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Summary
A failure detector (FD) is a classic distributed systems service that can be used to

monitor processes of any network application. Failure detectors provide process state

information: A process is reported to be either correct or suspected to have crashed.

In this work, we propose the implementation of a process monitoring service using

Network Function Virtualization (NFV) in an OpenFlow network. The NFV is a

technology that uses software virtualization techniques to drastically reduce the cost

of deploying and managing network functions that are usually available as middle-

boxes. We describe NFV-FD, a network service that provides information about the

state of both processes and links. The NFV-FD relies on an OpenFlow controller

from which monitoring information is obtained. We investigate different ways to

implement NFV-FD. We evaluate the performance impact of monitoring by imple-

menting the virtual function both within and on a separate host from the controller.

Then we compare an implementation based on a traditional virtual machine with

another implementation based on containers. Experimental results are reported not

only in terms of performance, ie, the amount of resources required by NFV-FD,

but also for the quality of service provided by the failure detection and notification

functions as they are used to deploy a reliable broadcast service.
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1 INTRODUCTION

Failure detectors (FDs) are a basic distributed system abstraction that is used to monitor processes, ie, programs running on

multiple hosts of a network.1,2 Given a set of processes that can execute a distributed application, an FD is used to determined

which of those processes are fault-free and which are suspected to have crashed.3 Failure detectors are said to be inherently

unreliable, as they were proposed for asynchronous systems4 in which it is impossible to know the upper limit on the delay for

transmitting a message or executing a task. It is thus impossible to be sure whether a process that is silent has crashed or is

simply slow to reply.

Originally, FDs were proposed to investigate whether the availability of process state information would make consensus

possible in asynchronous distributed systems. Consensus solves the agreement problem that appears, for example, when it is

necessary to keep consistent data across multiple hosts of a network. A very large number of applications use consensus and other

equivalent distributed algorithms.4,5 Nevertheless, FDs are a practical approach for monitoring any set of distributed processes.

Usually FDs are implemented by having each process periodically send messages (called “heartbeats”) to all other processes to

inform that they are alive and well. If N processes are monitored, this strategy generates O(N2) messages per monitoring interval.
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In this work, we describe an effective way to implement FDs based on network function virtualization (NFV) technology.6 We

present NFV-FD (FD stands for failure detector) a cost-effective implementation that places the FD within the network fabric, so

that it can effectively monitor the state not only of processes but also of network links, including link reachability, ie, determine

which portions of the network are reachable or not.

The NFV technology allows the implementation of middleboxes7 using software virtualization executed on commodity

hardware.8 Typically, a network function (eg, a firewall, network address translation device, and router) can be started on

demand, just when it is needed. In comparison with their traditional equivalents that are implemented using proprietary hard-

ware/software, virtualized network functions (VNFs) are easier to manage and operate and are simply destroyed when they are

no longer needed. The NFVs also save energy and reduce the requirements on physical space.6 The NFV is usually deployed

with other closely related technologies: software-defined networking (SDN) and OpenFlow.9,10 OpenFlow separates the network

control plane from the underlying switches that forward the traffic (the data plane).11

The NFV-FD was actually implemented in multiple ways; we discuss and present results of those alternative implementations.

The NFV-FD relies on an OpenFlow controller* to obtain monitoring information. Initially, we compare 2 alternatives: imple-

menting the virtual function both within and on a separate host from the controller. In particular, although there are advantages

to implement a VNF within a controller,9 we argue that this strategy is not scalable.

Next, an implementation based on traditional virtual machines (VMs) is compared with another implementation based on

containers. In one of their latest documents, the European Telecommunications Standards Institute (ETSI) describes the deploy-

ment of VNFs using containers.12 Containers are a relatively new technology that allow the execution applications as sandboxed
instances on the host machine.13 Container-based virtualization is a potential alternative to hypervisors because they can share

the same kernel of the host system. Containers are much simpler than hypervisors; a hypervisor partitions the resources of a sin-

gle host and creates VMs isolated from each other. Each VM created by the hypervisor is assigned a virtualized vCPU, a vNIC,

and a vStorage device. Containers do not need any of this; it is a virtualization strategy that presents significantly lower require-

ments on the system.12 Our experimental results confirm that lightweight containers provide faster instantiation and deployment

time as well as lower resource requirements for the implementation of NFV-FD.

