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a b s t r a c t

A cut tree is a combinatorial structure that represents the edge-connectivity between all pairs of vertices
of an undirected graph. Cut trees solve the all pairs minimum s–t-cut problem efficiently. Cut trees have
a large number of applications including the solution of important combinatorial problems in fields such
as graph clustering and graph connectivity. They have also been applied to scheduling problems, social
network analysis, biological data analysis, among others. Two sequential algorithms to compute a cut tree
of a capacitated undirected graph are well known: the Gomory–Hu algorithm and the Gusfield algorithm.
In this work three parallel cut tree algorithms are presented, including parallel versions of Gusfield and
Gomory–Hu algorithms. A hybrid algorithm that combines techniques from both algorithms is proposed
which provides a more robust performance for arbitrary instances. Experimental results show that the
three algorithms achieve significant speedups on real and synthetic graphs. We discuss the trade-offs
between the alternatives, each of which presents better results given the characteristics of the input
graph. On several instances the hybrid algorithm outperformed both other algorithms, being faster than
the parallel Gomory–Hu algorithm on most instances.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

A cut tree is a combinatorial structure that represents the edge-
connectivity between all pairs of vertices of undirected graphs.
Cut trees can be used to solve efficiently the all pairs minimum
s-t-cut problem. Cut trees are widely used for solving important
combinatorial problems in areas such as graph partitioning [47],
graph clustering [18,20,24] and graph connectivity [37]. Cut trees
also have many direct applications. They have been applied in
scheduling problems [45], social network analysis [5], biological
data analysis [40,51], among many others.
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In a 1961 seminal paper [23], R.E. Gomory and T.C. Hu showed
that the all pairsminimum s-t-cut problem onundirected graphs can
be solvedwithn−1 calls to aminimum s–t-cut algorithm instead of
the

( n
2

)
calls required by the straightforward solution. The solution

comprises the construction of a tree that encodes oneminimum s–
t-cut between every pair of vertices of the input graph. Such a tree
is known as a cut tree or a Gomory–Hu tree.

There are two well known algorithms for building a cut tree
of an undirected graph: Gomory–Hu and Gusfield algorithms. We
refer to these algorithms as GH and Gus, respectively. The GH and
Gus algorithms present similarities and differences. A similarity
is that both call a minimum s–t-cut algorithm n − 1 times. A
difference is the fact that the Gus algorithm finds the n − 1 cuts
in the original input graph, whereas the GH algorithm contracts
the graph as it progresses. There is clearly a trade-off between
the algorithms since Gus consists of a simple loop calling the
minimum cut procedure while GH requires the manipulation of
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nontrivial data structures in order to keep track of the tree being
constructed and the contracted graphs, but may decrease the size
of the subproblems along the way.

The GH and Gus algorithms have the same worst case time
complexity. However, their running times in practice vary widely.
The choice of one or the other algorithm for a particular class of
graphs is nontrivial: neither algorithm presents the best running
times for every instance. After experimentingwith both algorithms
inmany classes of graphs, A.V. Goldberg and K. Tsioutsiouliklis [22]
concluded that their optimized version of the GH algorithm is
‘‘more robust’’ than their version of the Gus algorithm. The reason
is that for certain instances, the GH algorithm outperforms the Gus
algorithm by a large margin, while the opposite never occurs even
though the Gus algorithm is the fastest implementation for many
families of graphs.

The GH algorithm only outperforms the Gus algorithm when
there are balanced cuts in the input graph that allow GH to reduce
considerably the size of the graph after contractions are executed.
However determiningwhether there are balanced cuts in the input
graph is nontrivial.

In this work we present parallel versions for both the GH and
Gus algorithms and also a new hybrid algorithm that combines
features of those algorithms. Instead of applying contractions or
using the input graph throughout the execution, the hybrid al-
gorithm decides at each step whether there is an advantage to
spend time contracting the graph or if it is preferable to simply
compute the minimum cut on the original input graph. As the
algorithms compute the tree sequentially in away that eachupdate
of the tree depends on previous operations, at first glance it might
seem unpromising to parallelize these algorithms. Nonetheless,
experimental results show thatmost cuts computed in parallel can
be used by the algorithm to advance the construction of the cut
tree.

The strategy employed to parallelize both GH and Gus algo-
rithms is based on parallel computations of the minimum cuts by
different processes. As the minimum cuts are computed, the algo-
rithms check whether the cut can be used to modify the cut tree
under construction. That attempt will succeed only if the vertices
separated by theminimumcut have not been separated by another
cut previously found. If another parallel execution has already
separated the two vertices in question, the newly found minimum
cut is rejected and a new minimum cut must be calculated. We
present experimental results that show that significant speedups
can be achieved by the proposed parallel algorithms.

The parallel version of the GH algorithm is non-trivial due to a
few modifications that are required. In particular, a situation that
has to be dealt with is how the tree is updated as cuts computed
in parallel may interfere with each other. In the sequential version
each new cut cannot cross any of the previously computed cuts. In
the parallel version, as a new cut is being computed, the tree may
have already been updated as a result of the other cuts which were
computed in parallel.We prove that despite the possibility that the
new cut crosses two or more other cuts, it is possible to update the
tree in an efficient way, without any need to uncross the cuts.

As the running time of neither GH nor Gus dominates the
running time of the other [22], the hybrid parallel algorithm is pro-
posed as mentioned above. This algorithm searches for minimum
cuts in either the input graph or in the contracted graph. The main
advantage of the hybrid algorithm is to avoid the computation-
ally expensive operation of contracting the graph when there is
clearly no advantage in doing so. Experimental results show that
the hybrid algorithm is frequently faster than GH and for certain
instances it is much faster than Gus.

The rest of this paper is organized as follows. Section 2 contains
basic definitions used throughout the paper. Section 3 explains the
sequential Gus and GH algorithms. Section 4 presents the parallel

version of theGus algorithm. Sections 5 and6present, respectively,
the parallel GH and hybrid algorithms. In Section 7 the experimen-
tal methodology and results are presented. In Section 8 we present
related work. Finally, in Section 9, we present the conclusions and
future work.

2. Cut trees

Let G be a capacitated graph G = (VG, EG, c) where function
c : EG → Z+ defines the capacities of the edges in EG. A cut of
G is a bipartition of VG. The cut induced by a set X ⊂ VG is the
bipartition {X, X} of VG induced by X , where X = VG − X . The
set EG(X, X) = {{u, v} ∈ E : u ∈ X, v ∈ X} contains the
edges that cross the cut {X, X}. The capacity of the cut {X, X} is
c(X, X) =

∑
e∈EG(X,X)c(e).

Let s and t be two vertices of G. An s–t-cut of G is a cut {X, X}
such that s ∈ X and t ∈ X . A minimum s–t-cut is an s–t-cut of
minimum capacity. A cut {{s}, VG − {s}} is called a trivial cut. The
local connectivity between s and t in VG, denoted by λG(s, t), is the
capacity of aminimum s–t-cut. Theminimum s–t-cut problem and
the maximum flow problem are dual and λG(s, t) equals the value
of amaximum flow between s and t . Anymaximum flow algorithm
for directed graphs can be used to compute the local connectivity
in undirected graphs using the reduction that transforms each
undirected edge into two antiparallel edges.

All pairs minimum connectivity. Consider the problem of
finding the local connectivity between all pairs of vertices of an
undirected graph. The naive solution consists of running

(n
2

)
max-

imum flow algorithms, one for each pair of vertices. R.E. Gomory
and T.C. Hu [23] showed that n − 1 maximum flow computations
are sufficient. The solution to the problem consists of constructing
a weighted tree that represents the values of all pairwise local
connectivity.

A flow equivalent tree of a graph G = (VG, EG, c) is a capacitated
tree T with vertex set VG such that for all u, v ∈ VG, the minimum
capacity of an edge on the path between u and v in T is equal to the
local connectivity λG(u, v), i.e., λT (u, v) = λG(u, v), for all u, v ∈
VG.

