. These experiments evaluated the quality of nodes se-

ected by the proposed strategies and their impact on the repro-

ucibility of the experiments. For all experiments reported in this

ection, the monitoring strategy was executed on about 10 0 0 Plan-

tLab nodes. Although all these nodes were monitored, the num-

er of nodes that actually ran the system varied from 500 and 600

odes. This was because a large number of nodes continuously al-

ernated being online and offline, and some other nodes remained

nreachable during the whole period in which the experiments

ere executed. The sampling rate of RTT measurements was 5 min,

.e. each node measured the RTT to each other node every 5 min.

hree groups of experiments were conducted as described next.

In the first group of experiments, we first evaluated how the

tability graphs and all proposed node selection strategies fared

uring a long observation period. This group of experiments is de-

cribed in Section 4.1 . From the evaluation of the five proposed

ode selection strategies we concluded that the maximum k -core

trategy was the best approach for selecting nodes. We therefore

onducted a second group of experiments for evaluating the qual-

ty of the nodes selected by the maximum k -core strategy when

xecuting a distributed application. For this evaluation, we exe-

uted the same application on both nodes selected by the maxi-

um k -core strategy and by another PlanetLab node selection tool,

WORD, comparing the results. These experiments are described in

ection 4.2 .

In the third group of experiments, we experimentally evaluated

he impact of selecting PlanetLab k -cores on the reproducibility of

he experiments. Different distributed applications with different

equirements in terms of network/CPU were executed repeatedly in

lanetLab on nodes selected both by the maximum k -core strategy

nd by another alternative strategy. This group of experiments is

escribed in Section 4.3 .

.1. Evaluation of the node selection strategies

The purpose of this group of experiments is to evaluate the sta-

ility graphs and all five proposed node selection strategies. 983

lanetLab nodes were monitored for 21 days. The time frame for

reating the stability graphs from the monitoring data was of 1 h,

.e. a stability graph was created using data obtained during each

our. The threshold θ employed for generating the stability graphs

T. Garrett et al. / Computer Communications 110 (2017) 35–47 39

Fig. 1. Average and maximum degrees of the stability graphs.

w

b

t

g

t

l

I

t

f

fi

t

w

g

e

4

g

F

b

i

f

1

Fig. 2. Minimum degree strategy: number of nodes selected for θ = 0 . 1 s and dif-

ferent values of d min .

Fig. 3. Highest minimum degree strategy: D min for θ = 0 . 1 s and different values of

l .

o

s

4

o

e

e

s

e

i

s

f

f

4

g

f

n

f

e

e

l

as equal to 0.05 s, 0.1 s, 0.15 s and 0.2 s, thus four graphs were

uilt per hour, for a total of 2016 stability graphs.

In this subsection we present (1) experimental results showing

he impact of the threshold (θ) on the average and maximum de-

rees of the stability graphs. Then we present (2) an evaluation of

he minimum degree strategy in terms of the number of nodes se-

ected when the minimum degree required varies from 50 to 200.

n (3) the highest minimum degree strategy is evaluated, we show

he minimum degree obtained when the number of nodes varies

rom 50 to 300. The stable clique is evaluated as follows (4). We

rst find a clique, then we observe what happens to this clique as

ime passes. This is exactly how we evaluate the k -cores in (5), but

e also show the number of nodes selected and the minimum de-

ree of the k -cores. Finally, the overall conclusions of this group of

xperiments are presented in (6).

.1.1. Stability graphs

At first, the average and maximum degrees of the stability

raphs for the whole period were evaluated: they are shown in

ig. 1 for threshold (θ) equal to 0.1 s and 0.2 s. It is clear that for

oth metrics their values are significantly higher for θ = 0 . 2 s . For

nstance, the average degree was about 60 during the whole period

or θ = 0 . 1 s while for θ = 0 . 2 s , the average increased to about

30. Results for higher values of θ are not reported: a high thresh-
ld may not filter “unstable” edges, resulting in stability graphs too

imilar to the network complete graph G .

.1.2. Minimum degree strategy

In order to observe how the minimum degree strategy fared

ver time, four sets of nodes were selected using this strategy in

ach stability graph built, each employing a different input param-

ter for the minimum degree d min : 50, 100, 150 and 200. Fig. 2

hows the number of nodes selected by the minimum degree strat-

gy for each value of d min within the 21 days period. In this exper-

ment, θ = 0 . 1 s . For d min = 50 , for example, about 450 nodes were

elected. Note that this number is close to the number of nodes ef-

ectively running the monitoring at any given time—which ranged

rom 500 to 600.

.1.3. Highest minimum degree strategy

Five sets of nodes were selected with the highest minimum de-

ree strategy on each stability graph in order to observe the per-

ormance of this strategy. The input parameters for the minimum

umber of nodes l were 50, 100, 150, 20 0 and 30 0. Fig. 3 shows,

or θ = 0 . 1 s , the highest minimum degree D min found by the strat-

gy on each stability graph and for each value of l . For l = 300 , for

xample, D min was about 100 during the whole period, while for

 = 50 it was about 180.

40 T. Garrett et al. / Computer Communications 110 (2017) 35–47

Fig. 4. Stable clique strategy: number of nodes with the highest degree possible

during one day for three different initial stable cliques.

Fig. 5. Maximum k -core strategy: number of nodes selected and the minimum de-

gree k for θ = 0 . 1 s .