A distributed application can access the system view provided by NFV-FD to make decisions. In this way, NFV-FD can be

seen as a building block for the implementation of fault-tolerant distributed systems. As an example of this kind of application,

we describe the deployment of a reliable broadcast service on top of NFV-FD. A reliable broadcast algorithm ensures that correct

processes agree on the set of messages they deliver, even when the senders of these messages crash during the transmission.4

Experimental results are reported for the quality of service provided by the failure detection and notification functions as they

are used by the reliable broadcast service.

Note that an earlier paper14 presenting a preliminary version of NFV-FD has been published before. In the current paper, we

explore multiple strategies to implement NFV-FD and also present a specific application based on reliable broadcast running

on top of NFV-FD.

The rest of the paper is organized as follows. Section 2 presents the system model, as well as the architecture of NFV-FD,

describing how processes are monitored and how failures are detected. The implementations and experimental results are

described in Section 3. Section 4 presents related work. Section 5 concludes the paper.

2 NFV-FD: AN NFV-BASED IMPLEMENTATION OF A FAILURE DETECTOR

In this section, we describe the system model and architecture of NFV-FD, our failure detection service based on NFV tech-

nology. Instead of the usual implementation of FDs in which processes exchange a quadratic number of messages per testing

interval, NFV-FD is implemented within an OpenFlow network, and besides monitoring processes takes advantage of the

information available at the OpenFlow controller to determine the state not only of processes but also of network links.

Originally, unreliable FDs were proposed by Chandra and Toueg1 as abstractions that, depending of their properties, can

be used to solve consensus in asynchronous systems with crash faults. Consensus is a fundamental problem of fault-tolerant

distributed computing.5,15 An FD is defined as an “oracle” that can be accessed by a process to obtain information about the

state of the other processes of the distributed system. Failure detectors are said to be unreliable as they can make mistakes, ie,

report an incorrect state. For example, a monitored process can be incorrectly suspected to have crashed, but later the suspicion

can be raised if the FD learns that the process is alive.

*http://www.openflow.org
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A common approach to implement FDs is to monitor the message exchange pattern. Two basic approaches can be used for

monitoring: push and pull.16 Using a push FD, the monitored process sends heartbeat messages at periodic time intervals to the

monitor. In a pull FD, the monitor periodically sends liveness requests to monitored processes. Based on the observed message

arrival pattern, the FD computes a timeout interval. If a message is not received by the monitor within this timeout interval,

the monitored process is suspected to have crashed. The strategy used by NFV-FD to monitor processes can be classified as a

pull-based.

2.1 System model
We assume an asynchronous distributed system that consists of a set Π of n processes connected on an arbitrary topology

(multi-hop) network. Processes and communication links can fail by crashing, ie, by prematurely halting. An FD is used as a

monitor that informs the state of processes and links as correct (fault-free) or suspected to have crashed. The output of the FD is

one of the following possible states: S (suspect): “FD suspects that monitored process (p) has crashed”; T (trust): “FD trusts that

p is correct”; or U (unreachable): “FD suspect that p is unreachable.” A process is suspected to have crashed (state S) whenever

the timeout expires before a liveness reply from p is received. On the other hand, if the reply from p arrives before the respective

timeout expires, the corresponding state is set to T. State U may occur after a communication link crashes, leaving process p
unreachable.

We assume that the controller does not crash. Furthermore, crashes do not disrupt the communication between the FD and

the network controller. In addition, the communication channel does not create, alter, or loose messages.

2.2 NFV-FD architecture
The architecture proposed for the implementation of NFV-FD is shown in Figure 1. The figure shows the OpenFlow controller

and also the FD, which consists of 2 modules: NFV-FD itself and FDMod, described next. The OpenFlow controller executes

several functions; for example, the controller manages rules of forwarding tables of the switches, keeps information about the

topology and network devices, among other tasks. It is possible to extend the functionality of the controller by using Module

Applications—originally from the Floodlight controller†—which enables the creation of new features. The controller offers a

REpresentational State Transfer (REST) interface that facilitates the configuration of the Module Applications.