A cut tree is a flow equivalent tree T such that the cut induced
by removing an edge of minimum weight from the path between
u and v is a minimum u-v-cut of G, for all u, v ∈ VG. Cut trees are
also called Gomory–Hu trees [41].

Fig. 1b shows a cut tree of the graph of Fig. 1a. Edge {C,D} is the
edge with minimum capacity on the tree path between vertices
A and F . Therefore, a minimum cut between vertices A and F is
produced by the removal of edge {C,D} from the tree, which gives
the partition {{A, B, C, E}, {D, F}} shown in Fig. 1a.

3. Sequential cut tree algorithms

In this section we present the two classical sequential algo-
rithms for computing cut trees of capacitated graphs: the Gomory–
Hu (GH) algorithm [23] and Gusfield (Gus) algorithm [27]. Both
algorithms use a divide and conquer strategy, and make n − 1
calls to aminimum s–t-cut algorithm. The algorithms differ in their
basic approach to obtain a cut tree from an input graph. While the
GH algorithmmakes a series of contractions on the original graph,
the Gus algorithm computes all cuts on the unmodified graph. The
descriptions of these sequential algorithms follow. The undirected
input graph is denoted by G = (VG, EG, cG) and the tree being
constructed is denoted by T = (VT , ET , cT ). To avoid ambiguities,
the elements of VG are called vertices (of the input graph) and the
elements of VT will be called nodes (of the tree).
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(b) A cut tree of the graph.

Fig. 1. An undirected weighted graph, a minimum cut and a cut tree of the graph.

3.1. The Gusfield algorithm

The sequential Gus algorithm consists of n − 1 iterations, each
of which calls a minimum s–t-cut algorithm which is executed
on the input graph. The pseudocode of Gus algorithm is given as
Algorithm 1. Assume the vertices of the input graph are identified
by integers from 1 to n. Initially, the tree is a star with all vertices
pointing to node 1 (lines 1–2). At each iteration (lines 3–6), the
algorithm chooses a different source vertex s, s ≥ 2. This choice
determines the destination vertex t as the current neighbor of s
in the tree. Then, using a minimum cut algorithm, a minimum s–
t-cut {X, X}, with s ∈ X , is found. The tree is updated as follows:
every neighbor u of t , u > s, u ∈ X , gets disconnected from t and
gets connected to s. The algorithmendswhen each node from2 to n
has been used at an iteration. The implementation of the algorithm
is simple and requires no changes in themaximum flow algorithm.
This version of the algorithm finds a flow equivalent tree. A small
modification causes the algorithm to output a cut tree: in line 8, do
not restrict the update with u > s and allow any neighbor of t that
belongs to X to become a neighbor of s.

Algorithm 1 Sequential Gusfield Algorithm
Input: G = (VG, EG, c) is a weighted graph
Output: T = (VT , ET , f ) is a flow equivalent tree of G
1: for i = 1 to |VG| do
2: treei ← 1

// |VG|−1 minimum s-t-cut iterations
3: for s← 2 to |VG| do
4: t ← trees
5: flows ←max-flow(s, t)
6: {X, X} ←minimum s-t-cut

// update the tree
7: for u ∈ VG, u > s do
8: if treeu = t and u ∈ X then
9: treeu ← s

// return the flow equivalent tree
10: VT ← VG
11: ET ← ∅
12: for s← 2 to |VG| do
13: ET ← ET ∪ {s, trees}
14: f ({s, trees})← flows
15: return T = (VT , ET , f )

3.2. The Gomory–Hu algorithm

The GH algorithm [23] also consists of n − 1 iterations, each
of which finds a minimum s–t-cut, but unlike the Gus algorithm,
the minimum cuts are obtained in contracted versions of the input
graph. The algorithm starts with a tree T with a single node S iden-
tified with all vertices of the input graph, that is, S = VG. At each
step, the algorithm picks two vertices s and t of VG contained in the
same node of the tree, say, X ∈ VT . For each connected component
of T − X , the algorithm contracts, in G, the corresponding vertices
into one node. Aminimum s–t-cut is found in the contracted graph.

The tree node X is split into two new nodes Xs and Xt containing
s and t respectively. The other vertices in X are inserted in Xs or
in Xt and the tree edges are rearranged in accordance to the cut
just found. The algorithm ends when every node contains only one
vertex.

Fig. 2 shows the three first steps of the GH algorithm executed
for an example graph. In the beginning, see Fig. 2a, the tree has a
single node from which vertices 1 and 2 are taken as s and t . The
cut separating vertices 1 and 2 induce the tree shown in Fig. 2b
where vertices 1 and 3 are picked. The next contracted graph is
shown in Fig. 2c as well as the updated tree, after computing the
minimum cut that separates vertices 1 and 3. Finally, Fig. 2d shows
the contracted graph after vertices 2 and 4 are picked up and also
the updated partial cut tree. The algorithm continues for twomore
steps to obtain the complete cut tree.

Nextwe describe the GH algorithm formally. Let P be a partition
of VG. Let T = (P, ET , c) be a tree with edge capacities defined by
function c : ET → Q. The nodes of this tree are sets of vertices of
VG contained in the partition P . Each partial tree will correspond
to a partition of VG and the final tree will correspond to the trivial
partition {{v} | v ∈ VG}.

We say that T is a cut tree of G with respect to partition P if for
each edge e = {Vu, Vv} ∈ ET , there exist vertices u ∈ Vu e v ∈ Vv

such that λG(u, v) = c(e) and the partition of VG obtained by the
deletion of e from T induces a minimum u-v-cut of G. We denote
by CT (e) the cut of G induced by the components of T − e.

In [41] it is shown that if G is a graph, T a cut tree with respect
to a partition P = {{v} | v ∈ VG} of VG, then T is a cut tree of G.

TheGomory–Hualgorithm is basedon the following lemma [23]:

Lemma 1. Let {X, X} be a minimum x-y-cut with x ∈ X. Let s, t ∈ X
and let {S, S} be a minimum s-t-cut such that y ̸∈ S (substitute S by
S and s by t if necessary). Then, {X ∩ S, X ∩ S} is a minimum s-t-cut.

This lemma implies that if the set X is contracted in G, then
for any pair of vertices in X , there exists a minimum s–t-cut in
the contracted graph that corresponds to a minimum s–t-cut of
the original graph. Let {X, X} be a minimum cut and let G/X be
the graph produced by the contraction of the vertices in X of G.
According to Lemma 1, λG(s, t) = λG/X (s, t), that is, a minimum
s–t-cut of G can be found alternatively in G/X .

Let X1, X2, . . . , Xk be pairwise disjoint subsets of VG. We denote
by G/X1, X2, . . . , Xk the graph obtained from G by contracting each
Xi, 1 ≤ i ≤ k. We denote by G − v the graph obtained from G by
removing the vertex v and its incident edges.

Algorithm 2 shows the pseudocode of the GH algorithm. The
initial tree has one node and corresponds to the partition P = {VG}.
At each iteration, the GH algorithm picks a node X ∈ VT with
|X | > 1 (line 3). The vertices that correspond to the connected
components of T − X are contracted in G to produce a graph
G′ (lines 4–6). A minimum s–t-cut {Y , Y } is found between two
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(a) The algorithm starts. (b) A minimum cut separating vertices 1 and 2.

(c) A minimum cut separating vertices 3 and 1. (d) A minimum cut separating vertices 4 and 2.

Fig. 2. First 3 steps of the GH algorithm.

vertices s, t ∈ X in the contracted graph (lines 7–8). The tree being
constructed is updated: node X is split into two nodes Xs = Y ∩ X
and Xt = Y ∩ X . Each edge {A, X} incident to X is connected to
Xs if the contracted vertex containing A is on the s side of the cut;
the edge is connected to Xt otherwise (lines 11–19). The algorithm
ends when all nodes are singleton sets.