Fig. 6. Maximum k -core strategy: average, minimum and maximum degrees of the

same k -core during one day for θ = 0 . 1 s .

l

e

n

b

w

s

h

c

s

i

T

r

d

w

w

F

g

s

r

4

f

T

w

o

d
4.1.4. Stable clique strategy

The stable clique strategy was evaluated by observing their per-

formance (did the selected nodes still form a clique?) as time

passes. For this evaluation, we used stability graphs correspond-

ing to the period of one day and θ equal to 0.05 s and 0.1 s.

Three sets of nodes were selected using the stable clique strategy

in the stability graph corresponding to the first hour of the period,

with θ = 0 . 05 s . The input parameters employed were 10, 20 and

30 for the minimum size and 10 min for the maximum process-

ing time. The validity of these sets of nodes as cliques was then

checked on each stability graph with θ = 0 . 1 s , i.e. for each stabil-

ity graph with θ = 0 . 1 s it was checked if each set of nodes was

still a valid clique. The reasoning for using a lower threshold and

then checking the cliques with a higher threshold is that nodes se-

lected with a more restrictive threshold may have a more stable

behavior when observed using a higher threshold, keeping them-

selves as a valid clique during larger periods of time. Fig. 4 shows,

for each set of nodes, the number of nodes with the highest degree

possible within the set (number of nodes minus 1), in a period of

one day and θ = 0 . 1 s . Whenever all nodes in a set have the high-

est degree possible, the set is a clique. In Fig. 4 , only the set with

20 nodes kept itself as a valid clique for most of the observed pe-

riod. In contrast to our early assumptions [4] , nodes selected with

the stable clique strategy are more likely to not last that long as a

stable set of nodes, despite the fact that they were selected using

a very restrictive criterium.

4.1.5. k-core strategies

In order to evaluate both the k -core and maximum k -core

strategies, nodes were selected in each stability graph by search-

ing for the highest value of k such that the resulting k -core is not

empty. This was done by using the maximum k -core strategy with

the input parameter for the minimum number of nodes l equal to

1, i.e. the highest value of k such that the resulting k -core has at

least one node. Fig. 5 shows the size of each k -core selected and

the minimum degree k of the corresponding induced subgraphs.

Again in this experiment the stability graphs were computed with

θ = 0 . 1 s . The size of the selected k -cores presented a high vari-

ability, in contrast to k , which presented lower variability. Further-

more, the values of k were mostly close to the size of the k -cores,

thus the subgraph induced by the selected nodes had high density,

i.e. there are edges between most pairs of nodes, which means that

each node considered the majority of the others as stable.

Since cliques usually do not stay valid for a significantly period

of time, we found out that the k -core topology, which is less re-

strictive than cliques, might be a better approach so that the se-
ected set of nodes endure longer in terms of stability. In order to

valuate how k -cores behave as time passes, we selected a set of

odes using the maximum k -core strategy, with l = 1 , in the sta-

ility graph corresponding to the first hour of a period of one day,

ith θ = 0 . 05 s . We then observed the behavior of the exact same

et of nodes in each subsequent stability graph computed at each

our of the one day period, with θ = 0 . 1 s , following the same pro-

edure used to the clique evaluation above. A set of 62 nodes was

elected in this way. Fig. 6 shows the average, minimum and max-

mum degree for the same set of nodes during the one day period.

he maximum degree stayed the same for the whole observed pe-

iod, while the average degree had low variation. The minimum

egree had a much higher variation. However, the average degree

as not affected by this high variation on the minimum degree,

hich indicates that just a few nodes had their degrees lowered.

urthermore, the average degree was close to the maximum de-

ree, indicating that most nodes in the k -core selected presented a

table behavior among themselves during the whole observed pe-

iod.

.1.6. Conclusions

In this subsection we described evaluation results obtained

rom experiments executed on 981 PlanetLab nodes for 21 days.

he question we aim to answer is: given the evaluation results,

hich strategy is the best? We claim that the best strategy is the

ne that selects the largest set of nodes that present the highest

egree among themselves—which means that this is a large set of

T. Garrett et al. / Computer Communications 110 (2017) 35–47 41

n

o

w

t

h

h

H

i

m

t

t

n

t

i

b

4

m

s

S

n

a

c

t

(

v

s

a

n

p

p

F

a

s

o

S

p

f

t

s

l

s

e

p

i

r

w

o

m

s

T

m

c

m

n

o

t

t

Table 1

Execution times for the first set of experiments.

SWORD MKC

Average 22 min 59 s 9 min 25 s

Standard deviation 12 min 18 s 6 min 3 s

Confidence interval (95%) ± 6 min 13 s ± 3 min 4 s

Median 18 min 54 s 7 min 34 s

Lowest 6 min 47 s 4 min 21 s

Highest 58 min 19 s 28 min 49 s

Table 2

Execution times for the second set of experiments.

SWORD MKC

Average 20 min 17 s 8 min 18 s

Standard deviation 17 min 33 s 1 min 49 s

Confidence interval (95%) ± 8 min 53 s ± 55 s

Median 16 min 57 s 8 min 23 s

Lowest 7 min 46 s 5 min 10 s

Highest 83 min 25 s 11 min 42 s

T

d

l

n

s

n

f

4

a

n

w

t

a

t

l

m

a

f

i

c

r

a

i

4

i

b

e

w

o

t

e

e

t

e

t

t

s

i
odes that are able to communicate with each other, i.e. a large set

f nodes that present a high cohesion.