To integrate the controller with NFV-FD, we propose a module called FDMod. The FDMod works as a packet filter that parses

packet header information. The objective of FDMod is to assist NFV-FD to obtain information about monitored processes. This

information is configured by the specification of which header fields are to be checked. Information is then extracted from the

packet headers; an example field is the Internet Protocol address or the port used by the monitored process.

Monitoring starts after NFV-FD receives the specification of which information should be collected from a monitored process.

To receive monitoring information from the controller, it is necessary to install rules, which is done through a REST interface.

A rule specifies application attributes, for example, addresses, ports, and protocols it uses.

Consider, for example, a rule based on the following fields: source address (nw_src=10.0.0.1), destination address

(nw_dst=230.0.0.1), User Datagram Protocol (UDP) transport protocol (nw_proto=17), and destination port (tp_dst=4446).

The following packet would be captured by FDMod by using this rule:

[in_port=1,dl_dst=01:00:5e:00:00:01,dl_src=00:00:00:00:00:01, nw_dst=230.0.0.1, nw_src=10.0.0.1,nw_proto=17,
nw_tos=0,tp_dst=4446,tp_src=4446]

The FDMod forwards the captured packet to NFV-FD, which can, for example, begin monitoring the process. In synthesis,

all packets are forwarded to FDMod (see Figure 1), which applies a filter and only forwards to NFV-FD a copy of messages

that match the rules. Note that packet headers are not modified in any way.

2.3 Process failure detection
The NFV-FD monitors processes using liveness request messages. Periodically (Δi) NFV-FD sends liveness requests to moni-

tored process. At a Δi time interval, NFV-FD sends an AreYouAlive? message and waits for the monitored process to reply

YesIAm!. If a message is not received within a specific timeout Δto interval, NFV-FD starts to suspect the monitored process.

In this case, the state of monitored process is set to S. Otherwise, if NFV-FD receives a reply, the state of monitored process is

set to T.

†http://www.projectfloodlight.org/
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FIGURE 1 Integration of NFV-FD and an OpenFlow controller. API, Application Programming Interface; FD, failure detector; NFV, network

function virtualization

A key problem to implement effective FDs is to compute a precise timeout interval. If the timeout interval is too short, crashes

are quickly detected, but the likeliness of wrong suspicions is higher. Conversely, if the timeout interval is too long, wrong

suspicions will be rare, but this comes at the expense of long detection times.17 An adaptive FD can automatically update the

timeout intervals, and for this reason, it is generally considered to be the best option for real networks.18

In this work, we use an adaptive strategy that forecasts the expected instant of time when the next YesIAmAlive! message

should be received. The expected message arrival date is called EA and uses a dynamic safety margin 𝛼, as proposed in one

study.19 Let us consider 2 processes: p and q, p monitors q. Periodically (Δi) p sends liveness requests to q. Let m1, m2, … ,mk
be the k most recent messages received by p. Let Ti be the time interval that each message took to be received by p, measured

with the local clock. EA can be estimated as follows:

EAk+1 = 1

k

( k∑
i=1

Ti − Δi

)
+ (k + 1)Δi. (1)

EAk+1 is the expected time instant at which the next message (the k + 1-th message) will arrive. The next timeout will expire at

𝜏(k+1) = EA(k+1) + 𝛼(k+1). (2)

The safety margin (𝛼(k+1) in expression (2)) is based on the TCP algorithm by Jacobson,20 and it is used to correct the error of

the estimated arrival time of the next message:

Diff = Timestamp_msgk − Timestamp_msgk−1

Mean = 𝜙 ∗ Mean + (1 − 𝜙) ∗ Diff
Var = 𝜙 ∗ Var + (1 − 𝜙) ∗ |Mean − Diff |

𝛼k+1 = Mean + 𝛽 ∗ Var.