Algorithm 2 Sequential Gomory–Hu Algorithm
1: T ← (VT = {VG}, ET = ∅) // Partial GH tree
2: while ∃X ∈ VT such that |X |> 1 do
3: Let X ∈ VT such that |X |> 1
4: Let V1, V2, . . . , Vk nodes of the connected components of T − X
5: Xi ←

⋃
V ′∈Vi

V ′ , for 1 ≤ i ≤ k // all vertices in the component
6: G′ ← G/X1, X2, . . . , Xk // Contracted graph
7: Let s, t ∈ X
8: {Y , Y } ←minimum s-t-cut of G′
9: Xs ← Y ∩ X
10: Xt ← Y ∩ X

// Update the tree splitting X in Xs and Xt
11: e← {Xs, Xt }

12: c(e)← d(Y ) // sets the edge capacity
13: for all edges e′ = {A, X} ∈ ET incident X in T do
14: if A is on the Y side of {Y , Y } then
15: ET ← ET ∪ {{A, Xs}}

16: else
17: ET ← ET ∪ {{A, Xt }}

18: VT ← (VT \{X}) ∪ {Xs, Xt } // Split X
19: ET ← ET ∪ {e}
20: return T

4. A parallel version of the Gusfield algorithm

In this section we describe a parallel implementation of the
Gus algorithm. The implementation follows a master/slave model,
in which the master is responsible for defining the tasks to be
executed by the slaves. These tasks are instances of the minimum
cut problem. The algorithm always finds minimum cuts on the
input graph. Therefore, each slave process can maintain a copy
of the input graph, and this copy does not need to be updated.
Messages sent from the master to the slaves need only to carry a
source and a destination pair. The slaves compute minimum cuts
and return the obtained cuts to the master.

We note that the minimum cut problem is hard to parallelize.
Despite extensive research on the problem, experimental studies

of parallel min cut algorithms report modest speedups [6,33] due
to synchronization requirements. On the other hand, in the parallel
version of the Gus algorithm each slave can run the sequential
minimum cut algorithm without synchronization. This strategy is
optimistic in the sense that the slaves compute their tasks inde-
pendently, even though those tasks may interfere with each other.
Specifically, tree updates may invalidate other pending tasks. This
coarse grain strategy to parallelize the algorithm achieves high
speedups as shown in Section 7.

The pseudocode of the MPI implementation is given as Al-
gorithm 3. The master process is proc0 and the slaves are
proc1, .., procp−1. Each processmaintains a copy of the input graph.
We assume that VG = {1, 2, 3, . . . , |VG|}. The master creates the
tasks and sends them to the slaves (lines 5, 15 and 18). Each task
contains the source and the destination nodes, s and t , used as
input to the minimum cut algorithm. When a slave finishes a task,
it sends the minimum cut and its value to the master. Based on
these data, the master may update the tree if s is still a neighbor of
t (line 9). This is done in the same way as the sequential algorithm
does. If s and t are not neighbors by the time the task result is
processed, then the task is said to have been ‘‘unused’’ and another
task having s as the source is produced (line 18). The condition to
stop the while loop in line 7 guarantees that |VG| − 1 successful
receives are executed.

The structure of the graph has an influence on the number of
unused tasks. If the s–t-cut {X, X} is such that X is small, the tree
suffers few changes. The speedup of the parallel execution depends
on the number of unused cuts.

5. A parallel version of the Gomory–Hu algorithm

In this section we describe a parallel version of the GH algo-
rithm. The algorithm is also based on the master–slave paradigm.
The master keeps the tree in construction and the slaves solve
minimum s–t-cut problems independently. Although this strategy
is similar to that used in the parallel Gus algorithm, the parallel GH
algorithm is more complex. The tree that is built by the algorithm
represents a partition of the vertices of the input graph. A tree
node corresponds to a set of nodes of the input graph. At each
step, the algorithm picks a tree node to be further partitioned.
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Algorithm 3 Parallel Gusfield Algorithm
Input: G = (VG, EG, c), procj processors (0 ≤ j < p)
Output: T = (VT , ET , f ) is a flow equivalent tree of G
1: if procj = 0 then // master process
2: for i← 1 to |VG| do
3: treei ← 1
4: for s← 2 to p do
5: send Task(s, trees) to procs−1
6: s← p+ 1
7: while s < p+ |VG| do
8: receive result s′ , t ′ , flow, {X, X} from procj
9: if trees′ = t ′ then // update the tree
10: flows′ = flow
11: for all u ∈ VG, u > s′ do
12: if treeu = t ′ and u ∈ X then
13: treeu ← s′
14: if s ≤ |VG| then
15: send a new Task(s, trees) to procj
16: s← s+ 1
17: else // unused, try again
18: send Task(s′ , trees′ ) to procj

Build T as in lines 10–14 of the sequential algorithm
19: return T
20: else // slave processes
21: while more tasks do
22: receive Task(s, t)
23: s-t-cut {X, X} ←Min-Cut(s, t)
24: send s, t , {X, X} to proc0

We call this node the pivot. In our parallel implementation, the
mastermust send to each slave enough information for the slave to
build the contracted graph on which the minimum cut algorithm
is executed. The master also picks the pair of vertices s and t to be
separated. These vertices should be selectedwith care, as they have
an influence on the performance of the algorithm.

The pseudocode of parallel GH is shown in Algorithm 4. The
master process is proc0 and the slaves are proc1, .., procp−1. The
algorithm receives as input the capacitated graph G = (VG, EG, cG)
and produces as output the capacitated tree T = (VT , ET , cT ).
Each process maintains a copy of the input graph. We assume that
VG = {1, 2, 3, . . . , |VG|}.

The master generates the tasks which are sequentially sent to
the slaves (line 6). Each task contains a partition of VG and the
source and the destination nodes, s and t . This information is used
by the slave to build the contracted graph and to compute the
minimum s–t-cut. When a slave completes a task, it sends the cut
and its value back to the master. Based on these data, the master
updates the tree if s and t still belong to the same node of the tree
(lines 9–20).

Please note that in this description the term node is used for
a cut tree node, and the term vertex refers to vertices of both the
input graph and the contracted graph. Given an edge e = {U, V } ∈
ET , e.V denotes the vertex that is the source or destination of the
cut fromwhich edge ewas obtained and that remained in the same
side of the cut as the vertices in V .

The tree is updated as follows:

1. create a new node R that contains the vertices of set X ∩
pivot;

2. remove from pivot the vertices in X ∩ pivot;
3. remove pivot from the list of pivot candidates if |pivot| = 1;
4. insert node R in the list of pivot candidates in case |R| > 1;
5. for each edge that is incident on pivot , e = {V , pivot},

remove e from ET and insert {V , R} in ET , if e.V ∈ X;
6. add edge {pivot, R} to ET , setting its capacity to the capacity

of cut {X, X}.

If s and t have already been separated and belong to different
tree nodes, then we say that the task is unused. The minimum

Fig. 3. An example of the first step of the execution of the parallel algorithm GH.
The tree has two nodes u = {1, 3} and v = {2, 4, 5, 6}. The vertices associated with
edge e = {u, v} are e.u = 1 and e.v = 2 which were employed to compute the cut
that originated edge e.

Fig. 4. The parallel GH algorithm may cause the minimum s–t-cut to cross other
tree nodes besides the pivot. When the s–t-cut is processed because of cut {X, X}, x
and y had been separated as a result of anotherminimum s–t-cut {Xe, Xe} computed
in parallel.

cut is discarded and another task is produced (lines 25–28). The
algorithm ends when all tree nodes contain only one vertex.