The minimum degree and highest minimum degree strategies

ere able to select the largest sets of nodes, as expected, since

hose strategies employ the weakest restrictions regarding the co-

esion of the selected nodes. The selected nodes that present the

ighest cohesion were obtained with the stable clique strategy.

owever this is a very small set of nodes and it quickly looses

ts properties as time passes. Thus, overall, we conclude that the

aximum k -core strategy is the best, as it gives large sets of nodes

hat keep their properties for long periods of time. However, note

hat depending on the nature of the experiment, the number of

odes needed or the virtual topology that is embedded in the

estbed, different strategies and parameters can be employed. For

nstance, some experiments may require the largest possible num-

er of nodes even if they present low cohesion.

.2. Quality of selected nodes

In the second group of experiments, we evaluated the perfor-

ance of a distributed application when executed both on nodes

elected by the proposed strategies and on nodes selected by

WORD [13] , a tool described in Section 2 .

The distributed application was based on MapReduce [38] run-

ing wordcount , which counts the occurrences of each word of

 text file. MapReduce is a software framework for distributed

omputing on large data sets. A MapReduce application requires

wo functions: a mapping function, which transforms the data in

 key, value) pairs, and a reduction function, which gathers the (key,

alue) pairs to obtain the final result. Input data is divided among

everal nodes. Each node applies the mapping function to its data

nd/or divides the data again and assigns parts of the data to other

odes, creating a highly distributed, parallel execution.

The implementation of MapReduce used in the wordcount ap-

lication was Apache Hadoop [39] . Besides using the Hadoop im-

lementation of MapReduce we also used the Hadoop Distributed

ile System (HDFS). Upon starting, Hadoop instantiates the HDFS in

ll nodes. Input data must be first inserted in the distributed file

ystem so that the MapReduce application has access to any part

f the data on any node.

The node selection strategy chosen for the comparison with

WORD was the maximum k -core, since it proved to select a

roper sized set of nodes that can keep itself reasonably stable

or longer periods of time. For the remainder of this subsection,

he maximum k -core strategy is referred to as MKC, and the nodes

elected by MKC are referred to as MKC nodes. Similarly, nodes se-

ected by SWORD are referred to as SWORD nodes.

Two sets of experiments were conducted in PlanetLab. In both

ets of experiments the MapReduce wordcount application was ex-

cuted on 100 PlanetLab nodes. For selecting MKC nodes, we em-

loyed as input the minimum number of nodes (100) and stabil-

ty graphs were created with threshold θ = 0 . 1 s. The input pa-

ameters for SWORD were the response time of the CoMon server

hich was less than or equal to 0.3 s and the one minute load

f the nodes which was less than or equal to 10, in both experi-

ents. These values were as restrictive as possible so that we still

elected 100 nodes—smaller values resulted in less than 100 nodes.

hese parameters were chosen for SWORD because they are the

ost similar to the ones we employed in our strategies. The word-

ount input data—a text file—had size 1 GB in both sets of experi-

ents, and was created randomly.

Each set of experiments executed consisted of five steps. First,

odes are selected using SWORD or MKC. Then Hadoop is started

n all selected nodes. Next, the input file is inserted in the dis-

ributed file system. The wordcount application is then executed 15

imes. Finally, measurements are obtained and Hadoop is stopped.
he metrics considered were the average execution time, standard

eviation, 95% confidence interval, median, and the highest and

owest values observed.

Experiments of the first set were first executed on 100 SWORD

odes. Then, they were executed again on 100 MKC nodes. Table 1

hows the results for the 15 executions employing each set of

odes. MKC nodes ran the application significantly faster. Except

or the lowest values observed, which was 6 min for SWORD and

 min for MKC, all values corresponding to SWORD nodes were

bout two times larger than the corresponding values for the MKC

odes.

The second set of experiments was also executed in the same

ay as described above. Table 2 shows the results obtained from

he 15 executions employing each set of nodes. MKC nodes ran the

pplication significantly faster as in the first set of experiments:

he average execution time for SWORD nodes was about two times

arger than for MKC nodes. However, the standard deviation was

uch larger for SWORD nodes in the second set of experiments—

bout nine times larger. Furthermore, the highest execution time

or SWORD nodes was far higher (83 min versus 11 min) compar-

ng to the highest execution time for MKC nodes.

MKC nodes ran the MapReduce wordcount application signifi-

antly faster than SWORD nodes in both sets of experiments. These

esults show that the strategies defined in the present work were

ble to select sets of nodes which were faster and more consistent

n terms of the range of values observed.

.3. Reproducibility of experiments

In this group of experiments, we evaluated the reproducibil-

ty of experiments in PlanetLab when employing nodes selected

oth by our strategies and nodes selected by an alternative strat-

gy. Distributed applications with different resource requirements

ere executed on these sets of nodes. We measured the precision

f the results obtained with each set of nodes in order to evaluate

he level of reproducibility achieved with each one.

The experimental results showed in this section feature the co-

fficient of variation (CV) as the measurement of precision for the

xecution times of the distributed applications, i.e. we measured

he precision of the obtained results by computing the CV of the

xecution times measured when executing the applications several

imes on sets of nodes selected in different ways. The CV is the ra-

io of the standard deviation to the mean, thus it is a better mea-

urement for the precision than the standard deviation alone, since

t can be used to compare data sets with widely different means.

42 T. Garrett et al. / Computer Communications 110 (2017) 35–47

t

f

p

f

s

o

h

o

s

c

o

n

r

s

t

f

a

t

p

c

p

T

s

n

t

t

q

a

o

t

i

m

n

i

a

i

s

w

c

f

a

S

f

p

i

e

e

s

t

a

m

o

s

t

p
For the CV and all others metrics reported in this section we em-

ployed 2.5% trimmed statistics in order to improve the robustness

of the results, excluding outliers [40] . In other words, we excluded

the 2.5% lowest and highest values when computing our metrics.