(3)

In expression (3), Diff corresponds to the difference between the local time instant at which the last monitoring message was

received (Timestamp_msgk) and the local time instant at which this monitoring message had been sent (Timestamp_msgk−1).

Mean maintains a weighted mean of the differences. Var reflects the dispersion of intervals from the average and is com-

puted using a weighted mean. The higher the Var, the larger is the 𝛼. 𝜙 and 𝛽 were assigned values 0.9 and 4, respectively,
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approximations of the original values proposed by Jacobson often used in implementations. Using expressions (1), (2), and (3),

the timeout can be adapted to different communication scenarios.

2.4 Link failure detection
Besides detecting process crashes, NFV-FD also detects crashes of communication links. To enable this function, NFV-FD

makes use of a topology discovery mechanism that is performed by OpenFlow switches with the Link Layer Discovery Proto-

col (LLDP).21 The topology discovery protocol uses 2 types of OpenFlow messages: packet in and packet out. The protocol is

executed among OpenFlow switches that periodically exchange packet out messages carrying LLDP packets. After the Open-

Flow switch receives such a message, it propagates the message to the other switches to communicate events related to topology

information.

OpenFlow switches periodically exchange packet out messages. When a switch receives a packet out, LLDP packets are

propagated. When a switch receives a LLDP packet, it sends the packet in message to the OpenFlow controller to inform about

the detected link.22

There are 3 types of events that cause an OpenFlow controller to update the status of a given link23:

• Link up (Controller←Switch): Whenever a switch detects a link to a new switch, it sends a new message to the controller

to inform about the new link.

• Link down (Controller←Switch): Whenever a switch detects a link is down (no new LLDP packets received for some

period of time), it sends a message to the controller to inform about the loss of the link.

• Get Links (Controller→Switch): Ask a switch to send Link up messages for all known links. Useful when a controller

first connects to the switch.

The controller receives information about these events through a function called Link Discovery. The FDMod receives all

the information about the network topology that is provided by/to the OpenFlow controller. In turn, NFV-FD receives this

information via FDMod. For example, whenever there are events of the types Link up or Link down, the controller forwards

this information to FDMod.

The FDMod forwards to NFV-FD detailed information about the event that has occurred. For example, “port s2-eth2 changed:
DOWN” warning that the switch (s2) port (eth2) is connectionless. If there are processes that belong to the respective switch

port, NFV-FD updates the state of process to U unreachable.

As shown in this section, SDN technology enables the integration of protocols or devices, which usually require specific com-

munication interfaces (for example, LLDP protocol). Another work that has explored this fact is the Bidirectional Forwarding
Detection protocol, which has been proposed24 to enable the fast recovery of SDN networks.

3 EXPERIMENTAL EVALUATION

In this section, we describe several strategies to implement NFV-FD and experimental results. We implemented the VNF in the

same host of the controller and also on a separate host; furthermore, we evaluated the use of both traditional VMs and containers.

We also evaluated the quality of the service provided by the proposed NFV-FD from the point of view of an application that

uses a reliable broadcast algorithm and the detection service; this algorithm is described in the first subsection. We used the

Floodlight OpenFlow controller. We used containers running on the Docker platform‡ and VMs running on the Virtualbox§

hypervisor. The experiments were executed on a host based on the Intel Core i5 processor at 2.50 GHz with 4 cores. A virtualized

network was created using Mininet¶ and running the Linux Mint 17 kernel 3.13.0-24 (first set of experiments) and Ubuntu

14.04 (second set of experiments).

3.1 Application: reliable broadcast
Reliable broadcast ensures essentially that all correct processes deliver the same messages and that messages broadcast by

correct processes are eventually delivered.25 Moreover, it is of course good that messages are delivered as fast as possible.26

‡https://www.docker.com/
§https://www.virtualbox.org/
¶http://mininet.org
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Reliable broadcast can be defined by 2 primitives: broadcast(m) and deliver(m), where m is a message. When a process exe-

cutes broadcast(m), we say that it broadcasts m. When a process executes deliver(m), we say that it delivers m to the application

that is communicating with reliable broadcast. Algorithm 1 implements these primitives.