As an example consider Fig. 3. Vertices 1 and 2 were separated
and the tree has 2 nodes that correspond to the sets of vertices
u = {1, 3} and v = {2, 4, 5, 6}. Edge e = {u, v} was created with
capacity equal to 15. In this case, e.u = 1 e e.v = 2 are the vertices
used in the definitions of s and t for producing the minimum s–t-
cut that originated edge e. As the algorithm continues, e.u and e.v
remain the same.

Note that the parallel algorithm updates the tree in a different
way from the sequential algorithm. The new strategy is necessary
because a node v that is currently adjacent to the pivot might have
been part of the pivot when the task was created. Therefore, the s–
t-cut being processedmay cross v and/or other nodes in its subtree.
See Fig. 4 for an illustration of this case. Solid lines show the current
tree and the dashed line represents the pivot at the step in which
nodes s and t were selected to be separated. Cut {Xe, Xe} separated
x from y, dividing the pivot into two nodes connected by edge
{pivot, v}. Note that the s–t-cut {X, X} crosses node v. The parallel
GH algorithm reconnects edge e to the node that belongs to the
same side of the cut inwhich y = e.v is: if y ∈ X , then e is connected
to new = pivot ∩ X that contains s. Otherwise, the edge remains
connected to the pivot node that contains t . The correctness of this
operation is proved at the end of this section.

More details of the algorithm follow:

The master process.

To create a new task, the master invokes the pick_pivot
subroutine that picks the pivot containing the nodes s, t that
will be separated. Procedure build_partition returns an array
node_map that: (i) associates each vertex in VG \ pivot with one
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(a) Partition of the nodes and the node_map
array.

(b) Contracted graph.

Fig. 5. The procedure build_partition produces a numbering of the vertices: the node_map array. The 2 connected components of T − pivot are mapped to vertices 0
and 1 and the vertices in the pivot are mapped to vertices 2 and 3, respectively.

of the parts of a partition of VG \ pivot . The partition is formed
by the subset of vertices contained in the nodes of each con-
nected component of T − pivot . (ii) Each vertex of pivot receives
a unique sequential number. These are the vertices that will not
be contracted. The array node_map is sent to a slave process and
together with the input graph contains enough information for the
construction of the contracted graph, whose vertices are labeled by
the numbers in the node_map array.

Fig. 5a shows an example of a node_map array. The input graph
is the same that appeared in Fig. 2. Vertices 1 and 3 are mapped to
0; vertices 4 and 6 are mapped to 1; vertices 2 and 5 of the pivot
are assigned unique sequential numbers 2 and 3, respectively. The
contracted graph is shown in Fig. 5b.

Algorithm 4 Parallel Gomory–Hu Algorithm
Input: G = (VG, EG, cG), procj , 0 ≤ j < p, processes
Output: T = (VT , ET , cT ) a cut tree of G
1: if procj = 0 then // master process
2: for s← 1 to p− 1 do
3: pivot ← pick_pivot(T )
4: partition← build_partition(pivot , T )
5: (s, t)← pick_pair_st(pivot)
6: send task (s, t, partition) to procs
7: loop
8: receive from procj reply (s, t, X), where {X, X} is a minimum s-t-cut of

G
9: if s and t belong to same pivot of VT then // update tree
10: new← pivot ∩ X
11: pivot ← pivot\X
12: VT ← VT ∪ {new}
13: if |pivot|= 1 then
14: remove pivot from the candidate list
15: if |new|> 1 then
16: insert new in the candidate list
17: for all edges e = {pivot, V } ∈ ET do
18: if e.V ∈ X then // reconnect e
19: ET ← (ET \{e}) ∪ {{new, V }}
20: add edge {pivot, new} to ET with the capacity of {X, X}
21: if |VT |= |VG| then
22: send finalization messages to all slave processes
23: print tree T
24: end
25: pivot ← pick_pivot(T )
26: partition← build_partition(pivot , T )
27: (s, t)← pick_pair_st(pivot)
28: send task (s, t, partition) to procj
29: else // slave process
30: loop
31: receive task (s, t, partition)
32: if Task = end then
33: halt
34: Gc ← build_contracted_graph(G, partition)
35: X ← minimum_cut(Gc , s, t)
36: send reply (s, t, X) to proc0

Algorithm 5 build_contracted_graph(G, partition)
Input: G = (VG, EG, cG), input graph e partition
Output: Gc = (Vc, Ec, cc), contracted graph
1: for each {u, v} ∈ EG do
2: if partition[u] ̸=partition[v] then
3: add_edge (partition[u], partition[v], cG[{u, v}], Gc)

Procedure pick_st_pair is responsible for selecting a pair of
nodes s and t in pivot to be separated by a minimum s–t-cut. After
that, the task can be sent to a slave.

The algorithmcompleteswhen the tree contains |VG|nodes. The
master process sends finalization messages to all slave processes
(line 22).

The slave processes.

A slave process receives tasks from themaster process. For each
task, the slave builds the contracted graph, computes a minimum
s–t-cut on that graph and sends the result back to the master
process (lines 34–36 of Algorithm 4).

The contracted graph is built by iterating through the list of
edges of the input graph and deciding whether the edge exists or
not in the contracted graph, as shown in Algorithm 5. If the edge
connects vertices that belong to the same subtree of T−pivot , then
the corresponding edge is not included in the contracted graph
because it would form a loop. On the other hand, edges connecting
vertices in different subtrees of T − pivot or edges that contain at
least one vertex in the pivot generate an edge of the contracted
graph (or an increase in the capacity of an edge already included).
Although the slave does not have access to the tree T , the partition
vector contains enough information to carry out these tests.

Correctness of the parallel GH algorithm.

As discussed previously, the parallel GH algorithm differs from
the sequential algorithm in the way it updates the tree. In the
sequential algorithm, all tree nodes belonging to the same subtree
of T − pivot are necessarily contained on the same side of the s–
t-cut. In the parallel GH algorithm, a pivot node might have been
split one ormore times at themoment that an s–t-cut for this node
is processed. Fig. 4 illustrates this situation. In the figure, e.v is the
vertex y, which can either belong to v or to another node in the
same subtree of T − pivot . As described above, the parallel GH
algorithm connects edge e according to the side of the cut to which
y = e.v belongs. The next lemma shows that Algorithm 4 correctly
updates the tree.
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Lemma 2. Algorithm 4 correctly updates the tree.

Proof. Let G = (VG, EG, cG) be the input graph and T = (VT , ET , cT )
the tree in construction as an s–t-cut is received by the master
process. We show that the tree update executed by Algorithm 4
is equivalent to the update executed by the sequential algorithm
in the current tree. Note that each cut of the contracted graph
corresponds to a cut of the input graph with the same capacity.

As shown in Fig. 4, let pivot ∈ VT such that s, t ∈ pivot . Let
e = {pivot, v} ∈ ET be an edge incident to pivot . Let X ⊆ VG,
s ∈ X , such that {X, X} is the minimum s–t-cut received by the
master process. Let Xe ⊆ VG, s, t, x ∈ Xe, be the minimum x-y-cut
associated with edge e. Assume that cuts {X, X} and {Xe, Xe} cross,
i.e., X ∩Xe ̸= ∅ and X ∩Xe ̸= ∅ (note that s ∈ X ∩Xe and t ∈ X ∩Xe).

Case I. y ∈ X . From Lemma 1 of Section 3, when y ∈ X , the
set S = X ∩ Xe defines a minimum s–t-cut that does not cross cut
Xe, either if x belongs to X or to X . Cut {S, S} is consistent with the
sequential GH algorithm (with respect to edge e) and is such that
the subtree of T − pivot which contains v belongs to S. Therefore
the sequential algorithmwould also update the tree by connecting
node v to node pivot ∩S. As e.v = y ∈ X , the parallel GH algorithm
does not execute line 19, keeping v connected to the pivot that
resulted in set pivot ∩ X which is the same as pivot ∩ S.