In contrast to the single MapReduce application employed in

the experiments described above, in this group of experiments we

employed three different applications, each with different resource

requirements, ranging from high network traffic and low CPU us-

age to high CPU usage and low network traffic. The purpose on

varying the resource requirements is to evaluate how they im-

pact the precision of the obtained measurements. The MapReduce

framework is used again in two of these applications, while the

third is based on the BitTorrent 2 protocol. The MapReduce imple-

mentation employed was Mincemeatpy. 3 This implementation uses

a single central node, the master, which distributes map and re-

duce functions as tasks to all the other nodes, the workers. The

three applications—called Triangular, Bit and Torrent—are described

next.

The Triangular application, built using the MapReduce frame-

work, computes the first n triangular numbers. The n th triangular

number T n is given by T n =

n ∑

i =1

i . In our experiments, this applica-

tion computes the first 8192 triangular numbers, featuring low CPU

usage and high network traffic, since computing T n values has low

complexity but there is a large amount of (key, value) pairs to be

transmitted between nodes. For instance, in the Triangular applica-

tion the map function generates over 33 million (key, value) pairs.

The Bit application is based on the Bitcoin

4 decentralized pay-

ment system and was built using the MapReduce framework.

The Bitcoin system makes use of a virtual currency with the

same name—the bitcoin. All transactions are done directly between

users, without any intermediates or a trusted central authority. The

security of these transactions relies on cryptography, and it re-

quires high computing power in order to validate transactions. It

is not feasible to validate an incorrect transaction. The validation

is done on a public P2P network: each participating node offers its

computing power validating transactions and receives bitcoins in

return as reward. This is known as mining and users willing to gain

bitcoins by validating transactions are known as miners . The vali-

dation process consists of repeatedly computing a SHA-256 hash

function [41] on top of the transaction data and a parameter v un-

til the value of v that satisfies a certain criterium is found. The Bit

application employed in our experiments implements part of the

validation process: each node computes the SHA-256 hash function

for a subset of v values and a random given key – which would

be the transaction data on a real validation. From all (key, value)

pairs generated by the map function only a few are returned by

the worker nodes to be further reduced: the purpose was to cre-

ate a CPU-intensive application with low network traffic. For in-

stance, the SHA-256 hash was computed for about 7 billion val-

ues of v , but just about 60 0 0(key, value) pairs were transmitted

between nodes, ignoring the rest.

The Torrent application is based on the well known P2P file

sharing protocol, BitTorrent . The implementation of this protocol

employed in our application is Transmission, 5 the default BitTor-

rent client in several modern GNU/Linux distributions, such as

Ubuntu and Fedora. The Torrent application transfers a 27 MB

file, generated randomly, from one node to all other nodes using

the Transmission BitTorrent client, during a fixed amount of time

which was set to 10 min in our experiments. We used as metric

for this application the average time taken by the first 80 nodes
2 http://www.bittorrent.org/beps/bep _ 0 0 03.html .
3 https://github.com/michaelfairley/mincemeatpy.
4 http://bitcoin.org/.
5 http://www.transmissionbt.com .

w

o

s

p

w

o receive the complete file, i.e. we measured the execution time

rom the start of the application until the transfer of the file com-

letes in each node, then we computed the average execution time

or the first 80 nodes to completely receive the file. The Transmis-

ion client was set to allow each node to communicate with all

ther nodes simultaneously, thus the Torrent application features

igh network traffic and low CPU usage.

The three applications were executed in four different sets

f PlanetLab nodes, each with size 150. Two of these sets were

elected using the maximum k -Core strategy, referred to as

ore-150ms and core-150ms-everyround for the remainder

f this subsection. The other two sets were selected with an alter-

ative strategy, referred to as ping.c3sl and ping.uk for the

emainder of this subsection. These sets are described next.

The core-150ms and core-150ms-everyround sets were

elected using the maximum k -core strategy and the parameter for

he minimum number of nodes was set to 150. The stability graphs

or selecting these sets were created with a time frame of one hour

nd θ = 150 ms . The difference between these two groups is that

he nodes of the core-150ms set were selected before the ex-

eriments started and remained the same, while the nodes of the

ore-150ms-everyround set were selected each time the ap-

lications were executed, using monitoring data from the last hour.

he minimum degree of the subgraphs induced by the selected

ets of nodes was about 120 in all experiments. These two sets of

odes are referred to as “k -core sets” for the rest of this subsection.

The ping.c3sl and ping.uk sets were selected using an al-

ernative strategy based on ping , which computes the round trip

ime from a host to another and is based on the ICMP echo re-

uest/reply message. In this strategy, a central node measures the

verage round trip time—from five samples—from itself to each

ther node using ping . The 150 nodes with the lowest values are

hen selected. Both sets of nodes were selected before the exper-

ments started and remained the same. In the previous experi-

ents, described in Section 4.2 , we employed SWORD to select

odes. However, at the time we executed the reproducibility exper-

ments, presented in the current subsection, CoMon was no longer

vailable, thus it was not possible to use SWORD again. For select-

ng the ping.c3sl set we employed a central node in Brazil. For

electing the ping.uk set we employed a central node in the UK,

hich was always among the nodes selected by the maximum k -

ore strategy. These two sets of nodes are referred to as “ping ” sets

or the rest of this subsection.

Selecting nodes based on measurements from a central node is

 common strategy used by other node selection tools—including

WORD. Therefore, the objective of selecting nodes based on a ping

rom a central server is to compare that strategy with our pro-

osed strategy that is based on pairwise monitoring.