Algorithm 1 treats 4 types of events. First, the _Init event causes the initialization of the following variables: delivered (for

filtering out duplicate messages), correct (processes that have not been detected as crashed by NFV-FD) and from[pi] (each

entry contains the messages that have been delivered from each possible sender). When a message is transmitted by reliable

broadcast, the process needs to invoke the _Broadcast event. The _Deliver event causes the process to deliver m, which is of

course a message that has already been transmitted by a process belonging to Π. In this event, message m is delivered and the

state of process pi is verified. Whether pi∉correct then _Broadcast event is invoked retransmitting the same message already

stored in from[pi]. Finally, the _Crash event is invoked if process pi that has sent m crashed before m has been delivered.

Two kinds of events that are dependent on NFV-FD can force a process to retransmit a message:

• Case 1: the process receives a message from a given source and detects that this source has crashed.

• Case 2: the process delivers a message and realizes that the source has crashed (ie, the source does not belong anymore

to set correct).

3.2 Evaluation of the failure detection service
In our first experiment, we report results of implementation of the FD both within an on a separate host from that of the

OpenFlow controller. For this experiment, the virtualized network consists of a single topology with a switch, a controller, and

4 hosts running the reliable broadcast algorithm based on an FD.4 The NFV-FD is configured to send liveness request messages
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FIGURE 2 CPU usage: performance as NFV-FD is executed with and separated from the controller. FD, failure detector; NFV, network function

virtualization

with Δi = 1000 milliseconds. The hosts that are running the reliable broadcast algorithm are configured to trigger the broadcast

every 1000 milliseconds.

As mentioned above, one of the goals of the first experiment was to measure the impact of NFV when it is executed within/on

a separate host of the controller. Some authors including Batalle et al9 mention that placing an application on the controller

brings benefits; eg, the application can have a full view of the network. To perform this experiment, we evaluated the CPU usage

taking into account the following: (1) the performance of the controller alone, (2) the performance of NFV-FD as a separate

process, and (3) the performance of both (NFV-FD and controller) running on the same CPU. Each experiment was performed

within a 1-hour interval. Results presented in Figure 2 are mean of 5 executions; the maximum and minimum values computed

are also shown.

We can see in Figure 2 that when NFV-FD is run with the controller (NFV-FD and Controller curve), the CPU usage is up to

4.49%. If the Controller is run alone (curve labelled “Controller”), CPU usage is approximately 2.67%; in this case NFV-FD is

executed outside the controller (curve labelled “NFV-FD”) and the average CPU usage is about 2%. We can thus conclude that

placing the function with the controller simply adds the function’s resource requirements to the controller resource requirements.

Thus, this strategy is not scalable: There is clearly a limit on the number of functions that can be implemented in this way. As

the number of functions grows, the impact on the system will surely soar.

For the second experiment, we measured how quickly failures are detected by simulating crashes of both hosts/processes and

communication links. In this case, the virtualized network topology was composed of 3 switches, a remote controller and 4 hosts

running the reliable broadcast algorithm. We show the average detection time obtained for a total of 10 crashes. Crashes were

simulated by blocking monitoring messages‖ and thus causing a timeout. The failure detection time (TD) is the time elapsed

from the moment the crash was simulated until all processes/hosts are notified of the incident. The notification occurs only

when the reliable broadcast algorithm gets informed about the crash.

The average host failure detection time measured is 1256 milliseconds while the maximum value observed is

1454.23 milliseconds. Note that the maximum detection time also includes message transmission delays and task processing

delays, including tasks related to the reliable broadcast algorithm itself. We observed that there is a larger variation of the TD,

with the mean at about 800 milliseconds. The minimum TD measured was 598 milliseconds; in this case, the crash probably

happened immediately before the other hosts were notified. We also measured the TD considering that the crash is notified to

a single host, and in this case it is equal to 22.68 milliseconds. We believe that these detection times are good (fast enough)

and they are also a consequence of the adaptive strategy used to forecast the timeout. In synthesis, based on the experimental

results, we believe it is possible to conclude that it is perfectly feasible to implement the FD service as a VNF.