Case II. y ∈ X . When y ∈ X , then Lemma 1 implies that
S = X ∩ Xe is a minimum s–t-cut. By using this cut the sequential
algorithmwould connect v to node pivot∩ S. The parallel algorithm
(line 19), connects v to pivot ∩ X which is the same as pivot ∩ S.

If cut {X, X} crosses several subtrees of T − pivot , the same
analysismust be applied successively to each subtree. The resulting
cut does not cross any subtree, because each uncrossing does not
interfere in the previous uncrossings as they correspond to set
intersection operations.

6. A hybrid algorithm for arbitrary instances

In this section we introduce a hybrid algorithm that combines
characteristics of GH and Gus in order to present a robust perfor-
mance for arbitrary input graphs. Note that Gus and GH are either
the best choice for some input graphs. Actually for some graph
instances one of the two algorithms may present results that are
substantially better than the other. In this way, our main purpose
in developing the hybrid algorithm is to remove from the user the
need to make a single choice.

In order to understand how the parallel GH algorithm compares
with the parallel Gus algorithm, it is necessary to understand the
notion of balanced/unbalanced cuts. Informally, a cut {X, X} is
unbalanced if either X or X is small. This notion plays an important
role on the performance of the parallel cut algorithms. The more
unbalanced the cut, the less it interferes with other cuts. The Gus
parallel algorithm performs well when the graph has unbalanced
cuts. On the other hand, the best performances of the GH algorithm
are for graphs with balanced cuts. Upon finding a balanced cut, the
GH algorithm significantly reduces the size of the graph, causing
all subsequent minimum cut computations to be executed on
smaller graphs. As a matter of fact, the GH algorithm involves the
manipulation of a number of data structures and the only way that
this overhead can be compensated for is by reducing the size of
the graph. In conclusion, there is no best algorithm for every case.
Depending on the input graph either the parallel version of the Gus
algorithm or the parallel version of the GH algorithm may be the
best. When the input graph has balanced cuts, the GH algorithm is
likely to be the best.

The performance of algorithms GH and Gus varies according to
the instance to which they are applied. Gus is the best for several
instances, but there are instances for which GH performs much
better. Themain reason is that GH spends time building contracted

graphs, a computationally expensive operation, whichmay ormay
not be compensated by the amount of time saved as the minimum
cuts are computed. Thus we present a hybrid algorithm that com-
bines Gus and GH algorithms and that computes minimum cuts
both on the input graph and on a contracted graph. The purpose
of this hybrid algorithm is to achieve a robust performance, which
does not depend on the particular instance. We actually expect the
performance of the hybrid algorithm to be comparable to the best
of the both others (GH and Gus). In particular, when Gus is the
best choicewe expected the hybrid algorithm to take slightlymore
time, as it involves decisions and employs complex data structures
that Gus by itself does not. Next, the hybrid algorithm is described.

The hybrid algorithm maintains the tree under construction as
the GH algorithm. The contracted graph is only built if there is a
reduction in its size, i.e., if it is sufficiently smaller than the size
of the input graph. A threshold t , 0 ≤ t ≤ 1, is defined, which
is employed as follows: after the pivot and the pair of vertices to
be separated are selected, if the contracted graph has less vertices
than t times the number of vertices of the input graph, then the
contracted graph is built. Otherwise the input graph is used to
compute the minimum cut.

As shown in the previous section, it is possible to update the tree
under construction even when a newly found cut crosses previous
cuts. The strategy employed in this case is similar to that described
for the parallel GH: (i) the pivot is split according to the cut and
(ii) each edge e = {pivot, v} incident to the pivot is connected to
the node containing s or t , according to the side of the cut to which
vertex e.V belongs.

Algorithm 6 Parallel Hybrid Algorithm
Input: G = (VG, EG, cG), procj , 0 ≤ j < p, processes
Output: T = (VT , ET , cT ) a cut tree of G
1: if procj = 0 then // master process
2: for s← 1 to p− 1 do
3: pivot ← pick_pivot(T )
4: (s, t)← pick_pair_st(pivot)
5: send task (s, t, BuildContracted = False) to procs
6: loop
7: receive from procj reply (s, t, X), where {X, X} is a minimum s-t-cut of

G
8: if s and t belong to same pivot of VT then // update tree
9: update tree as in lines 9–20 of Algorithm 4
10: if |VT |= |VG| then
11: send finalization messages to all slave processes
12: print tree T
13: end
14: pivot ← pick_pivot(T )
15: partition← build_partition(pivot , T )
16: (s, t)← pick_pair_st(pivot)
17: contracted_size← num_vertices(pivot)+ degree(pivot)
18: if contracted_size < threshold× |VG| then
19: send task (s, t, partition, BuildContracted = True) to procj
20: else
21: send task (s, t, BuildContracted = False) to procs
22: else // slave process
23: loop
24: receive task (s, t, partition, BuildContracted)
25: if Task = end then
26: halt
27: if BuildContracted then
28: Gc ← build_contracted_graph(G, partition)
29: X ← minimum_cut(Gc , s, t)
30: else
31: X ← minimum_cut(G, s, t)
32: send reply (s, t, X) to proc0

The pseudocode of the hybrid parallel algorithm is shown
in Algorithm 6. The master process is proc0 and the slaves are
proc1, .., procp−1. The algorithm receives as input the capacitated
graph G = (VG, EG, cG) and produces as output the capacitated tree
T = (VT , ET , cT ). Each process maintains a copy of the input graph.
We assume that VG = {1, 2, 3, . . . , |VG|}.
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A boolean variable BuildContracted is used by the master to
signal the slave whether it should or should not compute a con-
tracted graph. Initially, BuildContracted is set to false because the
pivot contains all vertices of VG and the associated graph does not
have any contracted nodes. When the master receives a response
from a slave it updates the cut tree as in lines 9–20 of Algorithm
4. Before preparing a new task, the master computes the size of
the contracted graph as the number of vertices in the pivot plus
its degree. If the size of the contracted graph is less than the size
of |VG| times the threshold then BuildContracted is set to true;
otherwise it is set to false. After receiving the task, the slave uses
the BuildContracted variable to decide whether it will compute the
contracted graph or use the input graph.

In the next section we present experimental results comparing
the three parallel algorithms. Results confirm that the hybrid algo-
rithm presents robust performance for real and random generated
graphs.

7. Experimental results

In this section we describe experimental results obtained with
the implementation of the three proposed parallel cut tree al-
gorithms: GH, Gus and the hybrid algorithm. The experiments
were executed on a multiuser shared cluster with 18 machines
each of which with 32 Intel(R) Xeon(R) CPU E5-2670 cores at
2.60 GHz with 128 Gbytes memory and 20,480 Kbytes of cache,
interconnected by a Gigabit Ethernet network. The code was writ-
ten in C/C++ language and compiled with gcc (optimization level
-O3), using OpenMPI. Our implementations are based on the push-
relabel maximum flow algorithm [21] code HIPR,1 developed by
B.V. Cherkassky and A.V. Goldberg [14]. The input graph is repre-
sented as a list of edges and it is converted to an adjacency list to
compute minimum cuts. The list of edges is maintained to help
the construction of the contracted graphs. All outputs had been
validated against the output of the sequential implementation.

7.1. The datasets

We executed experiments with two datasets. The first dataset
included 10 graphs (Table 1) from different domains. The second
dataset contained randomgenerated graphs inwhich the existence
of balanced cuts can be controlled by a parameter of the graph
generating algorithm. These sets of graphs allowed us to explore
the differences among the three investigated algorithms in a con-
trolled way. See Table 2.

The dataset with 10 graphs is composed as follows. The first
four graphs are based on real data: a road network of the city of
Rome (1999) [50], one collaboration network [8], a power grid
network [52] and a network of blogs [1]. Two networks were
generated using randommodels: the Erdö s–Rényi (ER)model [11]
and the preferential attachment model [2]. The other 4 graphs
are synthetic graphs of different types that have been used as
benchmarks for min cut and cut tree algorithms [13,22].