The experiments were organized in rounds and series. A series

s made of 30 rounds of experiments and each round consists of

xecuting the three applications on each set of nodes. A round of

xperiments takes about 150 min to complete and the next round

tarts immediately after the previous one, with no restriction on

he time of the day or week day. The series are started manually

nd lasted for about 3 days. We performed 300 rounds of experi-

ents organized in 10 series.

Next, we report facts about the composition of the selected sets

f nodes. In one of the series, for the core-150ms-everyround
et, 262 distinct nodes were selected in all 30 rounds. Among

hese 262 nodes, 59 were present in all rounds and 123 were

resent in more than 20 rounds. On the other hand, 42 nodes

ere selected five times or less and only 11 were selected just

nce. Sets ping.uk and core-150ms were similar to each other,

ince about 100 nodes were the same for both. However, set

ing.c3sl was mostly different from the others: just 11 nodes

ere also present in ping.uk and 27 in core-150ms .

http://www.bittorrent.org/beps/bep_0003.html
http://www.transmissionbt.com

T. Garrett et al. / Computer Communications 110 (2017) 35–47 43

Fig. 7. Execution times for the Triangular application.

Table 3

Metrics for the Triangular application, in seconds.

Set of nodes core-150ms-everyround core-150ms ping.c3sl ping.uk

Average 52.79 56.36 85.08 65.59

Standard deviation 37.26 36.65 71.57 60.09

Minimum 21.02 21.69 29.13 20.95

Maximum 206.89 202.69 307.26 320.42

Coefficient of variation 0.705 0.650 0.841 0.916

o

c

1

s

g

a

t

t

q

e

s

l

T

n

g

m

t

C

p

s

w

0

t

F

i

c

f

s

w

a

i

l

r

t

w

w

t

t

f

p

w

s

w

c
The execution times of the Triangular application for all series

f experiments and each set of nodes is shown in Fig. 7 . The exe-

ution times in each round are plotted and series are shown from

 to 10. The green line shows the average execution time of each

eries along with the 95% confidence interval The red line with a

ray shadow shows the average execution time for all 300 rounds

nd the 95% confidence interval. It is possible to see in the figure

hat there are several execution times that are significantly higher

han the corresponding series average. However, this is more fre-

uent for ping sets. Furthermore, the distance between the average

xecution time of each series and the average execution time of all

eries is smaller for the k -core sets.

In order to further evaluate the different sets of nodes se-

ected, we compiled metrics regarding the execution time of the

riangular application considering all 300 rounds, for each set of

odes. Table 3 shows the average execution times of the Trian-

ular application, in seconds, along with the standard deviation,

inimum and maximum values, as well as the CV. It is possible

o see that all sets of nodes resulted in a high CV. However, the

V was smaller for the k -core sets indicating that they had higher

recision than the ping sets: the CV was 0.705 and 0.650 for the

ets core-150ms-everyround and core-150ms , respectively,

hile the sets ping.c3sl and ping.uk had the CV equal to

.841 and 0.916, respectively. Furthermore, the average execution

imes for the k -core sets were also smaller than for the ping sets.
The execution times of the Bit application were also measured.

ig. 8 shows the results obtained for all 10 series of experiments,

n the same way as Fig. 7 . The execution times are plotted. It is

lear that the values are more dispersed for the ping sets than

or the k -core sets. For instance, the core-150ms-everyround
et presents some values far from the average in series 5 and 8,

hile the ping.uk set had several values far from the average of

ll series. It is also possible to notice that the confidence interval

s smaller for the k -core sets, both for the series averages—green

ine—and for the global average—red line with gray shadow.

We also evaluated the selected sets of nodes by compiling met-

ics for the Bit application. Table 4 shows the average execution

ime for all 300 rounds, in seconds, for each set of nodes, along

ith the standard deviation, minimum and maximum values, as

ell as the CV. The CV for the k -core sets was about 27% smaller

han the CV for the ping sets. Observing the average execution

imes, it is possible to see that the k -core sets ran the application

aster than the ping sets.

The execution times for all experiments with the Torrent ap-

lication were also observed. Fig. 9 shows the results in the same

ay as Figs. 7 and 8 . The execution times are plotted. The ping

ets results were much more dispersed than the k -core sets results

hich were mostly closer to the average.

We compiled metrics for the Torrent application using the exe-

ution times measured for all 300 rounds, as shown in Table 5 . The

44 T. Garrett et al. / Computer Communications 110 (2017) 35–47

Fig. 8. Execution times for the Bit application.

Table 4

Metrics for the Bit application, in seconds.

Set of nodes core-150ms-everyround core-150ms ping.c3sl ping.uk

Average 196.86 195.02 236.39 202.82

Standard deviation 13.21 13.09 22.14 18.86

Minimum 174.89 175.31 206.37 180.95

Maximum 238.54 237.70 338.23 348.51

Coefficient of variation 0.067 0.067 0.093 0.092

Table 5

Metrics for the Torrent application, in seconds.

Set of nodes core-150ms-everyround core-150ms ping.c3sl ping.uk

Average 98.46 97.09 240.25 126.37

Standard deviation 15.84 15.07 47.67 21.63

Minimum 75.83 75.93 158.77 88.06

Maximum 137.97 142.30 354.43 188.35

Coefficient of variation 0.161 0.155 0.198 0.171

t

e

fi

s

i

t

t

r

p

a

t

t

m

d

r
CV for the k -core sets was smaller than the CV for the ping sets.

The average execution time was also smaller for the k -core sets.

The ping.c3sl set had a much larger execution time in compar-

ison to the other three, 240.25 s.