In the link failure scenario, the TD is the time elapsed since a link crashes until the NFV-FD is aware of the crash. As mentioned

in Section 2.4, the LLDP protocol is used to detect link failures. We evaluated the detection time with the NFV-FD hosted both

with the controller and running at a separate host. For these experiments, we have observed that when the NFV-FD is run with

the controller, it presented a slightly smaller TD. This difference of about 120 milliseconds corresponds to the communication

‖Messages from LLDP and NFV-FD.
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FIGURE 3 NFV-FD running on a container. FD, failure detector; NFV, network function virtualization; VM, virtual machine

FIGURE 4 Container vs VM: instantiation time. NFV, network function virtualization; VM, virtual machine

time between the controller and the host. On the other hand, we can see in Figure 2 that the NFV-FD running with the controller

is an alternative that cannot be used by an arbitrary number of functions at the same time.

3.3 Experimental results: implementation of NFV-FD with containers
In this experiment, we evaluated the benefits of implementing NFV-FD with containers. Container-based virtualization is an

alternative to hypervisors where the virtualization layer runs as an application of the local operating system level.28 Since

applications in containers run directly on the operating system and do not use hardware indirections, they should be more

efficient than their VM-based counterparts and allow higher application density on the same host.13 The comparison is made

between a traditional VM running on the Virtualbox hypervisor and a container running on the Docker platform.

To implement NFV-FD with containers, we used the architecture described in Figure 3. This figure shows VMs that exchange

information with each other through an OpenFlow switch (OVS: Open vSwitch**). Traffic is redirected to NFV-FD as shown

in Figure 1 with FDMod (see Section 2.2), which is an OpenFlow controller module that forwards the packets that match

predefined rules to NFV-FD; those rules specify which processes and links are monitored.

For the first experiment of this series, we measured the instantiation time for each system; eg, we measure the time that a

container or a VM takes to start and stop its execution. To perform this task, we have used the time command to compute the

start and stop times. A script included in rc.local file is used to shutdown the system. Results presented in Figure 4 are mean,

minimum and maximum values, and were repeated 10 times for each virtualization systems. Both virtualization systems are

prepared to execute the NFV-FD and also both running the Linux Ubuntu 14.04.

We can see in Figure 4 that when NFV-FD uses a container, we have the shortest instantiation time, which is up to 95% lower

than the VM counterpart. Furthermore, as we check the minimum and maximum values, we can confirm that the container-based

implementation presents low variation. We can confirm this fact as the standard deviation of the instantiation time is equal to

only 0.04 second for the container-based NFV-FD, while for the VM-based NFV-FD, it grows to 3.35 seconds.

**http://openvswitch.org/
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FIGURE 5 Container vs virtual machine: CPU usage

FIGURE 6 Container vs virtual machine: memory usage

The second experiment in this series was executed to measure CPU and memory usage. For these experiments, the virtualized

network consists of a single topology composed of one switch as shown in Figure 3, one remote controller and 4 hosts running

the reliable broadcast algorithm. The NFV-FD is configured to send liveness request messages with Δi = 1000 milliseconds.

The hosts that are running the reliable broadcast algorithm are used to generate a flow of messages into the network. They are

also configured to transmit messages every 1000 milliseconds.

Figures 5 and 6 show the results for an execution that lasted 1 hour. It is easy to see the advantage of using containers—in

particular, CPU usage was reduced 89.3% on average. A similar result can be seen in Figure 6, in which the containers also

reduce the average memory usage about 74.5%. We believe these results are as expected, as containers do not need to virtualize

the hardware and they are a lightweight virtualization technology that share host kernel.12

4 RELATED WORK

First of all, we have previously published a preliminary version of NFV-FD.14 In that paper, we first investigated the feasibility

of implementing an FD as a virtual network function. We compared 2 implementations: within and outside the OpenFlow

controller. In the current paper, we explored another implementation alternative that uses containers and proved to be better

than the previous implementations both in terms of instantiation time and the amount of resources required. Furthermore, we

also describe in the current paper how a specific application runs on top of NFV-FD. An application is described that runs a

reliable broadcast algorithm that uses information from the FD to reduce the number of messages required.