TheNOI randomgraphswere proposed byNagamochi et al. [42]
to test minimum cut algorithms [13,42]. Finding graphs from con-
crete domains that presentminimum s–t-cuts with varying factors
of balance is hard. The NOI graph generator is particularly impor-
tant for understanding the practical aspects of cut tree algorithms
exactly because it produces graphs with varying balance factors.
The NOI graphs are instances described as algorithmic centered in
the book ‘‘A Guide to Experimental Algorithmics’’ by Catherine C.
McGeoch [39] as their generator is devised ‘‘with parameters that

1 Owned by IG Systems, Inc. Copyright 1995–2004. Freely available for research
purposes.

Table 1
Sizes of the graphs in the dataset 1.

Graph |VG| |EG|

rome99 3,353 8,879
GeoComp 3,621 9,461
PowerGrid 4,941 6,594
polblogs 1,222 16,714
BA 10,000 49,995
ER 2,000 9,995
DCYC 1,024 2,048
NOI 1,000 99,900
Path 2,000 21,990
Tree 2,000 21,990

Table 2
Sizes of the graphs in the dataset 2: NOI graphs.

Graph |VG| |EG| Parameter k

NOI 1000 99,900 1, 2, 3, 5, 10, 15, 20, 30,
40, 50, 100, 200, 300, 400, 500

exercise algorithm mechanisms’’; they contrast with the ‘‘reality
centered generators’’ to which the BA graphs belong.

The algorithm for generating a NOI graph receives a parameter
k that determines the number of heavy components (clusters) of
the graph. The algorithm starts with a cycle of n nodes colored
randomly with k colors. Edges are added to the graph until the
expected density is achieved. If an edge connects nodes of the
same color, it receives a large randomweight, otherwise it receives
a small random weight. The parameter k controls the existence
of balanced cuts. Intermediate values of k produce graphs with
balanced cuts. For extreme values, i.e., for k equal to 1 or for large
k, the generated graphs do not contain balanced cuts.

7.2. Total running times and profiling

We measured the total running times of the algorithms. The
hybrid algorithm used a threshold of 0.7, meaning that the graph
is contracted only if the number of nodes is less than 70% of the
number of nodes of the input graph. Preliminary experimentswere
executed with threshold values of 0.1, 0.3, 0.5, 0.7 and 0.9. These
experiments showed that 0.7 gives a good trade-off and also that
the hybrid algorithm is robust with respect to changes on the
threshold.

Fig. 6a shows the mean running times of 10 executions of Gus,
GH and the hybrid algorithms executed on all 10 instances running
18 processes on 18 different hosts/processors.

The experiment shows that neither GH nor Gus dominates each
other. The GH algorithm is faster than Gus for instances DCYC,
NOI and PATH. Executed on these instances, the hybrid algorithm
shows a similar performance as the faster of the two algorithms. On
instances BA, ER, BLOG, ROME and TREE, the Gus algorithm is faster
than the GH algorithm and again the hybrid algorithm produced
running times that are close to the faster of the two algorithms. On
the instances GEO and PGRI the Gus algorithm was faster than the
GH algorithm and the hybrid algorithm performed better than GH
algorithm but not as fast as the Gus algorithm. The Gus algorithm
was 5.8 times faster than the GH algorithm for instance BLOG.

Detailed information on the execution of the algorithms are
presented in Table 3. The columns show, respectively, the number
of clusters (k), the name of the algorithms, initialization times,
times for updating the tree, times to construct the contracted
graph, times to compute the minimum cuts on the contracted
graph and on the input graph, the total running times, the number
of discarded cuts and the average size of the graphs on which
minimum cuts were found. Note that the total running time is the
wall-clock time of the parallel execution, measured at the master
process, and the other times are a summation of the times all
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(a) Mean total running times with 18 processors of the 10 graph dataset. (b) Mean total running times with 18 processors of the NOI graphs dataset.

Fig. 6. Running times.

processes (slaves) take to execute the task. For example, the time
to compute minimum cuts is reported as the summation of the
computation of every minimum cut by all processes.

The third column of Table 3 shows the time in seconds to
initialize the master process, which includes initializing MPI plus
loading the input graph. The initialization takes little time when
compared to the other phases shown in the profile, it is always
below 0.027 s, except for one input graph: NOI, that has close to
100,000 edges; in this case it took 0.057 s. The fourth column shows
the tree update times, which includes the time to test whether a
cut can be used or not, plus the time to update the tree. We can see
that the tree update time is closely related both to the number of
vertices of the input graph and the number of unused cuts (shown
in the columnbefore the last). Formost graphs the tree update time
is on the order of tens of milliseconds, while for three graphs (GEO,
PGRI, ROME) it takes up to two hundred milliseconds. The next
column is key to understand the advantage of the hybrid algorithm
when compared to GH alone; note that no result is presented for
Gus as it does not contract graphs. It is easy to see that the hybrid
algorithm spends less time contracting graphs in comparison with
GH. However, in the last column we can see that the mean sizes of
the contracted graphs are very similar for both algorithms (GH and
Hybrid).

Columns 6 and 7 show the time spent computing minimum
cuts, both on the contracted (column 6) and input graph (column
7). These two columns are important to understand how the hybrid
algorithm compares with Gus. For most graphs it is easy to see
that there is a significant reduction of the time spent computing
minimum cuts by the hybrid algorithm (on a contracted graph) in
comparisonwith Gus on the input graph. However for one case (BA
graph) the situation inverts, the hybrid algorithm spent more time
than Gus. The reason is that the hybrid algorithm discarded more
than two hundred unused cuts, but this number was zero for Gus.
For another graph (ER) hybrid takes slightly more time (roughly
13%) than Gus, andwe believe this can be explained by the number
of unused cuts. For a third input graph (BLOG) hybrid took 6%more
time than Gus computing minimum cuts. In this case we cannot

explain the figureswith the number of unused cuts, we believe this
slight increase is due to the fact that hybrid does have an overhead
in comparison with Gus, due to the data structures employed.

The last column of Table 3 shows that the maximum reduction
of the graph by contractions was near 90% for the NOI and PATH
instances. The total time to compute minimum cuts was reduced
up to 20 times on the instance NOI.

The initialization times and the time to update the tree under
construction are not significant.

The NOI graphs were generated with 1000 nodes, edge density
of 20% and parameter k in {1, 2, 3, 5, 10, 15, 20, 30, 40, 50, 100, 200,
300, 400, 500}. Fig. 6b shows themean running times of executions
of Gus, GH and the hybrid algorithm on these NOI instances.

The Gus algorithm was faster than GH for k equal to 1, 2, 100,
200, 300, 400 and 500. For the remaining 8 instances, the GH
algorithmwas faster than Gus. For this instance with intermediary
values of k, the GH algorithm was able to find the balanced cuts
and, therefore, it reduced the average size of the graph achieving
better running times. With respect to the two algorithms, the
slowest performance was 187% worse than the best performance
on average, with a maximum of 436% in the worst case.

The hybrid algorithm presented consistent performance on all
instances. It was the fastest among the three algorithms on in-
stances with k equal to 3, 20, 40, 50, 100, 200, 300 and 500. On
average, the hybrid algorithm was only 14% slower than the best
algorithm for the 7 instances for which it was not the fastest.

Detailed profiling of these executions is presented in Table 4.
The last column shows a maximum reduction of the graph of 90%,
for k = 30. And for k = 15, the total time to compute minimum
cuts was reduced 16.3 times.

The table also shows that the time to compute the contracted
graph is much larger on inputs that do not contain balanced cuts
and those times may significantly affect the total running time of
the GH algorithm. For these NOI instances the number of discarded
cuts was not crucial in determining total running times.