The k -core sets presented a smaller CV for all three applications

when compared to the ping sets. The CV for the k -core sets were

up to 29% smaller for the Triangular application, up to 28% smaller

for the Bit application, and up to 21% smaller for the Torrent ap-

plication. Also, the average execution time for the k -core sets were

also better: on average, the k -core sets ran the Triangular applica-

tion up to 37% faster, the Bit application up to 17% faster, and the

Torrent application up to 59% faster.

The results presented in this subsection clearly indicate that

our node selection strategies increase the reproducibility of ex-

periments by increasing the precision of the results obtained. Fur-

thermore, the maximum k -core strategy was able to select bet-
er sets of nodes for all three applications, despite of the differ-

nt resource requirements regarding CPU usage and network traf-

c. Another important observation is about the similarity of the

ets ping.uk and core-150ms . As stated before, they were sim-

lar to each other: about 100 nodes were present in both of them,

hus they had only about 50 different nodes, which is a third of

he total size. Nevertheless, the core-150ms set presented better

esults than the ping.uk set.

Another conclusion that can be made regarding the smaller CV

resented by the k -core sets concerns the stability of a k -core

s time passes and the ability of the maximum k -core strategy

o select nodes that are faster and more consistent in terms of

he range of values observed. The core-150ms set, which re-

ained the same during all experiments, presented similar results

uring all 40 days, i.e. it remained stable during the whole pe-

iod in which the experiments were executed. On the other hand,

T. Garrett et al. / Computer Communications 110 (2017) 35–47 45

Fig. 9. Execution times for the Torrent application.

t

r

m

s

5

p

e

s

r

i

s

w

n

t

p

t

p

v

r

t

t

t

n

g

m

b

(

a

a

p

t

t

A

s

a

W

p

R

he core-150ms-everyround set, which was selected at each

ound, also obtained similar results in all experiments, i.e. the

aximum k -core strategy was able to select sets of nodes that pre-

ented similar results at each round.

. Conclusion

In order to improve the performance and reproducibility of ex-

eriments executed on global-scale testbeds, we investigated sev-

ral strategies to select nodes to run experiments that can be con-

idered to be stable according to predefined criteria. These crite-

ia are applied to monitoring data which is used to build stabil-

ty graphs from which the sets of stable nodes are selected. Five

trategies to select nodes in stability graphs were defined, each

ith a different stability pattern, ranging from cliques to sets of

odes with a minimum degree. The monitoring and node selec-

ion strategies were implemented in PlanetLab. We evaluated the

roposed strategies and compared with other alternatives in order

o check their performance gain and reproducibility. For this com-

arison, we measured the execution times and the coefficient of

ariation of different distributed applications, each with different

esource requirements, executed both on sets of nodes selected by

he defined strategies and by alternative strategies. The experimen-

al results obtained show that nodes selected by our strategies ran

he applications significantly faster and with less variation than the

odes selected by the other strategies. In other words, our strate-

ies improved the performance and reproducibility of the experi-

ents executed.

Future work includes the definition of node selection strategies

etter suited for applications with specific resource requirements

e.g. very low or very high CPU utilization). Selecting k -cores in

 fully decentralized way is another important research direction:

 distributed application can behave differently on each node de-

ending on which k -core the node is currently in. Another issue for
he future is to extend the classification of stability; using adaptive

hresholds seems to be an attractive alternative.

cknowledgments

This work was partially supported by the Brazilian National Re-

earch Council (CNPq), project 309143/2012-8. Thiago Garrett has

 Ph.D. scholarship from the Brazilian Education Ministry CAPES.

e thank Lauro L. Costa for conducting the execution of the re-

roducibility experiments.

eferences

[1] B. Chun , D. Culler , T. Roscoe , A. Bavier , L. Peterson , M. Wawrzoniak , M. Bow-

man , PlanetLab: an overlay testbed for broad-coverage services, SIGCOMM
Comput. Commun. Rev. 33 (3) (2003) .

[2] S. Fdida , T. Friedman , T. Parmentelat , OneLab: an open federated facility for ex-
perimentally driven future internet research, New Network Architectures, 297,

Springer, Berlin, Heidelberg, 2010 .
[3] M. Berman , J.S. Chase , L. Landweber , A. Nakao , M. Ott , D. Raychaudhuri ,

R. Ricci , I. Seskar , GENI: a federated testbed for innovative network experi-

ments, Comput. Networks 61 (2014) 5–23 .
[4] E. Duarte , T. Garrett , L. Bona , R. Carmo , A. Züge , Finding stable cliques of Plan-

etLab nodes, in: IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), 2010 .

[5] N. Spring , L. Peterson , A. Bavier , V. Pai , Using PlanetLab for network research:
myths, realities, and best practices, SIGOPS Operating Syst. Rev. 40 (1) (2006)

17–24 .

[6] P.E. Veríssimo , Travelling through wormholes: a new look at distributed sys-
tems models, SIGACT News 37 (1) (2006) 66–81 .

[7] L. Tang , Y. Chen , F. Li , H. Zhang , J. Li , Empirical study on the evolution of Plan-
etLab, in: International Conference on Networking, 2007 .

[8] K. Park , V.S. Pai , CoMon: a mostly-scalable monitoring system for PlanetLab,
SIGOPS Operating Syst. Rev. 40 (1) (2006) 65–74 .

[9] J. Londono , A. Bestavros , netEmbed: a network resource mapping service for
distributed applications, IEEE International Symposium on Parallel and Dis-

tributed Processing, 2008 .