In Cerrato et al,29 an efficient algorithm to handle the communication between a virtual switch and multiple network functions

that are executed on a single server is proposed. Data exchange ensures traffic isolation between network functions. The proposal
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adopts a master-worker architecture, in which the master corresponds to the virtual switch that determines which network

function (worker) processes the data. The proposal is designed to present high speed.

In Vilalta et al,10 NFVs are implemented on a cloud infrastructure to provide the services of a Path Computation Element
(PCE). A PCE is an entity (eg, component, application, or network node) that is capable of computing a network path or route

based on a network graph and applying computational constraints. A PCE can calculate paths in transport networks. To overcome

scalability limitations, the authors extend the concept of NFV to transport networks by creating a vPCE. A vPCE is a virtual

PCE instance, which is run as a software application on a cloud computing environment. Experimental results show that the

vPCE was able to guarantee a mean processing time for the computation of the paths, even during the peak requests.

In previous study,13 the authors investigate the feasibility of using technologies designed to accelerate VM networking with

containers. In addition, they quantify the network performance of a container-based VNF. The goal is to identify the factors that

have an influence on the packet delay and throughput of container-based applications and VMs. In this context, the authors have

concluded that containers have lower latency cost and lower variability than equivalent Xen VMs running the same software.

In Nakagawa et al,30 the authors propose an architecture for lightweight virtualized network creation using container-based

virtualization environments. A dynamic virtualized network configuration method for container-based NFV is proposed. When

the container starts on a host, the physical switch identifies a switch port where the host connects to and locally applies a

Virtual Local Area Network (VLAN) configuration to the switch port to construct the virtualized network. When the container

stops running the switch removes the virtualized network by deleting the VLAN configuration on the switch port without any

communication with the SDN controller. However, to decide where to run each container, a manager is used. In fact, the NFV

can be configured without any direct communication with the SDN controller. Instead, to build the VLAN, it is first necessary

to perform some communication between the container manager with each the switch.

In Cziva et al,28 a framework (called GLANF—Glasgow Network Functions) is proposed to create, deploy, and manage VNFs

in OpenFlow networks. The authors exploit container-based network functions to achieve low performance overhead and fast

deployment in the NFV context. In the approach proposed, the traffic is rerouted to the GLANF Server hosting the network

function. The GLANF relies on OpenFlow to match and forward traffic to an NFV host. The GLANF Router is necessary to

route the traffic to the GLANF Servers hosting the network functions. To achieve this, OpenFlow rules are inserted in each

switch. In the experimental results, the authors show a significant improvement in throughput and function instantiation time

by using container. The main difference to our work is that we do not have to install rules on each switch. Instead, we have a

module on the OpenFlow controller that forwards the packet to the corresponding network functions.

5 CONCLUSION

In this work, we described NFV-FD, an NFV-based implemention of an FD, a classical distributed systems abstraction that can

be used to monitor processes of a distributed application. The NFV-FD uses information obtained from an OpenFlow controller

to monitor processes and determine their state. In addition, NFV-FD takes advantage of OpenFlow’s LLDP to monitor links

and provides information about link state and process reachability. We describe several alternatives to implement NFV-FD: The

network function can be implemented with the controller or on a separate host. Furthermore, we also compared implementations

using traditional VMs and containers. Our first experiment shows that although the implementation of a network function with

the controller brings benefits—in our case an improved failure detection time—it does not scale, as the resource requirements

of the function sum up with the requirements of the controller. The results of the comparison between NFV-FD running on a

traditional VM and running on a container confirm that containers are an extremely attractive technology in terms of resource

requirements.

As future work, we can clearly see that there is a lack of tools to support the development and deployment of NFVs, in particu-

lar taking advantage of containers. As we can conclude from our experience that NFV technology was perfect to the implement

FD abstraction, the implementation of other classical distributed services within the network using the same technology comes

as a natural next step. In this work, we explored FDs at the application level, but they can also be applied to monitor virtual-

ized network infrastructure itself that would be a first step towards developing reliable, fault-tolerant virtualized networks based

on NFV.
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