Fig. 7 shows stacked bar plots for the three most important
factors identified in the table: the contraction time, the time to
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Table 3
Running time statistics for the 3 algorithms on the 10 instances.

Instance Algorithm Init Tree Contrac- Mincut Mincut Total Unused Graph
update tions contracted Input runtime cuts size

BA Hybrid 0.010 0.037 0.000 0.000 1.932 0.20 216 2000
ParGH 0.012 0.058 6.427 1.605 0.54 214 2000
ParGus 0.012 0.058 1.279 0.10 0 2000

DCYC Hybrid 0.007 0.017 0.089 0.105 0.920 0.10 99 892
ParGH 0.019 0.010 0.547 1.000 0.12 93 876
ParGus 0.019 0.010 12.557 0.76 278 1024

ER Hybrid 0.014 0.049 0.129 0.000 2.358 0.22 216 1996
ParGH 0.016 0.054 7.923 2.456 0.68 203 1993
ParGus 0.016 0.054 2.077 0.15 171 2000

GEO Hybrid 0.016 0.110 2.932 0.960 1.189 0.74 1234 1718
ParGH 0.011 0.106 8.606 2.399 0.89 949 1759
ParGus 0.011 0.106 4.288 0.32 2444 3621

NOI Hybrid 0.051 0.003 2.514 0.305 1.338 0.45 95 108
ParGH 0.057 0.004 4.289 1.293 0.38 97 103
ParGus 0.057 0.004 25.944 1.56 109 1000

PATH Hybrid 0.016 0.011 2.753 1.287 0.288 0.38 144 189
ParGH 0.020 0.005 3.191 1.650 0.36 144 190
ParGus 0.020 0.005 7.577 0.48 155 2000

BLOG Hybrid 0.015 0.013 0.310 0.000 1.582 0.16 175 1148
ParGH 0.026 0.022 8.526 1.733 0.64 155 1118
ParGus 0.026 0.022 1.489 0.11 174 1222

PGRI Hybrid 0.014 0.176 3.066 0.958 1.113 1.25 2038 1888
ParGH 0.014 0.209 7.202 2.153 1.40 1789 1963
ParGus 0.014 0.209 7.337 0.55 4924 4941

ROME Hybrid 0.014 0.102 1.427 0.597 2.360 0.53 949 2367
ParGH 0.015 0.121 5.565 2.044 0.67 867 2216
ParGus 0.015 0.121 6.888 0.47 2374 3353

TREE Hybrid 0.014 0.015 3.038 1.148 0.143 0.39 139 246
ParGH 0.022 0.008 3.388 1.237 0.36 136 239
ParGus 0.022 0.008 4.944 0.32 14 2000

Table 4
Running time statistics for the 3 algorithms on NOI instances.

Instance Algorithm Init Tree Contrac- Mincut Mincut Total Unused Graph
update tions contracted Input runtime cuts size

1 Hybrid 0.053 0.011 0.000 0.000 16.079 1.17 114 1000
ParGH 0.053 0.011 69.049 13.399 4.94 112 1000
ParGus 0.053 0.011 15.232 0.92 123 1000

10 Hybrid 0.053 0.005 2.885 0.273 1.243 0.47 100 131
ParGH 0.056 0.004 4.774 1.220 0.41 100 129
ParGus 0.056 0.004 22.403 1.36 74 1000

30 Hybrid 0.050 0.006 2.937 0.699 2.543 0.58 117 112
ParGH 0.055 0.005 6.205 2.432 0.57 112 104
ParGus 0.055 0.005 31.338 1.89 136 1000

40 Hybrid 0.050 0.003 3.616 1.137 3.189 0.68 134 126
ParGH 0.063 0.001 7.949 3.742 0.75 138 120
ParGus 0.063 0.001 31.672 1.89 124 1000

50 Hybrid 0.056 0.004 4.934 1.686 4.226 0.84 162 169
ParGH 0.054 0.006 11.587 5.317 1.06 175 157
ParGus 0.054 0.006 33.979 2.07 122 1000

100 Hybrid 0.054 0.011 9.727 3.911 7.848 1.48 174 344
ParGH 0.051 0.006 25.498 10.787 2.21 199 304
ParGus 0.051 0.006 30.479 1.86 122 1000

200 Hybrid 0.058 0.013 3.882 1.328 14.488 1.39 142 634
ParGH 0.056 0.014 43.815 13.868 3.48 163 549
ParGus 0.056 0.014 23.303 1.40 109 1000

300 Hybrid 0.051 0.018 0.735 0.001 16.734 1.22 117 735
ParGH 0.054 0.004 50.311 14.623 3.91 152 647
ParGus 0.054 0.004 23.416 1.43 163 1000

400 Hybrid 0.053 0.016 0.633 0.000 16.544 1.23 124 808
ParGH 0.054 0.009 55.245 14.746 4.21 141 751
ParGus 0.054 0.009 17.352 1.05 73 1000

500 Hybrid 0.049 0.010 0.593 0.000 17.007 1.23 120 847
ParGH 0.055 0.007 58.601 14.727 4.41 133 800
ParGus 0.055 0.007 21.216 1.28 142 1000
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Fig. 7. Running times divided by the most time consuming tasks: contractions, minimum cut on contracted graph and minimum cut on the input graph.

compute themin-cut in the contracted graph, and the time to com-
pute themin-cut in the original graph. The plot helps to understand
what happenswhen the hybrid algorithm presents the best overall
results. For instance, consider k = 50. In this case Gus takesmost of
the time to compute the minimum cut—more time than both GH
and hybrid take to complete the execution. GH takes more time
contracting the graph than the hybrid algorithm. The same pattern
repeats for k = 10, 30, 40, 50. Then a different pattern appears
in which GH takes a long time to contract the graphs, while Gus
presents good results for computing the minimum cuts, and the
hybrid algorithm presents even better results for the same task.

7.3. Speedups

Speedupswere computed as S = TS/TP , where TS is the running
time of the sequential execution of the algorithms and TP is the
execution time for the parallel implementations on p processes.
The efficiency was calculated using E = S/p. All experiments
consisted of 10 runs on each instance.

The speedups of the three algorithms were similar. The Gus
algorithm had slightly better speedups. Figs. 8a and 8b show the
speedups of the Gus and hybrid algorithms, respectively. With 18
processes, Gus presented speedups between 6.7 and 13.6while the
hybrid algorithm had speedups between 4.6 and 11.3.

We also executed the algorithms for large NOI graphs with
100,000 nodes and 400,000 edges. By running the hybrid algorithm

on 34 processors we computed a speedup equal to 24. In terms
of running time, the reduction was from nearly 8 h (7 h 57 min
and 22 s to be precise) for the sequential version to nearly 19 min
(18min and 56 s to be precise) for the parallel version executed on
34 processors.

8. Related work

Both the GH and Gus algorithms accept as input undirected
capacitated multigraphs. For specific cases, more efficient algo-
rithms have been proposed. For instance, A. Bhalgat et al. [29]
proposed a randomized algorithm that builds a cut tree from a
non-capacitated graph with time complexity of O(mn). We are
not aware of any implementation of this algorithm. In the case of
capacitated planar graphs, anO(n.log4n) algorithmwas introduced
by G. Borradaile et al. [12].

A.V. Goldberg andK. Tsioutsiouliklis [22] present the first exper-
imental study of cut tree algorithms. Their work aims at comparing
the efficiency of the Gomory–Hu and Gusfield algorithms. The
authors’ conclusion was that an optimized version of the GH al-
gorithm was more robust than the Gusfield algorithm because the
latter was significantly slower than the former in some instances.
However, it is worth noting that most instances for which the
GH algorithm is much faster than the Gus algorithm are synthetic
graphs where balanced cuts exist by construction. On the other
hand, Gus algorithm was faster in many classes of graphs.
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(a) Speedups of the parallel Gus algorithm. (b) Speedups of the hybrid algorithm.