[10] F. Dabek , R. Cox , F. Kaashoek , R. Morris , Vivaldi: a decentralized network coor-
dinate system, SIGCOMM Comput. Commun. Rev. 34 (4) (2004) 15–26 .

[11] M.L. Massie , B.N. Chun , D.E. Culler , The ganglia distributed monitoring sys-
tem: design, implementation and experience, Parallel Comput. 30 (7) (2004)

817–840 .

http://dx.doi.org/10.13039/501100003593
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0001
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0001
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0001
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0001
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0001
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0001
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0001
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0001
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0002
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0002
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0002
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0002
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0003
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0003
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0003
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0003
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0003
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0003
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0003
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0003
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0003
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0004
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0004
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0004
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0004
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0004
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0004
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0005
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0005
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0005
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0005
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0005
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0006
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0006
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0007
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0007
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0007
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0007
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0007
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0007
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0008
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0008
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0008
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0009
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0009
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0009
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0010
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0010
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0010
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0010
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0010
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0011
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0011
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0011
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0011

46 T. Garrett et al. / Computer Communications 110 (2017) 35–47

[

[

[

[

[12] J. Liang , S.Y. Ko , I. Gupta , K. Nahrstedt , MON: management overlay networks
for distributed systems, ACM Symposium on Operating Systems Principles,

ACM, 2005 .
[13] J. Albrecht , D. Oppenheimer , A. Vahdat , D.A. Patterson , Design and implemen-

tation trade-offs for wide-area resource discovery, ACM Trans. Internet Technol.
8 (4) (2008) 113–124 .

[14] H. Ortiz , A. Casimiro , P. Veríssimo , Architecture and implementation of an em-
bedded wormhole, International Symposium on Industrial Embedded Systems,

2007 .

[15] S. Gorender , R. Macedo , M. Raynal , An adaptive programming model for fault-
-tolerant distributed computing, IEEE Trans. Dependable Secure Comput. 4 (1)

(2007) .
[16] R. De Araujo Macedo , S. Gorender , Perfect failure detection in the partitioned

synchronous distributed system model, in: International Conference on Avail-
ability, Reliability and Security, 2009 .

[17] M. Huang , A. Bavier , L. Peterson , PlanetFlow: maintaining accountability for

network services, SIGOPS Operating Syst. Rev. 40 (1) (2006) 89–94 .
[18] Y. Fu , Y. Wang , E. Biersack , A general scalable and accurate decentralized level

monitoring method for large-scale dynamic service provision in hybrid clouds,
Future Gener. Comput. Syst. 29 (5) (2013) 1235–1253 .

[19] Y. Liao , W. Du , P. Geurts , G. Leduc , Decentralized prediction of end-to-end net-
work performance classes, in: International Conference on Emerging Network-

ing Experiments and Technologies, ACM, 2011 .

[20] V. Lo , D. Zhou , Y. Liu , C. GauthierDickey , J. Li , Scalable supernode selection in
peer-to-peer overlay networks, International Workshop on Hot Topics in Peer–

to-Peer Systems, 2005 .
[21] Y. Wang , A. Carzaniga , A.L. Wolf , Four enhancements to automated distributed

system experimentation methods, in: International Conference on Software
Engineering, ACM, 2008 .

[22] T. Buchert , C. Ruiz , L. Nussbaum , O. Richard , A survey of general-purpose ex-

periment management tools for distributed systems, Future Generation Com-
put. Syst. 45 (C) (2015) 1–12 .

[23] S. Edwards , X. Liu , N. Riga , Creating repeatable computer science and network-
ing experiments on shared, public testbeds, SIGOPS Operating Syst. Rev. 49 (1)

(2015) 90–99 .
[24] M. Santos , S. Fernandes , C. Kamienski , Conducting network research in large-s-

cale platforms: avoiding pitfalls in PlanetLab, in: 2014 IEEE 28th Interna-

tional Conference on Advanced Information Networking and Applications,
2014, pp. 525–532 .
25] S.B. Seidman , Network structure and minimum degree, Social Networks 5 (3)
(1983) 269–287 .

26] S.N. Dorogovtsev , A.V. Goltsev , J.F.F. Mendes , k -core organization of complex
networks, Phys. Rev. Lett. 96 (2006) 040601 .

[27] S.P. Borgatti , M.G. Everett , Models of core/periphery structures, Social Networks
21 (4) (20 0 0) 375–395 .

28] P. Holme , Core-periphery organization of complex networks, Phys. Rev. E 72
(2005) 046111 .

[29] S. Carmi , S. Havlin , S. Kirkpatrick , Y. Shavitt , E. Shir , A model of internet

topology using k-shell decomposition, Proc. Natl. Acad. Sci. 104 (27) (2007)
11150–11154 .

[30] Z. He , Y.H. Cao , X.H. Huang , Y. Ma , Overlay node deployment based on node
coreness, J. China Univ. Posts Telecommun. 17 (Suppl. 2) (2010) 99–103 .

[31] M. Kitsak , L.K. Gallos , S. Havlin , F. Liljeros , L. Muchnik , H.E. Stanley , H.A. Makse ,
Identification of influential spreaders in complex networks, Nat. Phys. 6 (2010)

888–893 .

32] J.-G. Liu , Z.-M. Ren , Q. Guo , Ranking the spreading influence in complex net-
works, Physica A: Stat. Mech. Its Appl. 392 (18) (2013) 4154–4159 .

[33] D. Mills , Internet time synchronization: the network time protocol, IEEE Trans.
Commun. 39 (10) (1991) 1482–1493 .