Fig. 8. Speedups of the parallel Gus and hybrid algorithms.

The problem of finding a partial cut tree that represents all
edge cuts with cardinality at most k for non-capacitated graphs
was studied by Hariharan et al. [28]. They presented a randomized
algorithm with expected complexity of O(m + nk3) to solve that
problem.

Arikati et al. [4] present efficient algorithms to the all-pair
minimum cut problem for graphs with bounded treewidth, planar
graphs and sparse graphs.

The concept of cut trees cannot be directly applied for the
edge-connectivity of directed graphs, as shown by Benczúr [9]. The
author shows a directed graph that has a quadratic number of s–t-
cuts of distinct capacities. Actually, this result revealed an error in
the work of C.P. Schnorr [49] that presented (incorrect) evidence
for the existence of cut trees of directed graphs. It also invalidated
the work by D. Gusfield and D. Naor [26] that, based on Schnorr’s
result, presented an (incorrect) algorithm for the construction of
such trees.

Minimum vertex cuts cannot be represented by a cut tree [9].
In the more general case of graphs with costs associated with
vertices R. Hassin andA. Levin [32] showed that there is no compact
representation of the vertex cutswithminimumcost, as there exist
up to Θ(n2) possible values for minimum cuts.

Separations are a generalization of the concept of vertex cuts.
An s–t-separation is a set of vertices that may be a vertex-cut or it
may contain either s or t . R. Hassin and A. Levin [32] showed the
existence of a cut tree for separations in undirected graphs with
arbitrary cost functions as well as an algorithm to compute it. An-
other generalization of cuts is the node–edge cuts thatmay contain
both vertices and edges. X. Zhang et al. [53] showed the existence of
flow equivalent trees to node–edge capacitated undirected planar
graphs.

The concept of cut trees was generalized to matroids by D.
Hartvigsen in [31]. He showed that computing a cut tree for an
undirected graph is a particular case of the same problem applied
for matroids.

M. Conforti et al. [17] generalized the concept of flowequivalent
trees to allow the efficient retrieval of λ(s, t) edge-disjoint paths
between any pair of vertices of a graph.

Kabadi S.N. et al. [36] study the existence of cut trees to the
maximum flow problem between a pair of vertices with multiple
routes (multiroute flows).

The problemof findingminimumcuts between all pairs vertices
of a graph was also studied in the parametric case where the
weights of some edges may vary. P. Berthomé et al. [10] show that
from 2k cut trees it is possible to efficiently determine the value of
the maximum flow between any pair of vertices in a graph with
up to k edges with varying capacities. The same authors show in
[7] how to find minimum cuts between all pairs of vertices for the
same case. In [3], another parametric version of the same problem
is studied.

Cut trees and flow-equivalent trees have been applied in so-
lutions for several different types of problems. Some of these
applications are presented below.

Given a graph G = (VG, EG) and a set T ⊆ VG, where |T | is even,
a T -cut in G is a cut {X, X} such that |T ∩ X | is odd. Algorithms
for the T -cut problem have several applications. They are used, for
example, as heuristics to accelerate exact solutions to the Traveling
Salesman Problem (TSP) [37]. A minimum T -cut of a graph can be
foundwith an algorithm that first finds a cut tree for the graph [43].

Given a graph with non-negative edge weights, the minimum
k-cut problem consists of finding a set of edges of the graph
which removal leaves the graph with k connected components. A
2-approximation algorithm for the minimum k-cut problem was
proposed by H. Saran and V.V. Vazirani [48] and it consists of
removing the k−1 edges ofminimum capacities of a cut tree of the
graph. Generalizations of the k-cut problem that are also solved by
means of cut trees were proposed by R. Engelberg et al. [19].

Graph clustering algorithms have many applications, for exam-
ple for finding groups in social networks [38], for gene expression
[35], for the classification of web pages [20], among others. Graph
clustering algorithms aim at partitioning the vertex set of a graph
such that the classes of vertices are internally highly connected but
with low connectivity among the classes. The concept of cuts and
its variations are naturally related to graph clustering. E. Hartuv
and R. Shamir [30] present a clustering algorithm based on min-
imum cuts and compare their method with others on biological
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data. G.W. Flake et al. [20] present a graph clustering algorithm
that adds a vertex to the graph and partition it with the aid of a cut
tree. Their algorithm provably satisfies certain quality guarantees.
They apply the algorithm to the classification of scientific papers
and web pages. More recently, B. Saha and P. Mitra [46] presented
a variation of the clustering algorithm by G.W. Flake et al. for
dynamic graphs with node and edge insertions and deletions.
That work was extended and corrected by R. Görke et al. [24,25].
Another practical application of graph clustering based on cut trees
is on software modularization [34].

Our two previous conference publications introduce (1) the
parallel Gus algorithm [15] and the parallel GH algorithm [16].
In this paper we present the problem of computing cut tress in
parallel in a unified framework, not only including the parallel
Gus and GH algorithms but also introducing the hybrid algorithm
and presenting a comprehensive empirical evaluation of all three
algorithms.

A heuristic to the parallel GH algorithm was also presented in
[16]. The heuristic consists in enumerating all (up to a limit) of
the minimum s–t-cuts in order to choose the most balanced one.
The cut enumeration scheme is based on [44] and it is applied on
the residual network produced by the maximum flow algorithm.
The enumeration algorithm takes linear time to produce each cut.
In graphs where a minimum s–t-cut is likely to be unique, this
heuristic may increase the running time of the whole algorithm
without any gain. However, if minimum s–t-cuts are not unique,
this procedure is necessary if we expect the algorithm to find
balanced cuts, since the maximum flow algorithm tends to output
very unbalanced vertex sets.

9. Conclusion

Cut trees are widely used combinatorial structures. In this work
three parallel cut tree algorithmswere presented. Initially, parallel
versions of both Gusfield and Gomory–Hu algorithms were de-
scribed. Although parallelizing Gus algorithm does not present sig-
nificant obstacles, the same is not true for GH algorithm. However
we prove that it is very efficient to update the tree using multiple
cuts computed in parallel even if those cuts cross each other.
Comparing Gus and GH, there is no best solution, as each algorithm
performs better than the other for certain inputs. We propose a
hybrid algorithm that can be successfully used for arbitrary inputs.
Our main purpose in developing the hybrid algorithm is to remove
from the user the need to make a choice of which algorithm to use.
Note that the hybrid algorithm tries to make the best decision at
each step, it is not about taking a single decision ofwhich algorithm
to use.

Experimental results are presented that show that significant
speedups can be achieved by the proposed parallel algorithms.We
show that the three algorithms achieve significant speedups on
real and synthetic graphs. We discuss the trade-offs between the
alternatives, each of which presents better results given the char-
acteristics of the input graph. Experimental results comparing the
performance of GH algorithm and Gusfield algorithm have been
presented. The parallel GH algorithm presents better performance
on graphs that contain balanced cuts. The hybrid algorithm proved
to have a very consistent performance. It outperformed both other
algorithms on several instances, and was faster than the parallel
Gomory–Hu algorithm on most instances.

Future work includes investigating further optimizations of the
GH algorithm. In particular, strategies for choosing the next pair
of vertices to separate should have a positive impact on the per-
formance. While the master process of the Gus algorithm executes
few instructions per cut, the GH master process does more work.
Therefore, the master process of the GH algorithm is more likely
to become a bottleneck as the number of processes increases.

Devising strategies to tackle this problemseems to be relevant, as is
devising optimized communication strategies betweenmaster and
slaves. Another item for futurework is improving the algorithm for
building contracted graphs efficiently. Finally evaluating the algo-
rithms on very large graphs consisting of hundreds of thousands of
vertices is also left as future work.
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