[34] L.C.E. Bona , E.P. Duarte Jr. , T. Garrett , Monitoring pairwise interactions to dis-
cover stable wormholes in highly unstable networks, in: International Confer-

ence on Testbeds and Research Infrastructures for the Development of Net-

works and Communities, 44, Springer, Berlin, Heidelberg, 2012 .
[35] R. Diestel , Graph Theory, Springer, 2006 .

[36] M.R. Garey , D.S. Johnson , Computers and Intractability: A Guide to the Theory
of NP-Completeness, W. H. Freeman & Co., 1990 .

[37] E. Tomita , A. Tanaka , H. Takahashi , The worst-case time complexity for gener-
ating all maximal cliques and computational experiments, Theor. Comput. Sci.

363 (1) (2006) 28–42 .

[38] J. Dean , S. Ghemawat , MapReduce: simplified data processing on large clusters,
Commun. ACM 51 (1) (2008) 107–113 .

[39] M. Bhandarkar , MapReduce programming with Apache Hadoop, IEEE Interna-
tional Symposium on Parallel Distributed Processing, 2010 .

[40] H. Wainer , Robust statistics: a survey and some prescriptions, J. Educ. Stat. 1
(4) (1976) 285–312 .

[41] D. Eastlake 3rd, T. Hansen, US Secure Hash Algorithms (SHA and SHA-based

HMAC and HKDF), 2011, (RFC 6234).

http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0012
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0012
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0012
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0012
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0012
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0013
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0013
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0013
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0013
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0013
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0014
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0014
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0014
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0014
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0015
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0015
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0015
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0015
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0016
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0016
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0016
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0017
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0017
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0017
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0017
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0018
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0018
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0018
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0018
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0019
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0019
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0019
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0019
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0019
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0020
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0020
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0020
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0020
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0020
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0020
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0021
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0021
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0021
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0021
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0022
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0022
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0022
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0022
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0022
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0023
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0023
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0023
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0023
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0024
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0024
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0024
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0024
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0025
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0025
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0026
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0026
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0026
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0026
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0027
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0027
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0027
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0028
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0028
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0029
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0029
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0029
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0029
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0029
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0029
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0030
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0030
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0030
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0030
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0030
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0031
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0031
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0031
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0031
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0031
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0031
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0031
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0031
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0032
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0032
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0032
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0032
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0033
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0033
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0034
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0034
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0034
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0034
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0035
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0035
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0036
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0036
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0036
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0037
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0037
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0037
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0037
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0038
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0038
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0038
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0039
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0039
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0040
http://refhub.elsevier.com/S0140-3664(17)30077-4/sbref0040

T. Garrett et al. / Computer Communications 110 (2017) 35–47 47

of Parana, Curitiba, Brazil, from where he also received the M.Sc. and B.Sc. degrees in

earch interests include Computer Networks and Distributed Systems, Parallel Computing,
r of the Computer Networks and Distributed Systems Lab (LaRSis), Curitiba, Brazil.

ersity of Parana, Curitiba, Brazil, where he is a member of the Computer Networks and

ree in Electric Engineering at Federal University of Technology—Parana, 2006, and carried
ting Center (BSC), 2013. His research interests include Operating Systems, Computer Net-

f several research technological development projects, for both national and international.
ience of Federal University of Parana from 2008 to 2012.

ity of Parana, Curitiba, Brazil, where he is the leader of the Computer Networks and

lude Computer Networks and Distributed Systems, their Dependability Management, and
r papers and has chaired several conferences and workshops. He received a Ph.D. degree

 Japan, 1997, the M.Sc. degree in Telecommunications from the Polytechnical University
 in Computer Science from Federal University of Minas Gerais, Brazil, 1987 and 1991,

ult Tolerant Computing of the Brazilian Computing Society (20 05–20 07); the Graduate
the Brazilian National Laboratory on Computer Networks (from 2012). He is a member of

he IEEE.
Thiago Garrett is a Ph.D. student at Federal University

Computer Science, in 2011 and 2008, respectively. His res
and Embedded Systems. He is currently a student membe

Luis C. E. Bona is an Associate Professor at Federal Univ

Distributed Systems Lab (LaRSis). He obtained a Ph.D. deg
out his post-doctoral studies at the Barcelona Supercompu

works and Distributed Systems. He acted as coordinator o
He also served as chair of the Department of Computer Sc

Elias P. Duarte Jr. is a Full Professor at Federal Univers

Distributed Systems Lab (LaRSis). His research interests inc
Algorithms. He has published more than 150 peer-reviewe

in Computer Science from Tokyo Institute of Technology,
of Madrid, Spain, 1991, and the B.Sc. and M.Sc. degrees

respectively. He chaired the Special Interest Group on Fa
Program in Computer Science of UFPR (20 06–20 08); and

the Brazilian Computer Society and a Senior Member of t

	Improving the performance and reproducibility of experiments on large-scale testbeds with k-cores
	1 Introduction
	2 Related work
	3 Selecting testbed nodes to run experiments
	3.1 Monitoring pairwise interactions
	3.2 Building a stability graph
	3.3 Selecting nodes
	 Stable clique
	 Minimum degree
	 Highest minimum degree
	 k-core
	 Maximum k-core

	4 Experimental results
	4.1 Evaluation of the node selection strategies
	4.1.1 Stability graphs
	4.1.2 Minimum degree strategy
	4.1.3 Highest minimum degree strategy
	4.1.4 Stable clique strategy
	4.1.5 k-core strategies
	4.1.6 Conclusions

	4.2 Quality of selected nodes
	4.3 Reproducibility of experiments

	5 Conclusion
	 Acknowledgments
	 References

